6.1800 Spring 2025

Lecture #3: Virtual Memory

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

caveat: this does not appear to be a large-scale measurement study, we should not draw
huge conclusions about the performance of Tubi vs. YouTube TV from these results alone

6.1800 Iin the news

We measured latency against the over-the-air (OTA) broadcast the local San Francisco Fox affiliate KTVU delivered.
Although our TV supports NextGen TV and KTVU broadcasts a NextGen signal we stuck with the regular ATSC 1.0

broadcast.[i] Note that the TV broadcast is delayed behind the actual live game.

The Tubi stream was consistently at or slightly Tubi Tubi Mobile |YouTube TV |Tubi Browse{Tubi CTV
ahead of the OTA. The Tubi browser was three or 1st Quarter
. Delay -3.2 4.4 35.3 5.5
more seconds ahead, while the connected TV app Start Time ; 39 19 17
was about a second behind. Even T-Mobile’s 2nd Quarter
network delivered slightly ahead of the OTA Delay o ! = !
Start Time 7.3 27.9 2 1.5
broadcast. These delays are very small, and 3rd Quarter
stream viewers had no reason to worry about Delay 2.5 -4.5 29.9 9.3 -
1 med| i lav bef hev had Start Time 7.4 25 2.2 1.7 5.5
social media posts calling a play before they ha ath Quarter
seen it. Delay -0.5 -2.3 31.4 5 0.5
StartTime 3 17.5 3 7 3

On the other hand, YouTube TV viewers needed
to be very careful about monitoring their social

accounts during the game. The vMVPD consistently delivered almost a full down behind the action on the OTA

All times are seconds. Delay is relative to local TV over-the-air broadcast

Source: nScreenMedia

broadcast. When the Chiefs went into hurry-up offense in the fourth quarter, the YouTube TV stream was almost two

downs behind at one point!

https://nscreenmedia.com/tubi-super-bowl-lix-quality-better-than-broadcast-experience/

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

last time: enforced modularity via client/server + naming

client server
(on machine 1) network (on machine 2)
— . ___|
def main(): def server_load url():
html = browser_load url(URL) e
return html
l I load(“kaws.com/buy.html?item=duck”) I l
—————————————————————————
(] —
def browser_load_url(url): X def handle_server load url(url):
msg = url # could reformat wait for request
send request load(“kaws.com/buy.html?item=duck”) url = request
wait for reply ———————————————————————————————————— html = server _load url(URL)
html = reply # could reformat reply = html
return html r————————————————————
StUb send reply StUb

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

last time: enforced modularity via client/server + naming

client server
Class Browser | Class Server
(on machine 1) network (on machine 2)

def main(): def server_load url():
html = browser_load url(URL)

return html

l I load(“kaws.com/buy.html?item=duck™) I l
el
: Cr———
def browser_load_url(url): X def handle_server load url(url):
msg = url # could reformat wait for request
send request load(“kaws.com/buy.html?item=duck”) url = request
wait for reply el html = server _load url(URL)
html = reply # could reformat reply = html
return html r————————————————————
Stub send reply StUb

today: what if we don’t want to put each module on a separate machine?

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

operating systems enforce modularity on a single machine

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

operating systems enforce modularity on a single machine

in order to enforce modularity + have an effective operating system, a few things need to happen

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

operating systems enforce modularity on a single machine

in order to enforce modularity + have an effective operating system, a few things need to happen

1. programs shouldn’t be able to refer to
(and corrupt) each others’ memory

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

operating systems enforce modularity on a single machine

in order to enforce modularity + have an effective operating system, a few things need to happen

1. programs shouldn’t be able to refer to
(and corrupt) each others’ memory

2. programs should be able to
communicate with each other

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

operating systems enforce modularity on a single machine

in order to enforce modularity + have an effective operating system, a few things need to happen

1. programs shouldn’t be able to refer to
(and corrupt) each others’ memory

2. programs should be able to
communicate with each other

3. programs should be able to share a
CPU without one program halting the
progress of the others

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

operating systems enforce modularity on a single machine

in order to enforce modularity + have an effective operating system, a few things need to happen

1. programs shouldn’t be able to refer to
(and corrupt) each others’ memory

2. programs should be able to
communicate with each other

3. programs should be able to share a
CPU without one program halting the
progress of the others

the primary technigue that an operating system uses to enforce modularity is virtualization

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

operating systems enforce modularity on a single machine

in order to enforce modularity + have an effective operating system, a few things need to happen

1. programs shouldn’t be able to refer to
(and corrupt) each others’ memory

2. programs should be able to
communicate with each other

3. programs should be able to share a
CPU without one program halting the
progress of the others

the primary technigue that an operating system uses to enforce modularity is virtualization

IN some sense, we want every program to think that it has access to the full physical
hardware, when of course they don’t; the OS virtualizes different components of hardware

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

operating systems enforce modularity on a single machine

in order to enforce modularity + have an effective operating system, a few things need to happen

1. programs shouldn’t be able to referto - » virtualize memory
(and corrupt) each others’ memory

2. programs should be ableto , assume they don’t need to
communicate with each other (for today)

assume one program per CPU

3. programs should be able to sharea @ -
(for today)

CPU without one program halting the
progress of the others

the primary technigue that an operating system uses to enforce modularity is virtualization

IN some sense, we want every program to think that it has access to the full physical
hardware, when of course they don’t; the OS virtualizes different components of hardware

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

what we want: virtualization. every program should
appear to have access to a full 32-bit address space

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

what we want: virtualization. every program should what we have: 232 bytes of memory; every program
appear to have access to a full 32-bit address space can’t actually have access to the full 32-bit space

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

what we want: virtualization. every program should what we have: 232 bytes of memory; every program
appear to have access to a full 32-bit address space can’t actually have access to the full 32-bit space

CPU1 (used by programy)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

what we want: virtualization. every program should what we have: 232 bytes of memory; every program
appear to have access to a full 32-bit address space can’t actually have access to the full 32-bit space

CPU1 (used by programy)

EIP

31 (7

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

what we want: virtualization. every program should what we have: 232 bytes of memory; every program
appear to have access to a full 32-bit address space can’t actually have access to the full 32-bit space

CPU1 (used by programy)

EIP

31 (7

CPU:> (used by programy)

|

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

what we want: virtualization. every program should what we have: 232 bytes of memory; every program
appear to have access to a full 32-bit address space can’t actually have access to the full 32-bit space

CPU1 (used by programs) main memory

EIP

31 (7

CPU:> (used by programy)

|

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

what we want: virtualization. every program should what we have: 232 bytes of memory; every program

appear to have access to a full 32-bit address space can’t actually have access to the full 32-bit space
CPU1 (used by programs) main memory
OXFFFFFFFF
EIP (232-1)
31 (7

CPU:> (used by programy)

0xX00000000

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

what we want: virtualization. every program should what we have: 232 bytes of memory; every program

appear to have access to a full 32-bit address space can’t actually have access to the full 32-bit space
CPU1 (used by programs) main memory
OXFFFFFFFF
EIP : : (2%2-1)
iInstructions and
data for programj
31 0 OxXFO000000
iInstructions and
CPU2 (used by programs) data for programz
OXEGOOL000
OXx00000000

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

what we want: virtualization. every program should what we have: 232 bytes of memory; every program

appear to have access to a full 32-bit address space can’t actually have access to the full 32-bit space
CPU1 (used by programs) main memory
OXFFFFFFFF
EIP : : (2%2-1)
iInstructions and
data for programj
31 0 OxXFO000000
iInstructions and
CPU2 (used by programs) data for programz
OXEGOOL000
OXx00000000

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

what we want: virtualization. every program should what we have: 232 bytes of memory; every program

appear to have access to a full 32-bit address space can’t actually have access to the full 32-bit space
CPU1 (used by programs) memory management unit (MMU) main memory
OXFFFFFFFF
EIP : : (2%2-1)
iInstructions and
data for programj
31 0 OxXFO000000
iInstructions and
CPU2 (used by programs) data for programz
OXEGOOL000
OXx00000000

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

what we want: virtualization. every program should what we have: 232 bytes of memory; every program
appear to have access to a full 32-bit address space can’t actually have access to the full 32-bit space

CPU1 (used by programs) memory management unit (MMU) main memory

OXFFFFFFFF
(2%2-1)

EIP instructions and

0Xx00002148 data for program-
31 0 OXF0000000
iInstructions and
CPU2 (used by programs) data for programz
OXE000000
0Xx00000000

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

what we want: virtualization. every program should what we have: 232 bytes of memory; every program
appear to have access to a full 32-bit address space can’t actually have access to the full 32-bit space

CPU1 (used by programs) memory management unit (MMU) main memory

OXFFFFFFFF
(2%2-1)

EIP

Instructions and

0Xx00002148 0x00002148 data for programj
31 0 OXFBP00000

instructions and
CPU2 (used by programs) data for programz

|

OXEO00000

0xX00000000

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

what we want: virtualization. every program should what we have: 232 bytes of memory; every program
appear to have access to a full 32-bit address space can’t actually have access to the full 32-bit space

CPU1 (used by programs) memory management unit (MMU) main memory

OXFFFFFFFF
(2%2-1)

EIP

Instructions and

0Xx00002148 0x00002148 data for programj
31 0 OXFBP00000

instructions and
CPU2 (used by programs) data for programz

|

OXEO00000

table for program-

table for programo
0x00000000

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

what we want: virtualization. every program should what we have: 232 bytes of memory; every program
appear to have access to a full 32-bit address space can’t actually have access to the full 32-bit space

CPU1 (used by programs) memory management unit (MMU) main memory

OXFFFFFFFF
(2%2-1)

EIP

instructions and
data for programj

0x000021438 0x000021438

31 (7

OxF0000000

Instructions and

CPU2 (used by programy) data for programg

|

OXEO00000

the MMU is going to use programsi’s
table to translate a virtual address from
program+ into a physical address

table for program-

table for programo

0xX00000000

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

what we want: virtualization. every program should
appear to have access to a full 32-bit address space

CPU1 (used by programs) memory management unit (MMU)

EIP

0x000021438 0x000021438

31 (7

CPU:> (used by programy)

|

attempt 1: each virtual address acts
as an index into this table; there is
one entry for every virtual address

what we have: 232 bytes of memory; every program
can’t actually have access to the full 32-bit space

main memory

OXFFFFFFFF
| | (2%2-1)
Instructions and

data for programj
OxF0000000

Instructions and

data for programz
OxE000000

OxFFO35113

OxF2/A9B77

OxF0110048

OXF88878381

table for program-

table for programo

0xX00000000

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

what we want: virtualization. every program should what we have: 232 bytes of memory; every program

appear to have access to a full 32-bit address space can’t actually have access to the full 32-bit space
CPU1 (used by programs) memory management unit (MMU) main memory
OXFFFFFFFF
EIP : : (2%2-1)
iInstructions and
0Xx00002148 0x00002148 data for programj
31 0 : OxXFO000000
iInstructions and
CPU2 (used by programy) data for programg
OXEGOOL000
: OXF27A9B77
OxF0110048 table for programj
x OXxF8887881
a table for programo
OXx00000000

attempt 1: each virtual address acts
as an index into this table; there is
one entry for every virtual address

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

what we want: virtualization. every program should
appear to have access to a full 32-bit address space

CPU1 (used by programs) memory management unit (MMU)

EIP

0x000021438 0x000021438

31 (7

CPU:> (used by programy)

I:I OXFF035113

OXF27A9B77

OXF9110048

OxF8887881
attempt 1: each virtual address acts 232 virtual addresses each mapping
as an index into this table; there is to a 32-bit physical address —

one entry for every virtual address

what we have: 232 bytes of memory; every program
can’t actually have access to the full 32-bit space

main memory

OXFFFFFFFF
| | (2%2-1)
Instructions and

data for programj
OxF0000000

Instructions and

data for programz
OxE000000

table for program-

table for programo

0xX00000000

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

what we want: virtualization. every program should
appear to have access to a full 32-bit address space

CPU1 (used by programs) memory management unit (MMU)

EIP

0x000021438 0x000021438

31 (7

CPU:> (used by programy)

OXF27A9B77

OxF0110048

OxF8887881
attempt 1: each virtual address acts 232 virtual addresses each mapping
as an index into this table; there is to a 32-bit physical address —
one entry for every virtual address 16GB to store this table

what we have: 232 bytes of memory; every program
can’t actually have access to the full 32-bit space

main memory

OXFFFFFFFF
| | (2%2-1)
Instructions and

data for programj
OxF0000000

Instructions and

data for programz
OxE000000

table for program-

table for programo

0xX00000000

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

what we want: virtualization. every program should
appear to have access to a full 32-bit address space

CPU1 (used by programs) memory management unit (MMU)

EIP

0x000021438 0x000021438

31 (7

CPU:> (used by programy)

OXF27A9B77

OxF0110048

OxF8887881
attempt 1: each virtual address acts 232 virtual addresses each mapping
as an index into this table; there is to a 32-bit physical address —
one entry for every virtual address 16GB to store this table

what we have: 232 bytes of memory; every program
can’t actually have access to the full 32-bit space

main memory

OXFFFFFFFF
| | (2%2-1)
Instructions and

data for programj
OxF0000000

Instructions and

data for programz
OxE000000

table for program-

table for programo

0xX00000000

16GB is quite a lot
of memory

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

what we want: virtualization. every program should what we have: 232 bytes of memory; every program
appear to have access to a full 32-bit address space can’t actually have access to the full 32-bit space

CPU1 (used by programs) memory management unit (MMU) main memory

OXFFFFFFFF
(2%2-1)

EIP

Instructions and

0Xx00002148 0x00002148 data for programj
31 0 OXFBP00000

instructions and
CPU2 (used by programs) data for programz

0xE000000
page table for
programs
page table for
programo 0X00000000

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

what we want: virtualization. every program should what we have: 232 bytes of memory; every program
appear to have access to a full 32-bit address space can’t actually have access to the full 32-bit space

CPU1 (used by programs) memory management unit (MMU) main memory

OXFFFFFFFF
(2%2-1)

EIP

Instructions and

0Xx00002148 0x00002148 data for programj
31 0 OXFBP00000

instructions and
CPU2 (used by programs) data for programz

0xE000000
page table for
programs
0x003D0900
page table for
programo 0X00000000

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

what we want: virtualization. every program should what we have: 232 bytes of memory; every program
appear to have access to a full 32-bit address space can’t actually have access to the full 32-bit space

CPU1 (used by programs) memory management unit (MMU) main memory

OXFFFFFFFF
(2%2-1)

EIP

Instructions and

0Xx00002148 0x00002148 data for programj

31 0 OxF0000000

PTR; | |
PTR, 0x003D2900 Instructions and

CPU2 (used by programy) data for programg

0xE000000
page table for
programs
0x003D0900
page table for
programo 0X00000000

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

what we want: virtualization. every program should what we have: 232 bytes of memory; every program

appear to have access to a full 32-bit address space can’t actually have access to the full 32-bit space
CPU1 (used by programs) memory management unit (MMU) main memory
OXFFFFFFFF
EIP : : (2%2-1)
instructions and
0Xx00002148 0Xx00002148 data for program-
31 2] OxXFO000000
PTR1 . .
PTR, 0x003D2900 instructions and
CPU2 (used by programy) data for programg
OXEGOOL000
OXF27A9
OxFO110 page table for
program-
OXF8887 Ox003D0900
page table for
programo 0X00000000

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

what we want: virtualization. every program should
appear to have access to a full 32-bit address space

CPU1 (used by programy)

EIP

0x000021438

31 (7

CPU:> (used by programy)

|

page tables: top 20 bits of the

0x00002143

virtual address act as an index into

this table

(a page of memory is 232-20=212 pytes)

memory management unit (MMU)

PTR1
PTR2 0x003D0900

OXFFO35

OxF27AS

OxFO110

OXF8887/

what we have: 232 bytes of memory; every program
can’t actually have access to the full 32-bit space

main memory

OXFFFFFFFF
| | (2%2-1)
Instructions and

data for programj
OxF0000000

instructions and
data for programz

OXEO00000

page table for
programs

©x003D0900
page table for

programs OXx00000000

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

what we want: virtualization. every program should what we have: 232 bytes of memory; every program

appear to have access to a full 32-bit address space can’t actually have access to the full 32-bit space
CPU1 (used by programs) memory management unit (MMU) main memory
OXFFFFFFFF
EIP : : (2%2-1)
instructions and
0Xx00002148 0x00002148 data for program-
31 2] _ OxXFO000000
2 PTR1 | |
PTR, 0x003D0900 instructions and
CPU2 (used by programy) '-__ data for programg
OXEGOOL000
D “““‘\ @X F F @ 3 5
" OXF27A9
1 OX00002 .
| A page table for
(top 20 bits) OxFO110 orogram:
OXF8887 Ox003D0900
page table for
programo 0X00000000

page tables: top 20 bits of the
virtual address act as an index into
this table

(a page of memory is 232-20=212 pytes)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

what we want: virtualization. every program should what we have: 232 bytes of memory; every program
appear to have access to a full 32-bit address space can’t actually have access to the full 32-bit space

CPU1 (used by programs) memory management unit (MMU) main memory

OXFFFFFFFF
(2%2-1)

EIP

0x000021438 0x00002143

instructions and
data for programj

31 0 OxF0000000

PTR1
PTR2 0x003D0900

instructions and
data for programz

CPU:> (used by programy)

D “““‘\ @ X F F @ 3 5

OXEGOOL000
. OXF27A9
1 OX00002 .
| ‘A page table for
(top 20 bits) OxFO110 programs
physical page number: 0xF0110 OXF8887 0x003D0900

page table for
programp

0xX00000000

page tables: top 20 bits of the
virtual address act as an index into
this table

(a page of memory is 232-20=212 pytes)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

what we want: virtualization. every program should what we have: 232 bytes of memory; every program
appear to have access to a full 32-bit address space can’t actually have access to the full 32-bit space

CPU1 (used by programs) memory management unit (MMU) main memory

OXFFFFFFFF
(2%2-1)

EIP

0x000021438 0x000021438

instructions and
data for programj

31 0 OxF0000000

PTR1
PTR2 0x003D0900

instructions and
data for programz

CPU:> (used by programy)

D “““‘\ @ X F F @ 3 5

OXEGOOL000
. OXF27A9
1 OX00002 .
| ‘A page table for
(top 20 bits) OxFO110 programs
physical page number: 0xF0110 OXF8887 0x003D0900

page table for

offset: 9x148 programg

(bottom 12 bits)

0xX00000000

page tables: top 20 bits of the
virtual address act as an index into
this table

(a page of memory is 232-20=212 pytes)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

what we want: virtualization. every program should what we have: 232 bytes of memory; every program
appear to have access to a full 32-bit address space can’t actually have access to the full 32-bit space

CPU1 (used by programs) memory management unit (MMU) main memory

OXFFFFFFFF
(2%2-1)

EIP instructions and

data for programj

0x000021438 0x000021438 OxF0110148

31 (7

OxF0000000

PTR1
PTR2 0x003D0900

instructions and
data for programz

CPU:> (used by programy)

E OXEQ00000
D ““““\ @X F F @ 3 5
" OXF27A9
: ©X00002 e
| A page table for
(top 20 bits) OxFO110 programs
physical page number: 0xF0110 OXF8887 0x003D0900

page table for
programp

offset: 9x148
(bottom 12 bits)

0xX00000000

page tables: top 20 bits of the
virtual address act as an index into
this table

(a page of memory is 232-20=212 pytes)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

what we want: virtualization. every program should what we have: 232 bytes of memory; every program

appear to have access to a full 32-bit address space can’t actually have access to the full 32-bit space
CPU1 (used by programi) memory management unit (MMU) main memory
OXFFFFFFFF
EIP : : (2%2-1)
Instructions and
©XxX00002148 0x00002148 OxF0110148 data for program
31 0 _ OXxFO000000
2 PTR: | |
PTR, 0x003D0900 Instructions and
CPU2 (used by programy) '-__ data for programg
OXEQOLBO00
D “““‘\ @X F F @ 3 5
" OXF27A9
1 OX00002 .
| A page table for
(top 20 bits) OxFO1160 orograms
physical page number: 0xF0110 OXF8887 0x003D0900
teot- Ox148 page table for
0 (b?tteom. 1 2)k()its) programo 0X00000000

page tables: top 20 bits of the
virtual address act as an index into
this table

(a page of memory is 232-20=212 pytes)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

what we want: virtualization. every program should what we have: 232 bytes of memory; every program

appear to have access to a full 32-bit address space can’t actually have access to the full 32-bit space
CPU1 (used by programs) memory management unit (MMU) main memory
OXFFFFFFFF
EIP : : (2%2-1)
iInstructions and
0Xx00002148 0x00002148 OxF0110148 data for program-
31 0 _ OxXFO000000
: PTR:
PTR, ©x003D0900 instructions and
CPU2 (used by programy) . data for programg
OXEGOOL000
" OXF27A9
: OX00002
| A page table for
(top 20 bits) OxFO1160 orogram:
physical page number: 0xF0110 OXF8887 0x003D0900
fcot: Ox148 page table for
offset: 0x
(bottom 12 bits) programs 09Xx00000000
| 220 virtual page numbers each
page tables: top 20 bits of the mapping to a 32-bit page-table
virtual address act as an index into entry (PTE) = 4MB to store this
(a page of memory is 23220=212 bytes) (why 32-bit PTEs, not 20-bit? hang on)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

what we want: virtualization. every program should
appear to have access to a full 32-bit address space

CPU1 (used by programs) memory management unit (MMU)

EIP

0x00001309

31 (7

CPU:> (used by programy)

|

page tables: top 20 bits of the

0x00001309

PTR1
PTR2 0x003D0900

OXFFO35
OxF27AS
OxFO110
OXF8887/

220 virtual page numbers each
mapping to a 32-bit page-table

virtual address act as an index into entry (PTE) = 4MB to store this

this table
(a page of memory is 232-20=212 pytes)

table
(why 32-bit PTEs, not 20-bit? hang on)

what we have: 232 bytes of memory; every program
can’t actually have access to the full 32-bit space

main memory

OxFFFFFFFF
| | (2%2-1)
instructions and
data for programj
0xF0000000
instructions and
data for programz
0xE000000
page table for
programs
0x003D0900
page table for
program: 0X00000000

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

what we want: virtualization. every program should
appear to have access to a full 32-bit address space

CPU1 (used by programs) memory management unit (MMU)

EIP

0x00001309

31 (7

CPU:> (used by programy)

|

page tables: top 20 bits of the

0x00001309

PTR1
PTR2 0x003D0900

) OxFFO35
" | [0xF27A9
OxFO110
OXF8887

220 virtual page numbers each
mapping to a 32-bit page-table

virtual address act as an index into entry (PTE) = 4MB to store this

this table
(a page of memory is 232-20=212 pytes)

table
(why 32-bit PTEs, not 20-bit? hang on)

what we have: 232 bytes of memory; every program
can’t actually have access to the full 32-bit space

main memory

OxFFFFFFFF
| | (2%2-1)
instructions and
data for programj
0xF0000000
instructions and
data for programz
0xE000000
page table for
programs
0x003D0900
page table for
program: 0X00000000

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

what we want: virtualization. every program should
appear to have access to a full 32-bit address space

CPU1 (used by programs) memory management unit (MMU)

EIP

0x00001309

31 (7

CPU:> (used by programy)

|

: Ox00001

(top 20 bits)

page tables: top 20 bits of the

0x00001309

PTR1
PTR2 0x003D0900

) OxFFO35
" | [0xF27A9
OxFO110
OXF8887

220 virtual page numbers each
mapping to a 32-bit page-table

virtual address act as an index into entry (PTE) = 4MB to store this

this table
(a page of memory is 232-20=212 pytes)

table
(why 32-bit PTEs, not 20-bit? hang on)

what we have: 232 bytes of memory; every program
can’t actually have access to the full 32-bit space

main memory

OXFFFFFFFF
(2%2-1)

instructions and
data for programj

0xF0000000
instructions and
data for programz
0xE000000
page table for
programs
0x003D0900
page table for
program: 0X00000000

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

what we want: virtualization. every program should
appear to have access to a full 32-bit address space

CPU1 (used by programs) memory management unit (MMU)

EIP

0x00001309

31 (7

CPU:> (used by programy)

0x00001309

PTR1
PTR2 0x003D0900

Tl |0xF27A9
: Ox00001
(top 20 bits) OxXFO110
physical page number: OxF27A9 OXF8887
| 220 virtual page numbers each
page tables: top 20 bits of the mapping to a 32-bit page-table
virtual address act as an index into entry (PTE) = 4MB to store this

this table
(a page of memory is 232-20=212 pytes)

table
(why 32-bit PTEs, not 20-bit? hang on)

what we have: 232 bytes of memory; every program
can’t actually have access to the full 32-bit space

main memory

OxFFFFFFFF
| | (2%2-1)
instructions and
data for programj
0xF0000000
instructions and
data for programz
0xE000000
page table for
programs
0x003D0900
page table for
program: 0X00000000

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

what we want: virtualization. every program should
appear to have access to a full 32-bit address space

CPU1 (used by programs) memory management unit (MMU)

EIP

0x00001309

31 (7

CPU:> (used by programy)

0x00001309

PTR1
PTR2 0x003D0900

T [@xF27A9
: OX00001
(top 20 bits) OxXFO110
physical page number: OxF27A9 OXF8887
offset: 9x309
(bottom 12 bits)
| 220 virtual page numbers each
page tables: top 20 bits of the mapping to a 32-bit page-table
virtual address act as an index into entry (PTE) = 4MB to store this

this table
(a page of memory is 232-20=212 pytes)

table
(why 32-bit PTEs, not 20-bit? hang on)

what we have: 232 bytes of memory; every program
can’t actually have access to the full 32-bit space

main memory

OxFFFFFFFF
| | (2%2-1)
instructions and
data for programj
0xF0000000
instructions and
data for programz
0xE000000
page table for
programs
0x003D0900
page table for
program: 0X00000000

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

what we want: virtualization. every program should
appear to have access to a full 32-bit address space

CPU1 (used by programs) memory management unit (MMU)

EIP

0x00001309 0x00001309 OxF27A9309

31 (7

CPU:> (used by programy)

(top 20 bits)

physical page number: OxF27A9

offset: 9x309
(bottom 12 bits)

: Ox00001

page tables: top 20 bits of the
virtual address act as an index into
this table

(a page of memory is 232-20=212 pytes)

“x| [@xF27A9

PTR1
PTR2 0x003D0900

OXFFO35

OxFO110
OXF8887/

220 virtual page numbers each
mapping to a 32-bit page-table
entry (PTE) & 4MB to store this
table

(why 32-bit PTEs, not 20-bit? hang on)

what we have: 232 bytes of memory; every program
can’t actually have access to the full 32-bit space

main memory

OxFFFFFFFF
| | (2%2-1)
instructions and
data for programj
0xF0000000
instructions and
data for programz
0xE000000
page table for
programs
0x003D0900
page table for
program: 0X00000000

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

what we want: virtualization. every program should what we have: 232 bytes of memory; every program

appear to have access to a full 32-bit address space can’t actually have access to the full 32-bit space
CPU1 (used by programs) memory management unit (MMU) main memory
OXFFFFFFFF
EIP : : (2%2-1)
instructions and
0Xx00001309 0Xx000013609 OXF27A9309 data for program-
31 2] : OxXFO000000
: PTR;
PTR, ©x003D0900 instructions and
CPU2 (used by programy) data for programg
X OxE0B0000
Tl |0xF27A9
: OX00001
| page table for
(top 20 bits) OxFO116 programs
physical page number: OxF27A9 OXF8887 0x003D0900
fcot: O%30 page table for
offset: 0x
(bottom 12 bits) programe 09x00000000
| 220 virtual page numbers each
page tables: top 20 bits of the mapping to a 32-bit page-table
virtual address act as an index into entry (PTE) = 4MB to store this
(a page of memory is 2°2-20=212 bytes) (why 32-bit PTEs, not 20-bit? hang on)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

CPU1 (used by programs) memory management unit (MMU) main memory
OXFFFFFFFF

(2%-1)
=1P instructions and
0x00002148 0xX00002148 OxF0110148 data for programj
31 0 : OXFOBR0000
g PTR1 0Ox007A1200 | |
PTR, 0x003D0900 instructions and
CPU2 (used by programy) '-__ data for programg
: OXEQB0000
D “““‘\ @X F F @ 3 5
OXF27A9 0X007A1200
ey OxFO110 page table for
program;
we have two more broad areas OF8837 00300900
to cover: page table for
programo 0x00000000

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

CPU1 (used by programs) memory management unit (MMU) main memory

OXFFFFFFFF
(2%-1)
=1P instructions and
0x00002148 0xX00002148 OxF0110148 data for programj
31 0 : OXFOBR0000
PTR1 0Ox007A1200 | |
PTR, 0x003D0900 instructions and
CPU2 (used by programy) '-__ data for programg
3 OXEQB0000
D “““‘\ @X F F @ 3 5
OXF27A9 0X007A1200
ey OxFO110 page table for
program;
we have two more broad areas OF8837 00300900
to cover: page table for
programo 0x00000000

does virtual memory protect programs from accessing each other’s memory?
(to answer this, we’ll need to address some other issues first)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

CPU1 (used by programs) memory management unit (MMU) main memory

OXFFFFFFFF
(2%-1)
=1P instructions and
0x00002148 0xX00002148 OxF0110148 data for programj
31 0 : OXFOBR0000
PTR1 0Ox007A1200 | |
PTR, 0x003D0900 instructions and
CPU2 (used by programy) '-__ data for programg
3 OXEQB0000
D “““‘\ @X F F @ 3 5
OXF27A9 0X007A1200
ey OxFO110 page table for
program;
we have two more broad areas OF8837 00300900
to cover: page table for
programo 0x00000000

does virtual memory protect programs from accessing each other’s memory?
(to answer this, we’ll need to address some other issues first)

what performance issues matter here?

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

what happens if we don’t have enough memory to
store all of our programs’ instructions and data?

CPU1 (used by programs) memory management unit (MMU) main memory
OXFFFFFFFF
EIP : : (2%2-1)
Instructions and
0x00002148 0x00002148 OxF0110148 data for programj
31 0 | OXF 0000000
PTR1 0x007A1200 | |
PTR, 0x003D0900 Instructions and
CPU2 (used by programy) '-__ data for programg
] OXE000000
D “““‘\ @X F F @ 3 5
OxF27A9 0x007A1200
ey OxFO110 page table for
programs
OXF8887 0x003D0900
page table for
program: 0X00000000

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

what happens if we don’t have enough memory to
store all of our programs’ instructions and data?

main memory

OxFFFFFFFF
(2%2-1)
instructions and
data for programj
0xF0000000
instructions and
data for programz
0xE000000
Ox007A1200
page table for
programs
0x003D0900
page table for
program: 0X00000000

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

what happens if we don’t have enough memory to page table entries contain additional bits that
store all of our programs’ instructions and data? help us deal with this problem (and others)

main memory

OxFFFFFFFF
(2%2-1)
instructions and
data for programj
0xF0000000
instructions and
data for programz
0xE000000
Ox007A1200
page table for
programs
0x003D0900
page table for
program: 0X00000000

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

what happens if we don’t have enough memory to page table entries contain additional bits that
store all of our programs’ instructions and data? help us deal with this problem (and others)

main memory

OXFFFFFFFF
31 12 11 0 | | (232-1)
instructions and
physical page number data for program
0xF0000000
instructions and
data for programz
0xE000000
Ox007A1200
page table for
program-
0x003D0900
page table for
programo 0X00000000

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

what happens if we don’t have enough memory to page table entries contain additional bits that
store all of our programs’ instructions and data? help us deal with this problem (and others)

main memory
OXFFFFFFFF
31 12 11 0 (2%2-1)

instructions and
physical page number data for program
0XF0P00000

instructions and
data for programz

OXEO00000

present (P) bit: is the page currently In
memory? page table for
programs

Ox00/7/A1200

0x003D0900

page table for
programp

0xX00000000

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

what happens if we don’t have enough memory to
store all of our programs’ instructions and data?

31 12 11 0

physical page number .IIIIIIII

main memory

instructions and
data for programj

instructions and
data for programz

present (P) bit: is the page currently In

memory?

page table for
programs

if the page is not in memory, the access

triggers an exception (known a “page fault” in
this case), which the kernel handles

page table for
programp

page table entries contain additional bits that
help us deal with this problem (and others)

OXFFFFFFFF
(2%2-1)

OxF0000000

OXEO00000

Ox00/7/A1200

0x003D0900

0xX00000000

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

what happens if we don’t have enough memory to
store all of our programs’ instructions and data?

31 12 11 0

physical page number .IIIIIIII

main memory

instructions and
data for programj

instructions and
data for programz

present (P) bit: is the page currently In

memory?

page table for
programs

if the page is not in memory, the access

triggers an exception (known a “page fault” in

this case), which the kernel handles this also answers the question of why

PTEs are 32 bits, not 20: they store
information beyond the page number

page table for
programp

page table entries contain additional bits that
help us deal with this problem (and others)

OXFFFFFFFF
(2%2-1)

OxF0000000

OXEO00000

Ox00/7/A1200

0x003D0900

0xX00000000

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

Interlude: handling exceptions this idea will remain relevant, as we are going to find that
(such as page faults) there are quite a few exceptions for the OS to handle

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

Interlude: handling exceptions this idea will remain relevant, as we are going to find that
(such as page faults) there are quite a few exceptions for the OS to handle

the operating system’s kernel manages page faults and other exceptions

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

Interlude: handling exceptions this idea will remain relevant, as we are going to find that
(such as page faults) there are quite a few exceptions for the OS to handle

the operating system’s kernel manages page faults and other exceptions

// special instruction that calls the exception handler for exception Xx
exception(x):

// switch from user mode to kernel mode

// call the handler for this particular exception

// switch from kernel mode to user mode

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

Interlude: handling exceptions this idea will remain relevant, as we are going to find that
(such as page faults) there are quite a few exceptions for the OS to handle

the operating system’s kernel manages page faults and other exceptions

// special instruction that calls the exception handler for exception Xx
exception(x):

U/K bit = K

// call the handler for this particular exception

U/K bit = U

the processor stores a user/kernel (U/K) bit that
indicates whether its operating in user mode or
kernel mode. this bit helps the processor control
access to certain kernel-specific actions

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

Interlude: handling exceptions this idea will remain relevant, as we are going to find that
(such as page faults) there are quite a few exceptions for the OS to handle

the operating system’s kernel manages page faults and other exceptions

// special instruction that calls the exception handler for exception Xx
exception(x):

U/K bit = K

call handlers|[x]

U/K bit = U

the processor stores a user/kernel (U/K) bit that each handler is different. as an example,
indicates whether its operating in user mode or the page-fault handler would take care of
kernel mode. this bit helps the processor control bringing the requested page into memory
access to certain kernel-specific actions

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

what happens if we don’t have enough memory to
store all of our programs’ instructions and data?

31 12 11 0

physical page number .IIIIIIII

main memory

instructions and
data for programj

instructions and
data for programz

present (P) bit: is the page currently In

memory?

page table for
programs

if the page is not in memory, the access

triggers an exception (known a “page fault” in
this case), which the kernel handles.

page table for
programp

page table entries contain additional bits that
help us deal with this problem (and others)

OXFFFFFFFF
(2%2-1)

OxF0000000

OXEO00000

Ox00/7/A1200

0x003D0900

0xX00000000

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

what happens if a program tries to write to
memory that it doesn’t have write-access to?

main memory

OXFFFFFFFF
31 12 11 0 | | (232-1)
instructions and
physical page number data for program
0xF0000000
instructions and
data for programz
0xE000000
Ox007A1200
page table for
program-
0x003D0900
page table for
programs 0X00000000

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

what happens if a program tries to write to after all, it's conceivable that we want programs to be
memory that it doesn’t have write-access t0? able to read some data, but not to modify it

main memory

OXFFFFFFFF
31 12 11 0 | | (232-1)
instructions and
physical page number data for program
0xF0000000
instructions and
data for programz
0xE000000
Ox007A1200
page table for
program-
0x003D0900
page table for
programs 0X00000000

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

what happens if a program tries to write to after all, it's conceivable that we want programs to be
memory that it doesn’t have write-access t0? able to read some data, but not to modify it

main memory

OXFFFFFFFF

31 12 11 0 _ | (232-1)
instructions and
physical page number data for programs
OxF0000000
instructions and
data for programz
OXE000000
read/write (R/W) bit: is the program allowed OxX007A1200
to write to this address? page table for
programj
0x003D0900
page table for
program: 0x00000000

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

what happens if a program tries to write to after all, it's conceivable that we want programs to be
memory that it doesn’t have write-access t0? able to read some data, but not to modify it

main memory
OXFFFFFFFF

31 12 11 0 (232-1)

physical page number .IIIIIII

instructions and
data for programj
OxF0000000

Instructions and

data for programz
OxE000000

read/write (R/W) bit: is the program allowed

to write to this address? page table for
programs

Ox00/7/A1200

0x003D0900

page table for
if the program doesn’t have write-access to programs 0X00000000

this page (and is trying to write to it), the
access triggers an exception, which the
kernel handles

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

what happens if a program tries to access memory
that only the kernel should have access to?

main memory

OXFFFFFFFF
31 12 11 0 _ | (232-1)
instructions and
physical page number data for program
0xF0000000
instructions and
data for programz
0xE000000
Ox007A1200
page table for
program-
0x003D0900
page table for
programs 0X00000000

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

what happens if a program tries to access memory we need to enforce modularity between programs and
that only the kernel should have access to? the kernel, not just between programs

main memory

OXFFFFFFFF
31 12 11 0 _ | (232-1)
instructions and
physical page number data for program
0xF0000000
instructions and
data for programz
0xE000000
Ox007A1200
page table for
program-
0x003D0900
page table for
programs 0X00000000

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

what happens if a program tries to access memory
that only the kernel should have access t0?

31 12 11 0

physical page number .IIIIII

main memory

instructions and
data for programj

instructions and
data for programz

user/supervisor (U/S) bit: is the program

allowed to access this address?

page table for
programs

page table for
programp

we need to enforce modularity between programs and
the kernel, not just between programs

OXFFFFFFFF
(2%2-1)

OxF0000000

OXEO00000

Ox00/7/A1200

0x003D0900

0xX00000000

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

what happens if a program tries to access memory we need to enforce modularity between programs and
that only the kernel should have access to? the kernel, not just between programs

main memory

OXFFFFFFFF
31 12 11 0 _ | (232-1)
instructions and
physical page number data for programs
OxF0000000
instructions and
data for programz
OXE000000
user/supervisor (U/S) bit: is the program OX007A1200
allowed to access this address? page table for
programj
0x003D0900
page table for
if not, the access triggers an exception, programs OXx00090000

which the kernel handles

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

what happens if a program tries to access memory we need to enforce modularity between programs and
that only the kernel should have access to? the kernel, not just between programs

main memory
OXFFFFFFFF

31 12 11 0 (232-1)

physical page number .IIIIII

instructions and
data for programj

OXF0000000
instructions and
data for programz
OXE000000
user/supervisor (U/S) bit: is the program OX007A1200
allowed to access this address? page table for
programj
Ox003D0900
page table for
if not, the access triggers an exception, programz

0xX00000000

which the kernel handles

without this last piece, a determined program could still attempt to circumvent
modularity by doing things such as modifying the page-table registers

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

CPU1 (used by programy)

EIP

0x000021438

31 (7

memory management unit (MMU)

0x000021438

OxF0110148

main memory

PTR1 0x007A1200
PTR2 0x003D0900

OxFFFFFFFF
(2%2-1)
instructions and
data for programj
0xF0000000
instructions and
data for programz
0xE000000
Ox007A1200
page table for
programs
0x003D0900
page table for
program: 0x00000000

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

CPU1 (used by programy)

EIP

0x000021438

31 (7

memory management unit (MMU)

0x000021438

220 virtual addresses each mapping
to a 32-bit page-table entry (PTE)
— 4MB to store this table

OxF0110148

main memory

PTR1 0x007A1200
PTR2 0x003D0900

OxFFFFFFFF
(2%2-1)
instructions and
data for programj
0xF0000000
instructions and
data for programz
0xE000000
Ox007A1200
page table for
programs
0x003D0900
page table for
program: 0x00000000

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

performance issue #1: page tables are allocated contiguously iIn memory so that access into them is extremely
fast; this means that every page table is 4MB, even if the program only needs to make a few memory accesses

CPU1 (used by programy)

EIP

0x000021438

31 (7

0x000021438

memory management unit (MMU)

220 virtual addresses each mapping
to a 32-bit page-table entry (PTE)
— 4MB to store this table

OxF0110148

main memory

OXFFFFFFFF
| | (2%2-1)
Instructions and

data for programj
OxF0000000

PTR1 0x007A1200
PTR2 0x003D0900

Instructions and

data for programz
OxE000000

Ox00/7/A1200

page table for
programs

©x003D0900
page table for

programz OXx00000000

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

multilevel page tables often use less space

CPU1 (used by programs) memory management unit (MMU)

EIP

0x020131438

31 (7

with multilevel page tables, the
MMU interprets this address as

0x020131438

referring to a series of page tables
instead of just a single page table

PTR1 0x007A1200
PTR2 0x003D0900

main memory

OxFFFFFFFF
(2%2-1)
instructions and
data for programj
0xF0000000
instructions and
data for programz
0xE000000
Ox007A1200
page table for
programs
0x003D0900
page table for
program: 0x00000000

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

multilevel page tables often use less space

CPU1 (used by programs) memory management unit (MMU) main memory
OXFFFFFFFF
EIP : : (2%2-1)
instructions and
©x02013148 ©x02013148 data for program-
31 0 : OxFR000000
: PTR: 0x007A1200 | |
PTR, 0x003D2900 instructions and
data for programo
OxE000000
Ox007A1200
page table for
programs
0x003D0900
page table for
programs 0X00000000

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

multilevel page tables often use less space

CPU1 (used by programs) memory management unit (MMU) main memory
OXFFFFFFFF
EIP . . (232_1)
instructions and
©x02013148 ©x02013148 data for program-
31 0 : OxF0000000
5 PTR1 0x007A1200 | |
PTR, 0x003D2900 instructions and
data for programo
OXE000000
OXx007A1200
page table for
programj
0x003D0900
page table for
programs 0X00000000

this IS the only
one that will be allocated
initially, and the top eight bits
Index into I1t. so It has
entries, not 220

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

multilevel page tables often use less space

CPU1 (used by programs) memory management unit (MMU) main memory
OXFFFFFFFF
EIP . . (232_1)
instructions and
©x02013148 ©x02013148 data for program-
31 0 : OxF0000000
5 PTR1 0x007A1200 | |
PTR, 0x003D2900 instructions and
data for programo
OXE000000
OXx007A1200
page table for
programj
0x003D0900
page table for
programs 0X00000000

this IS the only
one that will be allocated
initially, and the top eight bits
iIndex into it. so it has

' 20
(we’re using 8/8/4 in this example, but entries, not 2

you can generalize to M/N/F) Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

multilevel page tables often use less space

CPU1 (used by programs) memory management unit (MMU) main memory
OXFFFFFFFF
EIP : : (2%2-1)
instructions and
©x02013148 ©x02013148 data for programj
31 0 OxF0000000
PTR1 0x007A1200 | |
PTR, 0x003D2900 instructions and
data for programo
indexes into OXE000000
OX007A1200
he page table for
programj
0x003D0900
page table for
programs 0X00000000
this IS the only

one that will be allocated
initially, and the top eight bits
iIndex into I1t. so It has

' 20
(we’re using 8/8/4 in this example, but entries, not 2

you can generalize to M/N/F) Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

multilevel page tables often use less space

CPU1 (used by programs) memory management unit (MMU) main memory
OXFFFFFFFF
EIP . . (232_1)
instructions and
©x02013148 ©x02013148 data for programj
31 0 OXxF0000000
PTR: 0x007A1200 | |
PTR, 0x003D2900 instructions and
data for programo
indexes into OXE000000
OXx007A1200
i row points page table for
to a level 2 table programj
0x003D0900
page table for
programs 0X00000000
this IS the only

one that will be allocated
initially, and the top eight bits
iIndex into I1t. so It has

' 20
(we’re using 8/8/4 in this example, but entries, not 2

you can generalize to M/N/F) Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

multilevel page tables often use less space

CPU1 (used by programy) memory management unit (MMU) main memory
OxXFFFFFFFF
EIP - - &=-1)
Instructions and
©x02013148 ©x02013148 data for program-
31 0 OXFP000000
PTR: 9x007A1200 _ |
PTR, 0x003D2900 Instructions and
data for programz
indexes into OXE000000
OX007A1200
" * i row points page table for
[T 4% i to a level 2 table programj
Ox003D0900
page table for
programz OX00000000
8 ' . .
2 entries this IS the only

one that will be allocated
initially, and the top eight bits
iIndex into I1t. so It has

' 20
(we’re using 8/8/4 in this example, but entries, not 2

you can generalize to M/N/F) Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

multilevel page tables often use less space

CPU1 (used by programy)

EIP

0x020131438

31 (7

memory management unit (MMU)

0x02013148

0x01 indexes into this tablé-.__

PTR1 0x007A1200
PTR2 0x003D0900

iIndexes into

5
.....

\
«*
.
.
P
.

row points
to a level 2 table

o .
28 entries this

(we’re using 8/8/4 in this example, but
you can generalize to M/N/P)

IS the only

one that will be allocated
initially, and the top eight bits

Index into it. so it has
entries, not 220

main memory

OxFFFFFFFF
(2%2-1)
instructions and
data for programj
OxF0000000
instructions and
data for programo
OxE000000
Ox007A1200
page table for
programs
©x003D0900
page table for
program: 0x00000000

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

multilevel page tables often use less space

CPU1 (used by programy)

EIP

0x020131438

31 (7

memory management unit (MMU)

0x02013148

0x01 indexes into this tablé-.__

PTR1 0x007A1200
PTR2 0x003D0900

iIndexes into

g
''''
lllll
lllllllll

\
«*
.
.
P
.

row points
to a level 2 table

o .
28 entries this

row 0x01 points to a

(we’re using 8/8/4 in this example, but
you can generalize to M/N/P)

IS the only

one that will be allocated

initially, and the top eight bits
Index into I1t. so It has
entries, not 220

main memory

OxFFFFFFFF
(2%2-1)
instructions and
data for programj
OxF0000000
instructions and
data for programo
OxE000000
Ox007A1200
page table for
programs
©x003D0900
page table for
program: 0x00000000

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

multilevel page tables often use less space

CPU1 (used by programy)

EIP

0x020131438

31 (7

OxFO110

entries

(we’re using 8/8/4 in this example, but
you can generalize to M/N/P)

0x02013148

0x01 indexes into this tablé-.__

.
"

memory management unit (MMU)

PTR1 0x007A1200
PTR2 0x003D0900

iIndexes into

g
''''
lllll
lllllllll

\
«*
.
.
.®
.

row points
to a level 2 table

o .
28 entries this

row 0x01 points to a

IS the only

one that will be allocated

initially, and the top eight bits
Index into I1t. so It has
entries, not 220

main memory

OxFFFFFFFF
(2%2-1)
instructions and
data for programj
OxF0000000
instructions and
data for programo
OxE000000
Ox007A1200
page table for
programs
©x003D0900
page table for
program: 0x00000000

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

multilevel page tables often use less space

CPU1 (used by programs) memory management unit (MMU) main memory
OXFFFFFFFF
EIP . . (232_1)
Instructions and
©x02013148 ©x02013148 data for program-
31 0 OXFO000000
PTR1 0x007A1200 | |
PTR, 0x003D2900 Instructions and
row contains the _‘ data for programg
physical page number ex01 indexes into this table. indexes into OXE000000
>
~~~~ OXx007A1200
" * i row points page table for
AT #08 Ll to a level 2 table programy
OxFO110 0x003D0900
page table for
programs 0X00000000
i 8 ' . .
entries 28 entries this s the only
row @x@1 points 1o a one that will be allocated

initially, and the top eight bits
iIndex into it. so it has

' 20
(we’re using 8/8/4 in this example, but entries, not 2

you can generalize to M/N/F) Katrina LaCurts | lacurts@mit.edu | 6.1800 2025



multilevel page tables often use less space

CPU1 (used by programs) memory management unit (MMU) main memory
OXFFFFFFFF
EIP : . (2%2-1)
Instructions and
©x02013148 ©x02013148 OxF0110148 data for program-
31 0 OxF0000000
PTR1 0x007A1200 | |
PTR, 0x003D2900 Instructions and
row contains the _‘ data for programg
physical page number ex01 indexes into this table. indexes into OXE000000
>
~~~~ OX0P07A1200
" * i row points page table for
AT #08 Ll to a level 2 table programy
OxXFO110 Ox003D0900
page table for
programz 0x00000000
' 8 ' . .
entries 28 entries this s the only
fow 0x@1 points to a one that will be allocated

initially, and the top eight bits
iIndex into it. so it has

' 20
(we’re using 8/8/4 in this example, but entries, not 2

you can generalize to M/N/F) Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

multilevel page tables often use less space

CPU1 (used by programy)

EIP

0x020131438

31 (7

OxFO110

entries
level 3 table

(we’re using 8/8/4 in this example, but
you can generalize to M/N/P)

.
"

level 2 table

memory management unit (MMU) main memory
OXFFFFFFFF
(2%2-1)
instructions and
©x02013148 OxF0110148 data for programj
OxF0000000
PTR1 0x007A1200 | |
PTR, 0x003D2900 instructions and
data for programz
OXE000000
. OX007A1200
" R “ page table for
[T S5 programj
OXx003D0900
page table for
programo 0X00000000
28 entries entries
level 1 table
each row in the (typically) corresponds to a

different level 2 table, but each level 2 table (and
) is allocated as needed

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

multilevel page tables often use less space, at the expense of more table look-ups and more exceptions (to
allocate additional tables)

CPU1 (used by programs) memory management unit (MMU) main memory
OXFFFFFFFF
EIP . . (2%2-1)
instructions and
©x02013148 ©x02013148 OxF0110148 data for program-
31 0 OXF0000000
PTR1 0x007A1200 | |
PTR, Ox003D0900 instructions and
data for programz
OXE000000
>
---- . OX007A1200
" R page table for
[T S5 programj
OxF0110 Ox003D0900
page table for
programs 0X00000000
entries 28 entries entries
level 3 table level 2 table level 1 table
each row in the (typically) corresponds to a
different level 2 table, but each level 2 table (and
(we’re using 8/8/4 in this example, but) is allocated as needed

you can generalize to M/N/F) Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

CPU1 (used by programs) memory management unit (MMU)

EIP

0x020131438 0x02013148 OxF01101438

31 (7

main memory

PTR1 0x007A1200
PTR2 0x003D0900

..,
"

\
P
.
.
.®
.

] .
......

OxFO110
entries 28 entries entries
level 3 table level 2 table level 1 table

OxFFFFFFFF
(2%2-1)
instructions and
data for programj
0xF0000000
instructions and
data for programz
0xE000000
Ox007A1200
page table for
programs
0x003D0900
page table for
programo 0X00000000

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

performance issue #2: looking up the same piece of data over and over again takes time; can we make it faster?

CPU1 (used by programs) memory management unit (MMU)

EIP

0x020131438 0x02013148 OxF01101438

31 (7

main memory

PTR1 0x007A1200
PTR2 0x003D0900

..,
"

\
P
.
.
.®
.

] .
......

OxFO110
entries 28 entries entries
level 3 table level 2 table level 1 table

OxFFFFFFFF
(2%2-1)
instructions and
data for programj
0xF0000000
instructions and
data for programz
0xE000000
Ox007A1200
page table for
programs
0x003D0900
page table for
programo 0X00000000

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

performance issue #2: looking up the same piece of data over and over again takes time; can we make it faster?

CPU1 (used by programs) memory management unit (MMU) main memory
OXFFFFFFFF
EIP : . (2%2-1)
Instructions and
©x02013148 ©x02013148 OxF0110148 data for program-
31 0 OxF0000000
PTR: 0x007A1200 _ |
PTR, 0x003D2900 Instructions and
data for programo
OxE000000
>
~~~~ . OX007A1200
" ey page table for
ETTOU OO L program_l
OxFO110 ©x003D0900
page table for
programs 0X00000000
entries 28 entries entries
level 3 table level 2 table level 1 table

yes. caches are involved in a variety of places here, to (in theory) make common look-ups faster. you’ve also seen
caching in the context of DNS.

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025



operating systems enforce modularity on a single machine

in order to enforce modularity + have an effective operating system, a few things need to happen

1. programs shouldn’t be able to referto - »  virtualize memory
(and corrupt) each others’ memory

2. programs should be ableto , assume they don’t need to
communicate with each other (for today)

assume one program per CPU

3. programs should be able to sharea @ -
(for today)

CPU without one program halting the
progress of the others

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025



operating systems enforce modularity on a single machine

in order to enforce modularity + have an effective operating system, a few things need to happen

1. programs shouldn’t be able to referto - »  virtualize memory
(and corrupt) each others’ memory

2. programs should be ableto , assume they don’t need to
communicate with each other (for today)

assume one program per CPU

3. programs should be able to sharea @ -
(for today)

CPU without one program halting the
progress of the others

the primary technique that an operating system uses to enforce modularity is virtualization.
some components are difficult to virtualize (e.g., the disk); for those, the operating system

presents abstractions

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025



operating systems enforce modularity on a
single machine via virtualization and
abstraction

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025



Operating systems enforce modu\arity OnN a you'll talk much more about abstractions

during the recitations on UNIX;

Sing\e machine via virtualization and designing good abstractions is part of
abstraction designing a good operating system

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025



Operating systems enforce modu\arity OnN a you'll talk much more gbout abstractions

during the recitations on UNIX;

Sing\e machine via virtualization and designing good abstractions is part of
abstraction designing a good operating system

virtualizing memory prevents programs from
referring to (and corrupting) each other’s memory. the
MMU translates virtual addresses to physical
addresses using page tables, and there are a
number of performance issues to take into account

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025



operating systems enforce modularity on a
single machine via virtualization and

abstraction

virtualizing memory prevents programs from
referring to (and corrupting) each other’s memory. the

MMU transla
addresses usi

es virtual addresses to physical
Nng page tables, and there are a

number of performance issues to take into account

you’ll talk much more about abstractions
during the recitations on UNIX;
designing good abstractions is part of
designing a good operating system

amount of memory used, speed of
access

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025



operating systems enforce modularity on a
single machine via virtualization and
abstraction

virtualizing memory prevents programs from
referring to (and corrupting) each other’s memory. the
MMU translates virtual addresses to physical
addresses using page tables, and there are a
number of performance issues to take into account

the kernel handles any exceptions triggered in this
process; protecting the kernel from user programs Is
just as iImportant as protecting user programs from
each other

you’ll talk much more about abstractions
during the recitations on UNIX;
designing good abstractions is part of
designing a good operating system

amount of memory used, speed of
access

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025



