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6.1800 Spring 2025
Lecture #3: Virtual Memory 
how does it work, but more importantly, why does an OS use it?
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6.1800 in the news

https://nscreenmedia.com/tubi-super-bowl-lix-quality-better-than-broadcast-experience/

caveat: this does not appear to be a large-scale measurement study, we should not draw 
huge conclusions about the performance of Tubi vs. YouTube TV from these results alone
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Class Browser
(on machine 1)

def main(): 
  html = browser_load_url(URL) 
  ...

def browser_load_url(url): 
  msg = url # could reformat 
  send request 
  wait for reply 
  html = reply # could reformat 
  return html stub

Class Server
(on machine 2)

def server_load_url(): 
  ... 
  return html

def handle_server_load_url(url): 
  wait for request 
  url = request 
  html = server_load_url(URL) 
  reply = html 
  send reply stub

client server

network

load(“kaws.com/buy.html?item=duck”)

X
load(“kaws.com/buy.html?item=duck”)

last time: enforced modularity via client/server + naming
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Class Browser
(on machine 1)

def main(): 
  html = browser_load_url(URL) 
  ...

def browser_load_url(url): 
  msg = url # could reformat 
  send request 
  wait for reply 
  html = reply # could reformat 
  return html stub

Class Server
(on machine 2)

def server_load_url(): 
  ... 
  return html

def handle_server_load_url(url): 
  wait for request 
  url = request 
  html = server_load_url(URL) 
  reply = html 
  send reply stub

client server

network

load(“kaws.com/buy.html?item=duck”)

X
load(“kaws.com/buy.html?item=duck”)

last time: enforced modularity via client/server + naming

today: what if we don’t want to put each module on a separate machine?



Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

operating systems enforce modularity on a single machine
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(and corrupt) each others’ memory
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operating systems enforce modularity on a single machine
in order to enforce modularity + have an effective operating system, a few things need to happen

1. programs shouldn’t be able to refer to 
(and corrupt) each others’ memory

2. programs should be able to 
communicate with each other

3. programs should be able to share a 
CPU without one program halting the 
progress of the others

the primary technique that an operating system uses to enforce modularity is virtualization
in some sense, we want every program to think that it has access to the full physical 
hardware, when of course they don’t; the OS virtualizes different components of hardware

virtualize memory

assume they don’t need to

(for today)

assume one program per CPU 

(for today)
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what we want: virtualization. every program should 
appear to have access to a full 32-bit address space
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what we want: virtualization. every program should 
appear to have access to a full 32-bit address space

what we have: 232 bytes of memory; every program 
can’t actually have access to the full 32-bit space
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CPU1 (used by program1)

what we want: virtualization. every program should 
appear to have access to a full 32-bit address space

what we have: 232 bytes of memory; every program 
can’t actually have access to the full 32-bit space
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CPU1 (used by program1)

EIP

031

what we want: virtualization. every program should 
appear to have access to a full 32-bit address space

what we have: 232 bytes of memory; every program 
can’t actually have access to the full 32-bit space
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CPU1 (used by program1)

EIP

031

CPU2 (used by program2)

what we want: virtualization. every program should 
appear to have access to a full 32-bit address space

what we have: 232 bytes of memory; every program 
can’t actually have access to the full 32-bit space
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CPU1 (used by program1)

EIP

031

main memory

CPU2 (used by program2)

what we want: virtualization. every program should 
appear to have access to a full 32-bit address space

what we have: 232 bytes of memory; every program 
can’t actually have access to the full 32-bit space
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CPU1 (used by program1)

EIP

031

main memory

CPU2 (used by program2)

what we want: virtualization. every program should 
appear to have access to a full 32-bit address space

what we have: 232 bytes of memory; every program 
can’t actually have access to the full 32-bit space

0x00000000

0xFFFFFFFF
(232-1)
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CPU1 (used by program1)

EIP

031

main memory

CPU2 (used by program2)

instructions and 
data for program1

instructions and 
data for program2

what we want: virtualization. every program should 
appear to have access to a full 32-bit address space

what we have: 232 bytes of memory; every program 
can’t actually have access to the full 32-bit space

0x00000000

0xF0000000

0xE000000

0xFFFFFFFF
(232-1)
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CPU1 (used by program1)

EIP

031

main memory

CPU2 (used by program2)

instructions and 
data for program1

instructions and 
data for program2

…

what we want: virtualization. every program should 
appear to have access to a full 32-bit address space

what we have: 232 bytes of memory; every program 
can’t actually have access to the full 32-bit space

0x00000000

0xF0000000

0xE000000

0xFFFFFFFF
(232-1)
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CPU1 (used by program1)

EIP

031

memory management unit (MMU) main memory

CPU2 (used by program2)

instructions and 
data for program1

instructions and 
data for program2

…

what we want: virtualization. every program should 
appear to have access to a full 32-bit address space

what we have: 232 bytes of memory; every program 
can’t actually have access to the full 32-bit space

0x00000000

0xF0000000

0xE000000

0xFFFFFFFF
(232-1)
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CPU1 (used by program1)

EIP

0x00002148
031

memory management unit (MMU) main memory

CPU2 (used by program2)

instructions and 
data for program1

instructions and 
data for program2

…

what we want: virtualization. every program should 
appear to have access to a full 32-bit address space

what we have: 232 bytes of memory; every program 
can’t actually have access to the full 32-bit space

0x00000000

0xF0000000

0xE000000

0xFFFFFFFF
(232-1)
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CPU1 (used by program1)

EIP

0x00002148
031

memory management unit (MMU)

0x00002148

main memory

CPU2 (used by program2)

instructions and 
data for program1

instructions and 
data for program2

…

what we want: virtualization. every program should 
appear to have access to a full 32-bit address space

what we have: 232 bytes of memory; every program 
can’t actually have access to the full 32-bit space

0x00000000

0xF0000000

0xE000000

0xFFFFFFFF
(232-1)
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CPU1 (used by program1)

EIP

0x00002148
031

memory management unit (MMU)

0x00002148

main memory

CPU2 (used by program2)

instructions and 
data for program1

instructions and 
data for program2

…

table for program2

table for program1

what we want: virtualization. every program should 
appear to have access to a full 32-bit address space

what we have: 232 bytes of memory; every program 
can’t actually have access to the full 32-bit space

0x00000000

0xF0000000

0xE000000

0xFFFFFFFF
(232-1)
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CPU1 (used by program1)

EIP

0x00002148
031

memory management unit (MMU)

0x00002148

main memory

CPU2 (used by program2)

instructions and 
data for program1

instructions and 
data for program2

…

table for program2

table for program1

what we want: virtualization. every program should 
appear to have access to a full 32-bit address space

what we have: 232 bytes of memory; every program 
can’t actually have access to the full 32-bit space

0x00000000

0xF0000000

0xE000000

0xFFFFFFFF
(232-1)

the MMU is going to use program1’s 
table to translate a virtual address from 

program1 into a physical address
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CPU1 (used by program1)

EIP

0x00002148
031

memory management unit (MMU)

0x00002148

main memory

CPU2 (used by program2)

instructions and 
data for program1

instructions and 
data for program2

…

table for program2

table for program1

0xFF035113

0xF27A9B77

0xF0110048

0xF8887881
…

what we want: virtualization. every program should 
appear to have access to a full 32-bit address space

what we have: 232 bytes of memory; every program 
can’t actually have access to the full 32-bit space

0x00000000

0xF0000000

0xE000000

0xFFFFFFFF
(232-1)

attempt 1: each virtual address acts 
as an index into this table; there is 
one entry for every virtual address
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CPU1 (used by program1)

EIP

0x00002148
031

memory management unit (MMU)

0x00002148

main memory

CPU2 (used by program2)

instructions and 
data for program1

instructions and 
data for program2

…

table for program2

table for program1

0xFF035113

0xF27A9B77

0xF0110048

0xF8887881
…

what we want: virtualization. every program should 
appear to have access to a full 32-bit address space

what we have: 232 bytes of memory; every program 
can’t actually have access to the full 32-bit space

0x00000000

0xF0000000

0xE000000

0xFFFFFFFF
(232-1)

attempt 1: each virtual address acts 
as an index into this table; there is 
one entry for every virtual address
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CPU1 (used by program1)

EIP

0x00002148
031

memory management unit (MMU)

0x00002148

main memory

CPU2 (used by program2)

instructions and 
data for program1

instructions and 
data for program2

…

table for program2

table for program1

0xFF035113

0xF27A9B77

0xF0110048

0xF8887881
…

what we want: virtualization. every program should 
appear to have access to a full 32-bit address space

what we have: 232 bytes of memory; every program 
can’t actually have access to the full 32-bit space

0x00000000

0xF0000000

0xE000000

0xFFFFFFFF
(232-1)

attempt 1: each virtual address acts 
as an index into this table; there is 
one entry for every virtual address

232 virtual addresses each mapping 
to a 32-bit physical address →
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CPU1 (used by program1)

EIP

0x00002148
031

memory management unit (MMU)

0x00002148

main memory

CPU2 (used by program2)

instructions and 
data for program1

instructions and 
data for program2

…

table for program2

table for program1

0xFF035113

0xF27A9B77

0xF0110048

0xF8887881
…

what we want: virtualization. every program should 
appear to have access to a full 32-bit address space

what we have: 232 bytes of memory; every program 
can’t actually have access to the full 32-bit space

0x00000000

0xF0000000

0xE000000

0xFFFFFFFF
(232-1)

attempt 1: each virtual address acts 
as an index into this table; there is 
one entry for every virtual address 16GB to store this table

232 virtual addresses each mapping 
to a 32-bit physical address →
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CPU1 (used by program1)

EIP

0x00002148
031

memory management unit (MMU)

0x00002148

main memory

CPU2 (used by program2)

instructions and 
data for program1

instructions and 
data for program2

…

table for program2

table for program1

0xFF035113

0xF27A9B77

0xF0110048

0xF8887881
…

what we want: virtualization. every program should 
appear to have access to a full 32-bit address space

what we have: 232 bytes of memory; every program 
can’t actually have access to the full 32-bit space

0x00000000

0xF0000000

0xE000000

0xFFFFFFFF
(232-1)

attempt 1: each virtual address acts 
as an index into this table; there is 
one entry for every virtual address

16GB is quite a lot 
of memory

16GB to store this table

232 virtual addresses each mapping 
to a 32-bit physical address →
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0x00002148

CPU1 (used by program1)

EIP

0x00002148
031

memory management unit (MMU) main memory

CPU2 (used by program2)

instructions and 
data for program1

instructions and 
data for program2

…

page table for 
program2

page table for 
program1

0xFFFFFFFF

what we have: 232 bytes of memory; every program 
can’t actually have access to the full 32-bit space

0x00000000

0xF0000000

0xE000000

(232-1)

what we want: virtualization. every program should 
appear to have access to a full 32-bit address space
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0x00002148

CPU1 (used by program1)

EIP

0x00002148
031

memory management unit (MMU) main memory

CPU2 (used by program2)

instructions and 
data for program1

instructions and 
data for program2

…

page table for 
program2

page table for 
program1

0xFFFFFFFF

what we have: 232 bytes of memory; every program 
can’t actually have access to the full 32-bit space

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

what we want: virtualization. every program should 
appear to have access to a full 32-bit address space
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0x00002148

CPU1 (used by program1)

EIP

0x00002148
031

memory management unit (MMU) main memory

CPU2 (used by program2)

instructions and 
data for program1

instructions and 
data for program2

…

page table for 
program2

page table for 
program1

0xFFFFFFFF

what we have: 232 bytes of memory; every program 
can’t actually have access to the full 32-bit space

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

PTR1 0x007A1200
PTR2 0x003D0900

what we want: virtualization. every program should 
appear to have access to a full 32-bit address space
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0x00002148

CPU1 (used by program1)

EIP

0x00002148
031

memory management unit (MMU) main memory

CPU2 (used by program2)

instructions and 
data for program1

instructions and 
data for program2

…

page table for 
program2

page table for 
program1

0xF0110

0xFF035

0xF27A9

0xF8887
…

0xFFFFFFFF

what we have: 232 bytes of memory; every program 
can’t actually have access to the full 32-bit space

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

PTR1 0x007A1200
PTR2 0x003D0900

what we want: virtualization. every program should 
appear to have access to a full 32-bit address space
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0x00002148

CPU1 (used by program1)

EIP

0x00002148
031

memory management unit (MMU) main memory

CPU2 (used by program2)

instructions and 
data for program1

instructions and 
data for program2

…

page table for 
program2

page table for 
program1

0xF0110

0xFF035

0xF27A9

0xF8887
…

0xFFFFFFFF

what we have: 232 bytes of memory; every program 
can’t actually have access to the full 32-bit space

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

PTR1 0x007A1200
PTR2 0x003D0900

page tables: top 20 bits of the 
virtual address act as an index into 
this table

(a page of memory is 232-20=212 bytes)

what we want: virtualization. every program should 
appear to have access to a full 32-bit address space



Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

0x00002148

CPU1 (used by program1)

EIP

0x00002148
031

memory management unit (MMU) main memory

CPU2 (used by program2)

instructions and 
data for program1

instructions and 
data for program2

…

page table for 
program2

page table for 
program1

0xF0110

0xFF035

0xF27A9

0xF8887
…

0xFFFFFFFF

what we have: 232 bytes of memory; every program 
can’t actually have access to the full 32-bit space

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

PTR1 0x007A1200
PTR2 0x003D0900

virtual page number: 0x00002
(top 20 bits)

page tables: top 20 bits of the 
virtual address act as an index into 
this table

(a page of memory is 232-20=212 bytes)

what we want: virtualization. every program should 
appear to have access to a full 32-bit address space
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0x00002148

CPU1 (used by program1)

EIP

0x00002148
031

memory management unit (MMU) main memory

CPU2 (used by program2)

instructions and 
data for program1

instructions and 
data for program2

…

page table for 
program2

page table for 
program1

0xF0110

0xFF035

0xF27A9

0xF8887
…

0xFFFFFFFF

what we have: 232 bytes of memory; every program 
can’t actually have access to the full 32-bit space

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

PTR1 0x007A1200
PTR2 0x003D0900

virtual page number: 0x00002
(top 20 bits)

physical page number: 0xF0110

page tables: top 20 bits of the 
virtual address act as an index into 
this table

(a page of memory is 232-20=212 bytes)

what we want: virtualization. every program should 
appear to have access to a full 32-bit address space
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0x00002148

CPU1 (used by program1)

EIP

0x00002148
031

memory management unit (MMU) main memory

CPU2 (used by program2)

instructions and 
data for program1

instructions and 
data for program2

…

page table for 
program2

page table for 
program1

0xF0110

0xFF035

0xF27A9

0xF8887
…

0xFFFFFFFF

what we have: 232 bytes of memory; every program 
can’t actually have access to the full 32-bit space

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

PTR1 0x007A1200
PTR2 0x003D0900

virtual page number: 0x00002
(top 20 bits)

offset: 0x148
(bottom 12 bits)

physical page number: 0xF0110

page tables: top 20 bits of the 
virtual address act as an index into 
this table

(a page of memory is 232-20=212 bytes)

what we want: virtualization. every program should 
appear to have access to a full 32-bit address space
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0xF01101480x00002148

CPU1 (used by program1)

EIP

0x00002148
031

memory management unit (MMU) main memory

CPU2 (used by program2)

instructions and 
data for program1

instructions and 
data for program2

…

page table for 
program2

page table for 
program1

0xF0110

0xFF035

0xF27A9

0xF8887
…

0xFFFFFFFF

what we have: 232 bytes of memory; every program 
can’t actually have access to the full 32-bit space

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

PTR1 0x007A1200
PTR2 0x003D0900

virtual page number: 0x00002
(top 20 bits)

offset: 0x148
(bottom 12 bits)

physical page number: 0xF0110

page tables: top 20 bits of the 
virtual address act as an index into 
this table

(a page of memory is 232-20=212 bytes)

what we want: virtualization. every program should 
appear to have access to a full 32-bit address space
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0xF01101480x00002148

CPU1 (used by program1)

EIP

0x00002148
031

memory management unit (MMU) main memory

CPU2 (used by program2)

instructions and 
data for program1

instructions and 
data for program2

…

page table for 
program2

page table for 
program1

0xF0110

0xFF035

0xF27A9

0xF8887
…

0xFFFFFFFF

what we have: 232 bytes of memory; every program 
can’t actually have access to the full 32-bit space

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

PTR1 0x007A1200
PTR2 0x003D0900

virtual page number: 0x00002
(top 20 bits)

offset: 0x148
(bottom 12 bits)

physical page number: 0xF0110

page tables: top 20 bits of the 
virtual address act as an index into 
this table

(a page of memory is 232-20=212 bytes)

what we want: virtualization. every program should 
appear to have access to a full 32-bit address space
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0xF01101480x00002148

CPU1 (used by program1)

EIP

0x00002148
031

memory management unit (MMU) main memory

CPU2 (used by program2)

instructions and 
data for program1

instructions and 
data for program2

…

page table for 
program2

page table for 
program1

0xF0110

0xFF035

0xF27A9

0xF8887
…

0xFFFFFFFF

what we have: 232 bytes of memory; every program 
can’t actually have access to the full 32-bit space

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

PTR1 0x007A1200
PTR2 0x003D0900

virtual page number: 0x00002
(top 20 bits)

offset: 0x148
(bottom 12 bits)

physical page number: 0xF0110

page tables: top 20 bits of the 
virtual address act as an index into 
this table

(a page of memory is 232-20=212 bytes)

220 virtual page numbers each 
mapping to a 32-bit page-table 
entry (PTE) → 4MB to store this 
table
(why 32-bit PTEs, not 20-bit? hang on)

what we want: virtualization. every program should 
appear to have access to a full 32-bit address space
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0x00001309

CPU1 (used by program1)

EIP

0x00001309
031

memory management unit (MMU) main memory

CPU2 (used by program2)

instructions and 
data for program1

instructions and 
data for program2

…

page table for 
program2

page table for 
program1

0xFF035

0xF27A9

0xF8887
…

0xF0110

0xFFFFFFFF

what we have: 232 bytes of memory; every program 
can’t actually have access to the full 32-bit space

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

PTR1 0x007A1200
PTR2 0x003D0900

page tables: top 20 bits of the 
virtual address act as an index into 
this table

(a page of memory is 232-20=212 bytes)

220 virtual page numbers each 
mapping to a 32-bit page-table 
entry (PTE) → 4MB to store this 
table
(why 32-bit PTEs, not 20-bit? hang on)

what we want: virtualization. every program should 
appear to have access to a full 32-bit address space
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0x00001309

CPU1 (used by program1)

EIP

0x00001309
031

memory management unit (MMU) main memory

CPU2 (used by program2)

instructions and 
data for program1

instructions and 
data for program2

…

page table for 
program2

page table for 
program1

0xFF035

0xF27A9

0xF8887
…

0xF0110

0xFFFFFFFF

what we have: 232 bytes of memory; every program 
can’t actually have access to the full 32-bit space

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

PTR1 0x007A1200
PTR2 0x003D0900

page tables: top 20 bits of the 
virtual address act as an index into 
this table

(a page of memory is 232-20=212 bytes)

220 virtual page numbers each 
mapping to a 32-bit page-table 
entry (PTE) → 4MB to store this 
table
(why 32-bit PTEs, not 20-bit? hang on)

what we want: virtualization. every program should 
appear to have access to a full 32-bit address space
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0x00001309

CPU1 (used by program1)

EIP

0x00001309
031

memory management unit (MMU) main memory

CPU2 (used by program2)

instructions and 
data for program1

instructions and 
data for program2

…

page table for 
program2

page table for 
program1

0xFF035

0xF27A9

0xF8887
…

0xF0110

0xFFFFFFFF

what we have: 232 bytes of memory; every program 
can’t actually have access to the full 32-bit space

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

PTR1 0x007A1200
PTR2 0x003D0900

virtual page number: 0x00001
(top 20 bits)

page tables: top 20 bits of the 
virtual address act as an index into 
this table

(a page of memory is 232-20=212 bytes)

220 virtual page numbers each 
mapping to a 32-bit page-table 
entry (PTE) → 4MB to store this 
table
(why 32-bit PTEs, not 20-bit? hang on)

what we want: virtualization. every program should 
appear to have access to a full 32-bit address space
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0x00001309

CPU1 (used by program1)

EIP

0x00001309
031

memory management unit (MMU) main memory

CPU2 (used by program2)

instructions and 
data for program1

instructions and 
data for program2

…

page table for 
program2

page table for 
program1

0xFF035

0xF27A9

0xF8887
…

0xF0110

0xFFFFFFFF

what we have: 232 bytes of memory; every program 
can’t actually have access to the full 32-bit space

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

PTR1 0x007A1200
PTR2 0x003D0900

virtual page number: 0x00001
(top 20 bits)

physical page number: 0xF27A9

page tables: top 20 bits of the 
virtual address act as an index into 
this table

(a page of memory is 232-20=212 bytes)

220 virtual page numbers each 
mapping to a 32-bit page-table 
entry (PTE) → 4MB to store this 
table
(why 32-bit PTEs, not 20-bit? hang on)

what we want: virtualization. every program should 
appear to have access to a full 32-bit address space
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0x00001309

CPU1 (used by program1)

EIP

0x00001309
031

memory management unit (MMU) main memory

CPU2 (used by program2)

instructions and 
data for program1

instructions and 
data for program2

…

page table for 
program2

page table for 
program1

0xFF035

0xF27A9

0xF8887
…

0xF0110

0xFFFFFFFF

what we have: 232 bytes of memory; every program 
can’t actually have access to the full 32-bit space

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

PTR1 0x007A1200
PTR2 0x003D0900

virtual page number: 0x00001
(top 20 bits)

offset: 0x309
(bottom 12 bits)

physical page number: 0xF27A9

page tables: top 20 bits of the 
virtual address act as an index into 
this table

(a page of memory is 232-20=212 bytes)

220 virtual page numbers each 
mapping to a 32-bit page-table 
entry (PTE) → 4MB to store this 
table
(why 32-bit PTEs, not 20-bit? hang on)

what we want: virtualization. every program should 
appear to have access to a full 32-bit address space
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0xF27A93090x00001309

CPU1 (used by program1)

EIP

0x00001309
031

memory management unit (MMU) main memory

CPU2 (used by program2)

instructions and 
data for program1

instructions and 
data for program2

…

page table for 
program2

page table for 
program1

0xFF035

0xF27A9

0xF8887
…

0xF0110

0xFFFFFFFF

what we have: 232 bytes of memory; every program 
can’t actually have access to the full 32-bit space

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

PTR1 0x007A1200
PTR2 0x003D0900

virtual page number: 0x00001
(top 20 bits)

offset: 0x309
(bottom 12 bits)

physical page number: 0xF27A9

page tables: top 20 bits of the 
virtual address act as an index into 
this table

(a page of memory is 232-20=212 bytes)

220 virtual page numbers each 
mapping to a 32-bit page-table 
entry (PTE) → 4MB to store this 
table
(why 32-bit PTEs, not 20-bit? hang on)

what we want: virtualization. every program should 
appear to have access to a full 32-bit address space
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0xF27A93090x00001309

CPU1 (used by program1)

EIP

0x00001309
031

memory management unit (MMU) main memory

CPU2 (used by program2)

instructions and 
data for program1

instructions and 
data for program2

…

page table for 
program2

page table for 
program1

0xFF035

0xF27A9

0xF8887
…

0xF0110

0xFFFFFFFF

what we have: 232 bytes of memory; every program 
can’t actually have access to the full 32-bit space

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

PTR1 0x007A1200
PTR2 0x003D0900

virtual page number: 0x00001
(top 20 bits)

offset: 0x309
(bottom 12 bits)

physical page number: 0xF27A9

page tables: top 20 bits of the 
virtual address act as an index into 
this table

(a page of memory is 232-20=212 bytes)

220 virtual page numbers each 
mapping to a 32-bit page-table 
entry (PTE) → 4MB to store this 
table
(why 32-bit PTEs, not 20-bit? hang on)

what we want: virtualization. every program should 
appear to have access to a full 32-bit address space



Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

0x00002148

CPU1 (used by program1)

EIP

0xFF035

0xF27A9

0xF0110

0xF8887

0x00002148
031

memory management unit (MMU)

PTR1

main memory

CPU2 (used by program2)

0xF0110148
instructions and 

data for program1

instructions and 
data for program2

…

page table for 
program2

page table for 
program1

…

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

0x007A1200
PTR2 0x003D0900

we have two more broad areas 
to cover:
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0x00002148

CPU1 (used by program1)

EIP

0xFF035

0xF27A9

0xF0110

0xF8887

0x00002148
031

memory management unit (MMU)

PTR1

main memory

CPU2 (used by program2)

0xF0110148
instructions and 

data for program1

instructions and 
data for program2

…

page table for 
program2

page table for 
program1

…

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

0x007A1200
PTR2 0x003D0900

does virtual memory protect programs from accessing each other’s memory? 
(to answer this, we’ll need to address some other issues first)

we have two more broad areas 
to cover:
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0x00002148

CPU1 (used by program1)

EIP

0xFF035

0xF27A9

0xF0110

0xF8887

0x00002148
031

memory management unit (MMU)

PTR1

main memory

CPU2 (used by program2)

0xF0110148
instructions and 

data for program1

instructions and 
data for program2

…

page table for 
program2

page table for 
program1

…

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

0x007A1200
PTR2 0x003D0900

does virtual memory protect programs from accessing each other’s memory? 
(to answer this, we’ll need to address some other issues first)

we have two more broad areas 
to cover:

what performance issues matter here?
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0x00002148

CPU1 (used by program1)

EIP

0xFF035

0xF27A9

0xF0110

0xF8887

0x00002148
031

memory management unit (MMU)

PTR1

main memory

CPU2 (used by program2)

0xF0110148
instructions and 

data for program1

instructions and 
data for program2

…

page table for 
program2

page table for 
program1

…

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

0x007A1200
PTR2 0x003D0900

what happens if we don’t have enough memory to 
store all of our programs’ instructions and data?



Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

main memory

instructions and 
data for program1

instructions and 
data for program2

…

page table for 
program2

page table for 
program1

…

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

what happens if we don’t have enough memory to 
store all of our programs’ instructions and data?
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main memory

instructions and 
data for program1

instructions and 
data for program2

…

page table for 
program2

page table for 
program1

…

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

what happens if we don’t have enough memory to 
store all of our programs’ instructions and data?

page table entries contain additional bits that 
help us deal with this problem (and others)
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main memory

instructions and 
data for program1

instructions and 
data for program2

…

page table for 
program2

page table for 
program1

…

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

what happens if we don’t have enough memory to 
store all of our programs’ instructions and data?

physical page number

1231 11 0

page table entries contain additional bits that 
help us deal with this problem (and others)
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main memory

instructions and 
data for program1

instructions and 
data for program2

…

page table for 
program2

page table for 
program1

…

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

what happens if we don’t have enough memory to 
store all of our programs’ instructions and data?

physical page number

1231 11 0

page table entries contain additional bits that 
help us deal with this problem (and others)

present (P) bit: is the page currently in 
memory?

set to 1 if the page is in memory
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main memory

instructions and 
data for program1

instructions and 
data for program2

…

page table for 
program2

page table for 
program1

…

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

what happens if we don’t have enough memory to 
store all of our programs’ instructions and data?

physical page number

1231 11 0

page table entries contain additional bits that 
help us deal with this problem (and others)

present (P) bit: is the page currently in 
memory?

if the page is not in memory, the access 
triggers an exception (known a “page fault” in 

this case), which the kernel handles

set to 1 if the page is in memory
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main memory

instructions and 
data for program1

instructions and 
data for program2

…

page table for 
program2

page table for 
program1

…

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

what happens if we don’t have enough memory to 
store all of our programs’ instructions and data?

physical page number

1231 11 0

page table entries contain additional bits that 
help us deal with this problem (and others)

present (P) bit: is the page currently in 
memory?

if the page is not in memory, the access 
triggers an exception (known a “page fault” in 

this case), which the kernel handles this also answers the question of why 
PTEs are 32 bits, not 20: they store 

information beyond the page number

set to 1 if the page is in memory
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interlude: handling exceptions this idea will remain relevant, as we are going to find that 
there are quite a few exceptions for the OS to handle(such as page faults)
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interlude: handling exceptions this idea will remain relevant, as we are going to find that 
there are quite a few exceptions for the OS to handle(such as page faults)

the operating system’s kernel manages page faults and other exceptions
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interlude: handling exceptions

  // special instruction that calls the exception handler for exception x 
  exception(x): 
    // switch from user mode to kernel mode 
    // call the handler for this particular exception 
    // switch from kernel mode to user mode

this idea will remain relevant, as we are going to find that 
there are quite a few exceptions for the OS to handle(such as page faults)

the operating system’s kernel manages page faults and other exceptions
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interlude: handling exceptions

  // special instruction that calls the exception handler for exception x 
  exception(x): 
    U/K bit = K 
    // call the handler for this particular exception 
    U/K bit = U

this idea will remain relevant, as we are going to find that 
there are quite a few exceptions for the OS to handle(such as page faults)

the operating system’s kernel manages page faults and other exceptions

the processor stores a user/kernel (U/K) bit that 
indicates whether its operating in user mode or 

kernel mode. this bit helps the processor control 
access to certain kernel-specific actions
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interlude: handling exceptions

  // special instruction that calls the exception handler for exception x 
  exception(x): 
    U/K bit = K 
    call handlers[x] 
    U/K bit = U

this idea will remain relevant, as we are going to find that 
there are quite a few exceptions for the OS to handle(such as page faults)

the operating system’s kernel manages page faults and other exceptions

the processor stores a user/kernel (U/K) bit that 
indicates whether its operating in user mode or 

kernel mode. this bit helps the processor control 
access to certain kernel-specific actions

each handler is different. as an example, 
the page-fault handler would take care of 
bringing the requested page into memory



Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

main memory

instructions and 
data for program1

instructions and 
data for program2

…

page table for 
program2

page table for 
program1

…

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

what happens if we don’t have enough memory to 
store all of our programs’ instructions and data?

physical page number

1231 11 0

page table entries contain additional bits that 
help us deal with this problem (and others)

present (P) bit: is the page currently in 
memory?

if the page is not in memory, the access 
triggers an exception (known a “page fault” in 

this case), which the kernel handles.

set to 1 if the page is in memory
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main memory

instructions and 
data for program1

instructions and 
data for program2

…

page table for 
program2

page table for 
program1

…

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

what happens if a program tries to write to 
memory that it doesn’t have write-access to?

physical page number

1231 11 0
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main memory

instructions and 
data for program1

instructions and 
data for program2

…

page table for 
program2

page table for 
program1

…

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

what happens if a program tries to write to 
memory that it doesn’t have write-access to?

physical page number

1231 11 0

after all, it’s conceivable that we want program1 to be 
able to read some data, but not to modify it
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main memory

instructions and 
data for program1

instructions and 
data for program2

…

page table for 
program2

page table for 
program1

…

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

what happens if a program tries to write to 
memory that it doesn’t have write-access to?

physical page number

1231 11 0

read/write (R/W) bit: is the program allowed 
to write to this address?

after all, it’s conceivable that we want program1 to be 
able to read some data, but not to modify it

set to 1 if the program can write to this address
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main memory

instructions and 
data for program1

instructions and 
data for program2

…

page table for 
program2

page table for 
program1

…

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

what happens if a program tries to write to 
memory that it doesn’t have write-access to?

physical page number

1231 11 0

read/write (R/W) bit: is the program allowed 
to write to this address?

if the program doesn’t have write-access to 
this page (and is trying to write to it), the 
access triggers an exception, which the 

kernel handles

after all, it’s conceivable that we want program1 to be 
able to read some data, but not to modify it

set to 1 if the program can write to this address
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main memory

instructions and 
data for program1

instructions and 
data for program2

…

page table for 
program2

page table for 
program1

…

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

what happens if a program tries to access memory 
that only the kernel should have access to?

physical page number

1231 11 0
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main memory

instructions and 
data for program1

instructions and 
data for program2

…

page table for 
program2

page table for 
program1

…

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

what happens if a program tries to access memory 
that only the kernel should have access to?

physical page number

1231 11 0

we need to enforce modularity between programs and 
the kernel, not just between programs
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main memory

instructions and 
data for program1

instructions and 
data for program2

…

page table for 
program2

page table for 
program1

…

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

what happens if a program tries to access memory 
that only the kernel should have access to?

physical page number

1231 11 0

user/supervisor (U/S) bit: is the program 
allowed to access this address?

we need to enforce modularity between programs and 
the kernel, not just between programs

set to 1 if the program can access this address
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main memory

instructions and 
data for program1

instructions and 
data for program2

…

page table for 
program2

page table for 
program1

…

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

what happens if a program tries to access memory 
that only the kernel should have access to?

physical page number

1231 11 0

user/supervisor (U/S) bit: is the program 
allowed to access this address?

if not, the access triggers an exception, 
which the kernel handles

we need to enforce modularity between programs and 
the kernel, not just between programs

set to 1 if the program can access this address
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main memory

instructions and 
data for program1

instructions and 
data for program2

…

page table for 
program2

page table for 
program1

…

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

what happens if a program tries to access memory 
that only the kernel should have access to?

physical page number

1231 11 0

user/supervisor (U/S) bit: is the program 
allowed to access this address?

if not, the access triggers an exception, 
which the kernel handles

we need to enforce modularity between programs and 
the kernel, not just between programs

without this last piece, a determined program could still attempt to circumvent 
modularity by doing things such as modifying the page-table registers

set to 1 if the program can access this address
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CPU1 (used by program1)

EIP

031

memory management unit (MMU)

PTR1

main memory

0xF0110148
instructions and 

data for program1

instructions and 
data for program2

…

page table for 
program2

page table for 
program1

…

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

0x007A1200
PTR2 0x003D0900

0x000021480x00002148
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CPU1 (used by program1)

EIP

031

memory management unit (MMU)

PTR1

main memory

0xF0110148
instructions and 

data for program1

instructions and 
data for program2

…

page table for 
program2

page table for 
program1

…

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

0x007A1200
PTR2 0x003D0900

220 virtual addresses each mapping 
to a 32-bit page-table entry (PTE) 
→ 4MB to store this table

0x000021480x00002148
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CPU1 (used by program1)

EIP

031

memory management unit (MMU)

PTR1

main memory

0xF0110148
instructions and 

data for program1

instructions and 
data for program2

…

page table for 
program2

page table for 
program1

…

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

0x007A1200
PTR2 0x003D0900

performance issue #1: page tables are allocated contiguously in memory so that access into them is extremely 
fast; this means that every page table is 4MB, even if the program only needs to make a few memory accesses

220 virtual addresses each mapping 
to a 32-bit page-table entry (PTE) 
→ 4MB to store this table

0x000021480x00002148
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0x02013148

CPU1 (used by program1)

EIP

0x02013148
031

memory management unit (MMU)

PTR1

main memory

instructions and 
data for program1

instructions and 
data for program2

…

page table for 
program2

page table for 
program1

…

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

0x007A1200
PTR2 0x003D0900

multilevel page tables often use less space

with multilevel page tables, the 
MMU interprets this address as 
referring to a series of page tables 
instead of just a single page table
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0x02013148

CPU1 (used by program1)

EIP

0x02013148
031

memory management unit (MMU)

PTR1

main memory

instructions and 
data for program1

instructions and 
data for program2

…

page table for 
program2

page table for 
program1

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

0x007A1200
PTR2 0x003D0900

…

multilevel page tables often use less space
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0x02013148

CPU1 (used by program1)

EIP

0x02013148
031

memory management unit (MMU)

PTR1

main memory

instructions and 
data for program1

instructions and 
data for program2

…

page table for 
program2

page table for 
program1

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

0x007A1200
PTR2 0x003D0900

…

this level 1 table is the only 
one that will be allocated 

initially, and the top eight bits 
index into it. so it has 28 

entries, not 220

multilevel page tables often use less space
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0x02013148

CPU1 (used by program1)

EIP

0x02013148
031

memory management unit (MMU)

PTR1

main memory

instructions and 
data for program1

instructions and 
data for program2

…

page table for 
program2

page table for 
program1

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

0x007A1200
PTR2 0x003D0900

…

this level 1 table is the only 
one that will be allocated 

initially, and the top eight bits 
index into it. so it has 28 

entries, not 220(we’re using 8/8/4 in this example, but 
you can generalize to M/N/P)

multilevel page tables often use less space
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0x02013148

CPU1 (used by program1)

EIP

0x02013148
031

memory management unit (MMU)

PTR1

main memory

instructions and 
data for program1

instructions and 
data for program2

…

page table for 
program2

page table for 
program1

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

0x007A1200
PTR2 0x003D0900

…

this level 1 table is the only 
one that will be allocated 

initially, and the top eight bits 
index into it. so it has 28 

entries, not 220(we’re using 8/8/4 in this example, but 
you can generalize to M/N/P)

0x02 indexes into this table

multilevel page tables often use less space



Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

0x02013148

CPU1 (used by program1)

EIP

0x02013148
031

memory management unit (MMU)

PTR1

main memory

instructions and 
data for program1

instructions and 
data for program2

…

page table for 
program2

page table for 
program1

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

0x007A1200
PTR2 0x003D0900

…

this level 1 table is the only 
one that will be allocated 

initially, and the top eight bits 
index into it. so it has 28 

entries, not 220(we’re using 8/8/4 in this example, but 
you can generalize to M/N/P)

0x02 indexes into this table

row 0x02 points 
to a level 2 table

multilevel page tables often use less space
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0x02013148

CPU1 (used by program1)

EIP

0x02013148
031

memory management unit (MMU)

PTR1

main memory

instructions and 
data for program1

instructions and 
data for program2

…

page table for 
program2

page table for 
program1

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

0x007A1200
PTR2 0x003D0900

…

this level 1 table is the only 
one that will be allocated 

initially, and the top eight bits 
index into it. so it has 28 

entries, not 220

…

(we’re using 8/8/4 in this example, but 
you can generalize to M/N/P)

28 entries

0x02 indexes into this table

row 0x02 points 
to a level 2 table

multilevel page tables often use less space



Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

0x02013148

CPU1 (used by program1)

EIP

0x02013148
031

memory management unit (MMU)

PTR1

main memory

instructions and 
data for program1

instructions and 
data for program2

…

page table for 
program2

page table for 
program1

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

0x007A1200
PTR2 0x003D0900

…

this level 1 table is the only 
one that will be allocated 

initially, and the top eight bits 
index into it. so it has 28 

entries, not 220

…

(we’re using 8/8/4 in this example, but 
you can generalize to M/N/P)

28 entries

0x02 indexes into this table

row 0x02 points 
to a level 2 table

0x01 indexes into this table

multilevel page tables often use less space
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0x02013148

CPU1 (used by program1)

EIP

0x02013148
031

memory management unit (MMU)

PTR1

main memory

instructions and 
data for program1

instructions and 
data for program2

…

page table for 
program2

page table for 
program1

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

0x007A1200
PTR2 0x003D0900

…

this level 1 table is the only 
one that will be allocated 

initially, and the top eight bits 
index into it. so it has 28 

entries, not 220

…

(we’re using 8/8/4 in this example, but 
you can generalize to M/N/P)

28 entries

0x02 indexes into this table

row 0x02 points 
to a level 2 table

0x01 indexes into this table

row 0x01 points to a 
level 3 table

multilevel page tables often use less space
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0x02013148

CPU1 (used by program1)

EIP

0x02013148
031

memory management unit (MMU)

PTR1

main memory

instructions and 
data for program1

instructions and 
data for program2

…

page table for 
program2

page table for 
program1

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

0x007A1200
PTR2 0x003D0900

…

this level 1 table is the only 
one that will be allocated 

initially, and the top eight bits 
index into it. so it has 28 

entries, not 220

……
0xF0110

(we’re using 8/8/4 in this example, but 
you can generalize to M/N/P)

28 entries24 entries

0x02 indexes into this table

row 0x02 points 
to a level 2 table

0x01 indexes into this table

row 0x01 points to a 
level 3 table

multilevel page tables often use less space
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0x02013148

CPU1 (used by program1)

EIP

0x02013148
031

memory management unit (MMU)

PTR1

main memory

instructions and 
data for program1

instructions and 
data for program2

…

page table for 
program2

page table for 
program1

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

0x007A1200
PTR2 0x003D0900

…

this level 1 table is the only 
one that will be allocated 

initially, and the top eight bits 
index into it. so it has 28 

entries, not 220

……
0xF0110

(we’re using 8/8/4 in this example, but 
you can generalize to M/N/P)

28 entries24 entries

0x02 indexes into this table

row 0x02 points 
to a level 2 table

0x01 indexes into this table

row 0x01 points to a 
level 3 table

row 0x3 contains the 
physical page number

multilevel page tables often use less space
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0xF01101480x02013148

CPU1 (used by program1)

EIP

0x02013148
031

memory management unit (MMU)

PTR1

main memory

instructions and 
data for program1

instructions and 
data for program2

…

page table for 
program2

page table for 
program1

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

0x007A1200
PTR2 0x003D0900

…

this level 1 table is the only 
one that will be allocated 

initially, and the top eight bits 
index into it. so it has 28 

entries, not 220

……
0xF0110

(we’re using 8/8/4 in this example, but 
you can generalize to M/N/P)

28 entries24 entries

0x02 indexes into this table

row 0x02 points 
to a level 2 table

0x01 indexes into this table

row 0x01 points to a 
level 3 table

row 0x3 contains the 
physical page number

multilevel page tables often use less space
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0x02013148

CPU1 (used by program1)

EIP

0x02013148
031

memory management unit (MMU)

PTR1

main memory

0xF0110148
instructions and 

data for program1

instructions and 
data for program2

…

page table for 
program2

page table for 
program1

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

0x007A1200
PTR2 0x003D0900

…… …

28 entries24 entries

0xF0110

28 entries

(we’re using 8/8/4 in this example, but 
you can generalize to M/N/P)

level 1 tablelevel 2 tablelevel 3 table

each row in the level 1 table (typically) corresponds to a 
different level 2 table, but each level 2 table (and level 3 

table) is allocated as needed

multilevel page tables often use less space
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0x02013148

CPU1 (used by program1)

EIP

0x02013148
031

memory management unit (MMU)

PTR1

main memory

0xF0110148
instructions and 

data for program1

instructions and 
data for program2

…

page table for 
program2

page table for 
program1

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

0x007A1200
PTR2 0x003D0900

multilevel page tables often use less space, at the expense of more table look-ups and more exceptions (to 
allocate additional tables)

…… …
0xF0110

(we’re using 8/8/4 in this example, but 
you can generalize to M/N/P)

28 entries24 entries 28 entries
level 1 tablelevel 2 tablelevel 3 table

each row in the level 1 table (typically) corresponds to a 
different level 2 table, but each level 2 table (and level 3 

table) is allocated as needed
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0x02013148

CPU1 (used by program1)

EIP

0x02013148
031

memory management unit (MMU)

PTR1

main memory

0xF0110148
instructions and 

data for program1

instructions and 
data for program2

…

page table for 
program2

page table for 
program1

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

0x007A1200
PTR2 0x003D0900

…… …

28 entries24 entries

0xF0110

level 1 tablelevel 2 tablelevel 3 table
28 entries
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0x02013148

CPU1 (used by program1)

EIP

0x02013148
031

memory management unit (MMU)

PTR1

main memory

0xF0110148
instructions and 

data for program1

instructions and 
data for program2

…

page table for 
program2

page table for 
program1

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

0x007A1200
PTR2 0x003D0900

…… …

28 entries24 entries

0xF0110

performance issue #2: looking up the same piece of data over and over again takes time; can we make it faster?

level 1 tablelevel 2 tablelevel 3 table
28 entries
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0x02013148

CPU1 (used by program1)

EIP

0x02013148
031

memory management unit (MMU)

PTR1

main memory

0xF0110148
instructions and 

data for program1

instructions and 
data for program2

…

page table for 
program2

page table for 
program1

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

0x007A1200
PTR2 0x003D0900

…… …

28 entries24 entries

0xF0110

performance issue #2: looking up the same piece of data over and over again takes time; can we make it faster?

yes. caches are involved in a variety of places here, to (in theory) make common look-ups faster. you’ve also seen 
caching in the context of DNS.

level 1 tablelevel 2 tablelevel 3 table
28 entries
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operating systems enforce modularity on a single machine
in order to enforce modularity + have an effective operating system, a few things need to happen

1. programs shouldn’t be able to refer to 
(and corrupt) each others’ memory

2. programs should be able to 
communicate with each other

3. programs should be able to share a 
CPU without one program halting the 
progress of the others

virtualize memory

assume they don’t need to

(for today)

assume one program per CPU 

(for today)
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operating systems enforce modularity on a single machine
in order to enforce modularity + have an effective operating system, a few things need to happen

1. programs shouldn’t be able to refer to 
(and corrupt) each others’ memory

2. programs should be able to 
communicate with each other

3. programs should be able to share a 
CPU without one program halting the 
progress of the others

the primary technique that an operating system uses to enforce modularity is virtualization. 
some components are difficult to virtualize (e.g., the disk); for those, the operating system 
presents abstractions

virtualize memory

assume they don’t need to

(for today)

assume one program per CPU 

(for today)
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operating systems enforce modularity on a 
single machine via virtualization and 
abstraction
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operating systems enforce modularity on a 
single machine via virtualization and 
abstraction

you’ll talk much more about abstractions 
during the recitations on UNIX; 

designing good abstractions is part of 
designing a good operating system
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operating systems enforce modularity on a 
single machine via virtualization and 
abstraction

virtualizing memory prevents programs from 
referring to (and corrupting) each other’s memory. the 
MMU translates virtual addresses to physical 
addresses using page tables, and there are a 
number of performance issues to take into account

you’ll talk much more about abstractions 
during the recitations on UNIX; 

designing good abstractions is part of 
designing a good operating system
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operating systems enforce modularity on a 
single machine via virtualization and 
abstraction

virtualizing memory prevents programs from 
referring to (and corrupting) each other’s memory. the 
MMU translates virtual addresses to physical 
addresses using page tables, and there are a 
number of performance issues to take into account

you’ll talk much more about abstractions 
during the recitations on UNIX; 

designing good abstractions is part of 
designing a good operating system

amount of memory used, speed of 
access
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operating systems enforce modularity on a 
single machine via virtualization and 
abstraction

virtualizing memory prevents programs from 
referring to (and corrupting) each other’s memory. the 
MMU translates virtual addresses to physical 
addresses using page tables, and there are a 
number of performance issues to take into account

the kernel handles any exceptions triggered in this 
process; protecting the kernel from user programs is 
just as important as protecting user programs from 
each other

you’ll talk much more about abstractions 
during the recitations on UNIX; 

designing good abstractions is part of 
designing a good operating system

amount of memory used, speed of 
access


