
Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

6.1800 Spring 2025
Lecture #3: Virtual Memory
how does it work, but more importantly, why does an OS use it?

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

6.1800 in the news

https://nscreenmedia.com/tubi-super-bowl-lix-quality-better-than-broadcast-experience/

caveat: this does not appear to be a large-scale measurement study, we should not draw
huge conclusions about the performance of Tubi vs. YouTube TV from these results alone

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

Class Browser
(on machine 1)

def main():
 html = browser_load_url(URL)
 ...

def browser_load_url(url):
 msg = url # could reformat
 send request
 wait for reply
 html = reply # could reformat
 return html stub

Class Server
(on machine 2)

def server_load_url():
 ...
 return html

def handle_server_load_url(url):
 wait for request
 url = request
 html = server_load_url(URL)
 reply = html
 send reply stub

client server

network

load(“kaws.com/buy.html?item=duck”)

X
load(“kaws.com/buy.html?item=duck”)

last time: enforced modularity via client/server + naming

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

Class Browser
(on machine 1)

def main():
 html = browser_load_url(URL)
 ...

def browser_load_url(url):
 msg = url # could reformat
 send request
 wait for reply
 html = reply # could reformat
 return html stub

Class Server
(on machine 2)

def server_load_url():
 ...
 return html

def handle_server_load_url(url):
 wait for request
 url = request
 html = server_load_url(URL)
 reply = html
 send reply stub

client server

network

load(“kaws.com/buy.html?item=duck”)

X
load(“kaws.com/buy.html?item=duck”)

last time: enforced modularity via client/server + naming

today: what if we don’t want to put each module on a separate machine?

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

operating systems enforce modularity on a single machine

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

operating systems enforce modularity on a single machine
in order to enforce modularity + have an effective operating system, a few things need to happen

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

operating systems enforce modularity on a single machine
in order to enforce modularity + have an effective operating system, a few things need to happen

1. programs shouldn’t be able to refer to
(and corrupt) each others’ memory

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

operating systems enforce modularity on a single machine
in order to enforce modularity + have an effective operating system, a few things need to happen

1. programs shouldn’t be able to refer to
(and corrupt) each others’ memory

2. programs should be able to
communicate with each other

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

operating systems enforce modularity on a single machine
in order to enforce modularity + have an effective operating system, a few things need to happen

1. programs shouldn’t be able to refer to
(and corrupt) each others’ memory

2. programs should be able to
communicate with each other

3. programs should be able to share a
CPU without one program halting the
progress of the others

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

operating systems enforce modularity on a single machine
in order to enforce modularity + have an effective operating system, a few things need to happen

1. programs shouldn’t be able to refer to
(and corrupt) each others’ memory

2. programs should be able to
communicate with each other

3. programs should be able to share a
CPU without one program halting the
progress of the others

the primary technique that an operating system uses to enforce modularity is virtualization

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

operating systems enforce modularity on a single machine
in order to enforce modularity + have an effective operating system, a few things need to happen

1. programs shouldn’t be able to refer to
(and corrupt) each others’ memory

2. programs should be able to
communicate with each other

3. programs should be able to share a
CPU without one program halting the
progress of the others

the primary technique that an operating system uses to enforce modularity is virtualization
in some sense, we want every program to think that it has access to the full physical
hardware, when of course they don’t; the OS virtualizes different components of hardware

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

operating systems enforce modularity on a single machine
in order to enforce modularity + have an effective operating system, a few things need to happen

1. programs shouldn’t be able to refer to
(and corrupt) each others’ memory

2. programs should be able to
communicate with each other

3. programs should be able to share a
CPU without one program halting the
progress of the others

the primary technique that an operating system uses to enforce modularity is virtualization
in some sense, we want every program to think that it has access to the full physical
hardware, when of course they don’t; the OS virtualizes different components of hardware

virtualize memory

assume they don’t need to

(for today)

assume one program per CPU

(for today)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

what we want: virtualization. every program should
appear to have access to a full 32-bit address space

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

what we want: virtualization. every program should
appear to have access to a full 32-bit address space

what we have: 232 bytes of memory; every program
can’t actually have access to the full 32-bit space

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

CPU1 (used by program1)

what we want: virtualization. every program should
appear to have access to a full 32-bit address space

what we have: 232 bytes of memory; every program
can’t actually have access to the full 32-bit space

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

CPU1 (used by program1)

EIP

031

what we want: virtualization. every program should
appear to have access to a full 32-bit address space

what we have: 232 bytes of memory; every program
can’t actually have access to the full 32-bit space

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

CPU1 (used by program1)

EIP

031

CPU2 (used by program2)

what we want: virtualization. every program should
appear to have access to a full 32-bit address space

what we have: 232 bytes of memory; every program
can’t actually have access to the full 32-bit space

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

CPU1 (used by program1)

EIP

031

main memory

CPU2 (used by program2)

what we want: virtualization. every program should
appear to have access to a full 32-bit address space

what we have: 232 bytes of memory; every program
can’t actually have access to the full 32-bit space

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

CPU1 (used by program1)

EIP

031

main memory

CPU2 (used by program2)

what we want: virtualization. every program should
appear to have access to a full 32-bit address space

what we have: 232 bytes of memory; every program
can’t actually have access to the full 32-bit space

0x00000000

0xFFFFFFFF
(232-1)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

CPU1 (used by program1)

EIP

031

main memory

CPU2 (used by program2)

instructions and
data for program1

instructions and
data for program2

what we want: virtualization. every program should
appear to have access to a full 32-bit address space

what we have: 232 bytes of memory; every program
can’t actually have access to the full 32-bit space

0x00000000

0xF0000000

0xE000000

0xFFFFFFFF
(232-1)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

CPU1 (used by program1)

EIP

031

main memory

CPU2 (used by program2)

instructions and
data for program1

instructions and
data for program2

…

what we want: virtualization. every program should
appear to have access to a full 32-bit address space

what we have: 232 bytes of memory; every program
can’t actually have access to the full 32-bit space

0x00000000

0xF0000000

0xE000000

0xFFFFFFFF
(232-1)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

CPU1 (used by program1)

EIP

031

memory management unit (MMU) main memory

CPU2 (used by program2)

instructions and
data for program1

instructions and
data for program2

…

what we want: virtualization. every program should
appear to have access to a full 32-bit address space

what we have: 232 bytes of memory; every program
can’t actually have access to the full 32-bit space

0x00000000

0xF0000000

0xE000000

0xFFFFFFFF
(232-1)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

CPU1 (used by program1)

EIP

0x00002148
031

memory management unit (MMU) main memory

CPU2 (used by program2)

instructions and
data for program1

instructions and
data for program2

…

what we want: virtualization. every program should
appear to have access to a full 32-bit address space

what we have: 232 bytes of memory; every program
can’t actually have access to the full 32-bit space

0x00000000

0xF0000000

0xE000000

0xFFFFFFFF
(232-1)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

CPU1 (used by program1)

EIP

0x00002148
031

memory management unit (MMU)

0x00002148

main memory

CPU2 (used by program2)

instructions and
data for program1

instructions and
data for program2

…

what we want: virtualization. every program should
appear to have access to a full 32-bit address space

what we have: 232 bytes of memory; every program
can’t actually have access to the full 32-bit space

0x00000000

0xF0000000

0xE000000

0xFFFFFFFF
(232-1)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

CPU1 (used by program1)

EIP

0x00002148
031

memory management unit (MMU)

0x00002148

main memory

CPU2 (used by program2)

instructions and
data for program1

instructions and
data for program2

…

table for program2

table for program1

what we want: virtualization. every program should
appear to have access to a full 32-bit address space

what we have: 232 bytes of memory; every program
can’t actually have access to the full 32-bit space

0x00000000

0xF0000000

0xE000000

0xFFFFFFFF
(232-1)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

CPU1 (used by program1)

EIP

0x00002148
031

memory management unit (MMU)

0x00002148

main memory

CPU2 (used by program2)

instructions and
data for program1

instructions and
data for program2

…

table for program2

table for program1

what we want: virtualization. every program should
appear to have access to a full 32-bit address space

what we have: 232 bytes of memory; every program
can’t actually have access to the full 32-bit space

0x00000000

0xF0000000

0xE000000

0xFFFFFFFF
(232-1)

the MMU is going to use program1’s
table to translate a virtual address from

program1 into a physical address

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

CPU1 (used by program1)

EIP

0x00002148
031

memory management unit (MMU)

0x00002148

main memory

CPU2 (used by program2)

instructions and
data for program1

instructions and
data for program2

…

table for program2

table for program1

0xFF035113

0xF27A9B77

0xF0110048

0xF8887881
…

what we want: virtualization. every program should
appear to have access to a full 32-bit address space

what we have: 232 bytes of memory; every program
can’t actually have access to the full 32-bit space

0x00000000

0xF0000000

0xE000000

0xFFFFFFFF
(232-1)

attempt 1: each virtual address acts
as an index into this table; there is
one entry for every virtual address

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

CPU1 (used by program1)

EIP

0x00002148
031

memory management unit (MMU)

0x00002148

main memory

CPU2 (used by program2)

instructions and
data for program1

instructions and
data for program2

…

table for program2

table for program1

0xFF035113

0xF27A9B77

0xF0110048

0xF8887881
…

what we want: virtualization. every program should
appear to have access to a full 32-bit address space

what we have: 232 bytes of memory; every program
can’t actually have access to the full 32-bit space

0x00000000

0xF0000000

0xE000000

0xFFFFFFFF
(232-1)

attempt 1: each virtual address acts
as an index into this table; there is
one entry for every virtual address

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

CPU1 (used by program1)

EIP

0x00002148
031

memory management unit (MMU)

0x00002148

main memory

CPU2 (used by program2)

instructions and
data for program1

instructions and
data for program2

…

table for program2

table for program1

0xFF035113

0xF27A9B77

0xF0110048

0xF8887881
…

what we want: virtualization. every program should
appear to have access to a full 32-bit address space

what we have: 232 bytes of memory; every program
can’t actually have access to the full 32-bit space

0x00000000

0xF0000000

0xE000000

0xFFFFFFFF
(232-1)

attempt 1: each virtual address acts
as an index into this table; there is
one entry for every virtual address

232 virtual addresses each mapping
to a 32-bit physical address →

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

CPU1 (used by program1)

EIP

0x00002148
031

memory management unit (MMU)

0x00002148

main memory

CPU2 (used by program2)

instructions and
data for program1

instructions and
data for program2

…

table for program2

table for program1

0xFF035113

0xF27A9B77

0xF0110048

0xF8887881
…

what we want: virtualization. every program should
appear to have access to a full 32-bit address space

what we have: 232 bytes of memory; every program
can’t actually have access to the full 32-bit space

0x00000000

0xF0000000

0xE000000

0xFFFFFFFF
(232-1)

attempt 1: each virtual address acts
as an index into this table; there is
one entry for every virtual address 16GB to store this table

232 virtual addresses each mapping
to a 32-bit physical address →

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

CPU1 (used by program1)

EIP

0x00002148
031

memory management unit (MMU)

0x00002148

main memory

CPU2 (used by program2)

instructions and
data for program1

instructions and
data for program2

…

table for program2

table for program1

0xFF035113

0xF27A9B77

0xF0110048

0xF8887881
…

what we want: virtualization. every program should
appear to have access to a full 32-bit address space

what we have: 232 bytes of memory; every program
can’t actually have access to the full 32-bit space

0x00000000

0xF0000000

0xE000000

0xFFFFFFFF
(232-1)

attempt 1: each virtual address acts
as an index into this table; there is
one entry for every virtual address

16GB is quite a lot
of memory

16GB to store this table

232 virtual addresses each mapping
to a 32-bit physical address →

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

0x00002148

CPU1 (used by program1)

EIP

0x00002148
031

memory management unit (MMU) main memory

CPU2 (used by program2)

instructions and
data for program1

instructions and
data for program2

…

page table for
program2

page table for
program1

0xFFFFFFFF

what we have: 232 bytes of memory; every program
can’t actually have access to the full 32-bit space

0x00000000

0xF0000000

0xE000000

(232-1)

what we want: virtualization. every program should
appear to have access to a full 32-bit address space

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

0x00002148

CPU1 (used by program1)

EIP

0x00002148
031

memory management unit (MMU) main memory

CPU2 (used by program2)

instructions and
data for program1

instructions and
data for program2

…

page table for
program2

page table for
program1

0xFFFFFFFF

what we have: 232 bytes of memory; every program
can’t actually have access to the full 32-bit space

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

what we want: virtualization. every program should
appear to have access to a full 32-bit address space

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

0x00002148

CPU1 (used by program1)

EIP

0x00002148
031

memory management unit (MMU) main memory

CPU2 (used by program2)

instructions and
data for program1

instructions and
data for program2

…

page table for
program2

page table for
program1

0xFFFFFFFF

what we have: 232 bytes of memory; every program
can’t actually have access to the full 32-bit space

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

PTR1 0x007A1200
PTR2 0x003D0900

what we want: virtualization. every program should
appear to have access to a full 32-bit address space

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

0x00002148

CPU1 (used by program1)

EIP

0x00002148
031

memory management unit (MMU) main memory

CPU2 (used by program2)

instructions and
data for program1

instructions and
data for program2

…

page table for
program2

page table for
program1

0xF0110

0xFF035

0xF27A9

0xF8887
…

0xFFFFFFFF

what we have: 232 bytes of memory; every program
can’t actually have access to the full 32-bit space

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

PTR1 0x007A1200
PTR2 0x003D0900

what we want: virtualization. every program should
appear to have access to a full 32-bit address space

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

0x00002148

CPU1 (used by program1)

EIP

0x00002148
031

memory management unit (MMU) main memory

CPU2 (used by program2)

instructions and
data for program1

instructions and
data for program2

…

page table for
program2

page table for
program1

0xF0110

0xFF035

0xF27A9

0xF8887
…

0xFFFFFFFF

what we have: 232 bytes of memory; every program
can’t actually have access to the full 32-bit space

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

PTR1 0x007A1200
PTR2 0x003D0900

page tables: top 20 bits of the
virtual address act as an index into
this table

(a page of memory is 232-20=212 bytes)

what we want: virtualization. every program should
appear to have access to a full 32-bit address space

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

0x00002148

CPU1 (used by program1)

EIP

0x00002148
031

memory management unit (MMU) main memory

CPU2 (used by program2)

instructions and
data for program1

instructions and
data for program2

…

page table for
program2

page table for
program1

0xF0110

0xFF035

0xF27A9

0xF8887
…

0xFFFFFFFF

what we have: 232 bytes of memory; every program
can’t actually have access to the full 32-bit space

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

PTR1 0x007A1200
PTR2 0x003D0900

virtual page number: 0x00002
(top 20 bits)

page tables: top 20 bits of the
virtual address act as an index into
this table

(a page of memory is 232-20=212 bytes)

what we want: virtualization. every program should
appear to have access to a full 32-bit address space

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

0x00002148

CPU1 (used by program1)

EIP

0x00002148
031

memory management unit (MMU) main memory

CPU2 (used by program2)

instructions and
data for program1

instructions and
data for program2

…

page table for
program2

page table for
program1

0xF0110

0xFF035

0xF27A9

0xF8887
…

0xFFFFFFFF

what we have: 232 bytes of memory; every program
can’t actually have access to the full 32-bit space

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

PTR1 0x007A1200
PTR2 0x003D0900

virtual page number: 0x00002
(top 20 bits)

physical page number: 0xF0110

page tables: top 20 bits of the
virtual address act as an index into
this table

(a page of memory is 232-20=212 bytes)

what we want: virtualization. every program should
appear to have access to a full 32-bit address space

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

0x00002148

CPU1 (used by program1)

EIP

0x00002148
031

memory management unit (MMU) main memory

CPU2 (used by program2)

instructions and
data for program1

instructions and
data for program2

…

page table for
program2

page table for
program1

0xF0110

0xFF035

0xF27A9

0xF8887
…

0xFFFFFFFF

what we have: 232 bytes of memory; every program
can’t actually have access to the full 32-bit space

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

PTR1 0x007A1200
PTR2 0x003D0900

virtual page number: 0x00002
(top 20 bits)

offset: 0x148
(bottom 12 bits)

physical page number: 0xF0110

page tables: top 20 bits of the
virtual address act as an index into
this table

(a page of memory is 232-20=212 bytes)

what we want: virtualization. every program should
appear to have access to a full 32-bit address space

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

0xF01101480x00002148

CPU1 (used by program1)

EIP

0x00002148
031

memory management unit (MMU) main memory

CPU2 (used by program2)

instructions and
data for program1

instructions and
data for program2

…

page table for
program2

page table for
program1

0xF0110

0xFF035

0xF27A9

0xF8887
…

0xFFFFFFFF

what we have: 232 bytes of memory; every program
can’t actually have access to the full 32-bit space

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

PTR1 0x007A1200
PTR2 0x003D0900

virtual page number: 0x00002
(top 20 bits)

offset: 0x148
(bottom 12 bits)

physical page number: 0xF0110

page tables: top 20 bits of the
virtual address act as an index into
this table

(a page of memory is 232-20=212 bytes)

what we want: virtualization. every program should
appear to have access to a full 32-bit address space

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

0xF01101480x00002148

CPU1 (used by program1)

EIP

0x00002148
031

memory management unit (MMU) main memory

CPU2 (used by program2)

instructions and
data for program1

instructions and
data for program2

…

page table for
program2

page table for
program1

0xF0110

0xFF035

0xF27A9

0xF8887
…

0xFFFFFFFF

what we have: 232 bytes of memory; every program
can’t actually have access to the full 32-bit space

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

PTR1 0x007A1200
PTR2 0x003D0900

virtual page number: 0x00002
(top 20 bits)

offset: 0x148
(bottom 12 bits)

physical page number: 0xF0110

page tables: top 20 bits of the
virtual address act as an index into
this table

(a page of memory is 232-20=212 bytes)

what we want: virtualization. every program should
appear to have access to a full 32-bit address space

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

0xF01101480x00002148

CPU1 (used by program1)

EIP

0x00002148
031

memory management unit (MMU) main memory

CPU2 (used by program2)

instructions and
data for program1

instructions and
data for program2

…

page table for
program2

page table for
program1

0xF0110

0xFF035

0xF27A9

0xF8887
…

0xFFFFFFFF

what we have: 232 bytes of memory; every program
can’t actually have access to the full 32-bit space

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

PTR1 0x007A1200
PTR2 0x003D0900

virtual page number: 0x00002
(top 20 bits)

offset: 0x148
(bottom 12 bits)

physical page number: 0xF0110

page tables: top 20 bits of the
virtual address act as an index into
this table

(a page of memory is 232-20=212 bytes)

220 virtual page numbers each
mapping to a 32-bit page-table
entry (PTE) → 4MB to store this
table
(why 32-bit PTEs, not 20-bit? hang on)

what we want: virtualization. every program should
appear to have access to a full 32-bit address space

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

0x00001309

CPU1 (used by program1)

EIP

0x00001309
031

memory management unit (MMU) main memory

CPU2 (used by program2)

instructions and
data for program1

instructions and
data for program2

…

page table for
program2

page table for
program1

0xFF035

0xF27A9

0xF8887
…

0xF0110

0xFFFFFFFF

what we have: 232 bytes of memory; every program
can’t actually have access to the full 32-bit space

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

PTR1 0x007A1200
PTR2 0x003D0900

page tables: top 20 bits of the
virtual address act as an index into
this table

(a page of memory is 232-20=212 bytes)

220 virtual page numbers each
mapping to a 32-bit page-table
entry (PTE) → 4MB to store this
table
(why 32-bit PTEs, not 20-bit? hang on)

what we want: virtualization. every program should
appear to have access to a full 32-bit address space

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

0x00001309

CPU1 (used by program1)

EIP

0x00001309
031

memory management unit (MMU) main memory

CPU2 (used by program2)

instructions and
data for program1

instructions and
data for program2

…

page table for
program2

page table for
program1

0xFF035

0xF27A9

0xF8887
…

0xF0110

0xFFFFFFFF

what we have: 232 bytes of memory; every program
can’t actually have access to the full 32-bit space

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

PTR1 0x007A1200
PTR2 0x003D0900

page tables: top 20 bits of the
virtual address act as an index into
this table

(a page of memory is 232-20=212 bytes)

220 virtual page numbers each
mapping to a 32-bit page-table
entry (PTE) → 4MB to store this
table
(why 32-bit PTEs, not 20-bit? hang on)

what we want: virtualization. every program should
appear to have access to a full 32-bit address space

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

0x00001309

CPU1 (used by program1)

EIP

0x00001309
031

memory management unit (MMU) main memory

CPU2 (used by program2)

instructions and
data for program1

instructions and
data for program2

…

page table for
program2

page table for
program1

0xFF035

0xF27A9

0xF8887
…

0xF0110

0xFFFFFFFF

what we have: 232 bytes of memory; every program
can’t actually have access to the full 32-bit space

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

PTR1 0x007A1200
PTR2 0x003D0900

virtual page number: 0x00001
(top 20 bits)

page tables: top 20 bits of the
virtual address act as an index into
this table

(a page of memory is 232-20=212 bytes)

220 virtual page numbers each
mapping to a 32-bit page-table
entry (PTE) → 4MB to store this
table
(why 32-bit PTEs, not 20-bit? hang on)

what we want: virtualization. every program should
appear to have access to a full 32-bit address space

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

0x00001309

CPU1 (used by program1)

EIP

0x00001309
031

memory management unit (MMU) main memory

CPU2 (used by program2)

instructions and
data for program1

instructions and
data for program2

…

page table for
program2

page table for
program1

0xFF035

0xF27A9

0xF8887
…

0xF0110

0xFFFFFFFF

what we have: 232 bytes of memory; every program
can’t actually have access to the full 32-bit space

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

PTR1 0x007A1200
PTR2 0x003D0900

virtual page number: 0x00001
(top 20 bits)

physical page number: 0xF27A9

page tables: top 20 bits of the
virtual address act as an index into
this table

(a page of memory is 232-20=212 bytes)

220 virtual page numbers each
mapping to a 32-bit page-table
entry (PTE) → 4MB to store this
table
(why 32-bit PTEs, not 20-bit? hang on)

what we want: virtualization. every program should
appear to have access to a full 32-bit address space

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

0x00001309

CPU1 (used by program1)

EIP

0x00001309
031

memory management unit (MMU) main memory

CPU2 (used by program2)

instructions and
data for program1

instructions and
data for program2

…

page table for
program2

page table for
program1

0xFF035

0xF27A9

0xF8887
…

0xF0110

0xFFFFFFFF

what we have: 232 bytes of memory; every program
can’t actually have access to the full 32-bit space

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

PTR1 0x007A1200
PTR2 0x003D0900

virtual page number: 0x00001
(top 20 bits)

offset: 0x309
(bottom 12 bits)

physical page number: 0xF27A9

page tables: top 20 bits of the
virtual address act as an index into
this table

(a page of memory is 232-20=212 bytes)

220 virtual page numbers each
mapping to a 32-bit page-table
entry (PTE) → 4MB to store this
table
(why 32-bit PTEs, not 20-bit? hang on)

what we want: virtualization. every program should
appear to have access to a full 32-bit address space

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

0xF27A93090x00001309

CPU1 (used by program1)

EIP

0x00001309
031

memory management unit (MMU) main memory

CPU2 (used by program2)

instructions and
data for program1

instructions and
data for program2

…

page table for
program2

page table for
program1

0xFF035

0xF27A9

0xF8887
…

0xF0110

0xFFFFFFFF

what we have: 232 bytes of memory; every program
can’t actually have access to the full 32-bit space

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

PTR1 0x007A1200
PTR2 0x003D0900

virtual page number: 0x00001
(top 20 bits)

offset: 0x309
(bottom 12 bits)

physical page number: 0xF27A9

page tables: top 20 bits of the
virtual address act as an index into
this table

(a page of memory is 232-20=212 bytes)

220 virtual page numbers each
mapping to a 32-bit page-table
entry (PTE) → 4MB to store this
table
(why 32-bit PTEs, not 20-bit? hang on)

what we want: virtualization. every program should
appear to have access to a full 32-bit address space

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

0xF27A93090x00001309

CPU1 (used by program1)

EIP

0x00001309
031

memory management unit (MMU) main memory

CPU2 (used by program2)

instructions and
data for program1

instructions and
data for program2

…

page table for
program2

page table for
program1

0xFF035

0xF27A9

0xF8887
…

0xF0110

0xFFFFFFFF

what we have: 232 bytes of memory; every program
can’t actually have access to the full 32-bit space

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

PTR1 0x007A1200
PTR2 0x003D0900

virtual page number: 0x00001
(top 20 bits)

offset: 0x309
(bottom 12 bits)

physical page number: 0xF27A9

page tables: top 20 bits of the
virtual address act as an index into
this table

(a page of memory is 232-20=212 bytes)

220 virtual page numbers each
mapping to a 32-bit page-table
entry (PTE) → 4MB to store this
table
(why 32-bit PTEs, not 20-bit? hang on)

what we want: virtualization. every program should
appear to have access to a full 32-bit address space

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

0x00002148

CPU1 (used by program1)

EIP

0xFF035

0xF27A9

0xF0110

0xF8887

0x00002148
031

memory management unit (MMU)

PTR1

main memory

CPU2 (used by program2)

0xF0110148
instructions and

data for program1

instructions and
data for program2

…

page table for
program2

page table for
program1

…

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

0x007A1200
PTR2 0x003D0900

we have two more broad areas
to cover:

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

0x00002148

CPU1 (used by program1)

EIP

0xFF035

0xF27A9

0xF0110

0xF8887

0x00002148
031

memory management unit (MMU)

PTR1

main memory

CPU2 (used by program2)

0xF0110148
instructions and

data for program1

instructions and
data for program2

…

page table for
program2

page table for
program1

…

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

0x007A1200
PTR2 0x003D0900

does virtual memory protect programs from accessing each other’s memory? 
(to answer this, we’ll need to address some other issues first)

we have two more broad areas
to cover:

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

0x00002148

CPU1 (used by program1)

EIP

0xFF035

0xF27A9

0xF0110

0xF8887

0x00002148
031

memory management unit (MMU)

PTR1

main memory

CPU2 (used by program2)

0xF0110148
instructions and

data for program1

instructions and
data for program2

…

page table for
program2

page table for
program1

…

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

0x007A1200
PTR2 0x003D0900

does virtual memory protect programs from accessing each other’s memory? 
(to answer this, we’ll need to address some other issues first)

we have two more broad areas
to cover:

what performance issues matter here?

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

0x00002148

CPU1 (used by program1)

EIP

0xFF035

0xF27A9

0xF0110

0xF8887

0x00002148
031

memory management unit (MMU)

PTR1

main memory

CPU2 (used by program2)

0xF0110148
instructions and

data for program1

instructions and
data for program2

…

page table for
program2

page table for
program1

…

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

0x007A1200
PTR2 0x003D0900

what happens if we don’t have enough memory to
store all of our programs’ instructions and data?

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

main memory

instructions and
data for program1

instructions and
data for program2

…

page table for
program2

page table for
program1

…

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

what happens if we don’t have enough memory to
store all of our programs’ instructions and data?

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

main memory

instructions and
data for program1

instructions and
data for program2

…

page table for
program2

page table for
program1

…

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

what happens if we don’t have enough memory to
store all of our programs’ instructions and data?

page table entries contain additional bits that
help us deal with this problem (and others)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

main memory

instructions and
data for program1

instructions and
data for program2

…

page table for
program2

page table for
program1

…

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

what happens if we don’t have enough memory to
store all of our programs’ instructions and data?

physical page number

1231 11 0

page table entries contain additional bits that
help us deal with this problem (and others)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

main memory

instructions and
data for program1

instructions and
data for program2

…

page table for
program2

page table for
program1

…

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

what happens if we don’t have enough memory to
store all of our programs’ instructions and data?

physical page number

1231 11 0

page table entries contain additional bits that
help us deal with this problem (and others)

present (P) bit: is the page currently in
memory?

set to 1 if the page is in memory

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

main memory

instructions and
data for program1

instructions and
data for program2

…

page table for
program2

page table for
program1

…

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

what happens if we don’t have enough memory to
store all of our programs’ instructions and data?

physical page number

1231 11 0

page table entries contain additional bits that
help us deal with this problem (and others)

present (P) bit: is the page currently in
memory?

if the page is not in memory, the access
triggers an exception (known a “page fault” in

this case), which the kernel handles

set to 1 if the page is in memory

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

main memory

instructions and
data for program1

instructions and
data for program2

…

page table for
program2

page table for
program1

…

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

what happens if we don’t have enough memory to
store all of our programs’ instructions and data?

physical page number

1231 11 0

page table entries contain additional bits that
help us deal with this problem (and others)

present (P) bit: is the page currently in
memory?

if the page is not in memory, the access
triggers an exception (known a “page fault” in

this case), which the kernel handles this also answers the question of why
PTEs are 32 bits, not 20: they store

information beyond the page number

set to 1 if the page is in memory

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

interlude: handling exceptions this idea will remain relevant, as we are going to find that
there are quite a few exceptions for the OS to handle(such as page faults)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

interlude: handling exceptions this idea will remain relevant, as we are going to find that
there are quite a few exceptions for the OS to handle(such as page faults)

the operating system’s kernel manages page faults and other exceptions

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

interlude: handling exceptions

 // special instruction that calls the exception handler for exception x
 exception(x):
 // switch from user mode to kernel mode
 // call the handler for this particular exception
 // switch from kernel mode to user mode

this idea will remain relevant, as we are going to find that
there are quite a few exceptions for the OS to handle(such as page faults)

the operating system’s kernel manages page faults and other exceptions

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

interlude: handling exceptions

 // special instruction that calls the exception handler for exception x
 exception(x):
 U/K bit = K
 // call the handler for this particular exception
 U/K bit = U

this idea will remain relevant, as we are going to find that
there are quite a few exceptions for the OS to handle(such as page faults)

the operating system’s kernel manages page faults and other exceptions

the processor stores a user/kernel (U/K) bit that
indicates whether its operating in user mode or

kernel mode. this bit helps the processor control
access to certain kernel-specific actions

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

interlude: handling exceptions

 // special instruction that calls the exception handler for exception x
 exception(x):
 U/K bit = K
 call handlers[x]
 U/K bit = U

this idea will remain relevant, as we are going to find that
there are quite a few exceptions for the OS to handle(such as page faults)

the operating system’s kernel manages page faults and other exceptions

the processor stores a user/kernel (U/K) bit that
indicates whether its operating in user mode or

kernel mode. this bit helps the processor control
access to certain kernel-specific actions

each handler is different. as an example,
the page-fault handler would take care of
bringing the requested page into memory

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

main memory

instructions and
data for program1

instructions and
data for program2

…

page table for
program2

page table for
program1

…

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

what happens if we don’t have enough memory to
store all of our programs’ instructions and data?

physical page number

1231 11 0

page table entries contain additional bits that
help us deal with this problem (and others)

present (P) bit: is the page currently in
memory?

if the page is not in memory, the access
triggers an exception (known a “page fault” in

this case), which the kernel handles.

set to 1 if the page is in memory

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

main memory

instructions and
data for program1

instructions and
data for program2

…

page table for
program2

page table for
program1

…

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

what happens if a program tries to write to
memory that it doesn’t have write-access to?

physical page number

1231 11 0

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

main memory

instructions and
data for program1

instructions and
data for program2

…

page table for
program2

page table for
program1

…

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

what happens if a program tries to write to
memory that it doesn’t have write-access to?

physical page number

1231 11 0

after all, it’s conceivable that we want program1 to be
able to read some data, but not to modify it

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

main memory

instructions and
data for program1

instructions and
data for program2

…

page table for
program2

page table for
program1

…

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

what happens if a program tries to write to
memory that it doesn’t have write-access to?

physical page number

1231 11 0

read/write (R/W) bit: is the program allowed
to write to this address?

after all, it’s conceivable that we want program1 to be
able to read some data, but not to modify it

set to 1 if the program can write to this address

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

main memory

instructions and
data for program1

instructions and
data for program2

…

page table for
program2

page table for
program1

…

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

what happens if a program tries to write to
memory that it doesn’t have write-access to?

physical page number

1231 11 0

read/write (R/W) bit: is the program allowed
to write to this address?

if the program doesn’t have write-access to
this page (and is trying to write to it), the
access triggers an exception, which the

kernel handles

after all, it’s conceivable that we want program1 to be
able to read some data, but not to modify it

set to 1 if the program can write to this address

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

main memory

instructions and
data for program1

instructions and
data for program2

…

page table for
program2

page table for
program1

…

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

what happens if a program tries to access memory
that only the kernel should have access to?

physical page number

1231 11 0

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

main memory

instructions and
data for program1

instructions and
data for program2

…

page table for
program2

page table for
program1

…

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

what happens if a program tries to access memory
that only the kernel should have access to?

physical page number

1231 11 0

we need to enforce modularity between programs and
the kernel, not just between programs

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

main memory

instructions and
data for program1

instructions and
data for program2

…

page table for
program2

page table for
program1

…

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

what happens if a program tries to access memory
that only the kernel should have access to?

physical page number

1231 11 0

user/supervisor (U/S) bit: is the program
allowed to access this address?

we need to enforce modularity between programs and
the kernel, not just between programs

set to 1 if the program can access this address

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

main memory

instructions and
data for program1

instructions and
data for program2

…

page table for
program2

page table for
program1

…

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

what happens if a program tries to access memory
that only the kernel should have access to?

physical page number

1231 11 0

user/supervisor (U/S) bit: is the program
allowed to access this address?

if not, the access triggers an exception,
which the kernel handles

we need to enforce modularity between programs and
the kernel, not just between programs

set to 1 if the program can access this address

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

main memory

instructions and
data for program1

instructions and
data for program2

…

page table for
program2

page table for
program1

…

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

what happens if a program tries to access memory
that only the kernel should have access to?

physical page number

1231 11 0

user/supervisor (U/S) bit: is the program
allowed to access this address?

if not, the access triggers an exception,
which the kernel handles

we need to enforce modularity between programs and
the kernel, not just between programs

without this last piece, a determined program could still attempt to circumvent
modularity by doing things such as modifying the page-table registers

set to 1 if the program can access this address

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

CPU1 (used by program1)

EIP

031

memory management unit (MMU)

PTR1

main memory

0xF0110148
instructions and

data for program1

instructions and
data for program2

…

page table for
program2

page table for
program1

…

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

0x007A1200
PTR2 0x003D0900

0x000021480x00002148

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

CPU1 (used by program1)

EIP

031

memory management unit (MMU)

PTR1

main memory

0xF0110148
instructions and

data for program1

instructions and
data for program2

…

page table for
program2

page table for
program1

…

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

0x007A1200
PTR2 0x003D0900

220 virtual addresses each mapping
to a 32-bit page-table entry (PTE)
→ 4MB to store this table

0x000021480x00002148

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

CPU1 (used by program1)

EIP

031

memory management unit (MMU)

PTR1

main memory

0xF0110148
instructions and

data for program1

instructions and
data for program2

…

page table for
program2

page table for
program1

…

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

0x007A1200
PTR2 0x003D0900

performance issue #1: page tables are allocated contiguously in memory so that access into them is extremely
fast; this means that every page table is 4MB, even if the program only needs to make a few memory accesses

220 virtual addresses each mapping
to a 32-bit page-table entry (PTE)
→ 4MB to store this table

0x000021480x00002148

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

0x02013148

CPU1 (used by program1)

EIP

0x02013148
031

memory management unit (MMU)

PTR1

main memory

instructions and
data for program1

instructions and
data for program2

…

page table for
program2

page table for
program1

…

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

0x007A1200
PTR2 0x003D0900

multilevel page tables often use less space

with multilevel page tables, the
MMU interprets this address as
referring to a series of page tables
instead of just a single page table

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

0x02013148

CPU1 (used by program1)

EIP

0x02013148
031

memory management unit (MMU)

PTR1

main memory

instructions and
data for program1

instructions and
data for program2

…

page table for
program2

page table for
program1

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

0x007A1200
PTR2 0x003D0900

…

multilevel page tables often use less space

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

0x02013148

CPU1 (used by program1)

EIP

0x02013148
031

memory management unit (MMU)

PTR1

main memory

instructions and
data for program1

instructions and
data for program2

…

page table for
program2

page table for
program1

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

0x007A1200
PTR2 0x003D0900

…

this level 1 table is the only
one that will be allocated

initially, and the top eight bits
index into it. so it has 28

entries, not 220

multilevel page tables often use less space

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

0x02013148

CPU1 (used by program1)

EIP

0x02013148
031

memory management unit (MMU)

PTR1

main memory

instructions and
data for program1

instructions and
data for program2

…

page table for
program2

page table for
program1

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

0x007A1200
PTR2 0x003D0900

…

this level 1 table is the only
one that will be allocated

initially, and the top eight bits
index into it. so it has 28

entries, not 220(we’re using 8/8/4 in this example, but
you can generalize to M/N/P)

multilevel page tables often use less space

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

0x02013148

CPU1 (used by program1)

EIP

0x02013148
031

memory management unit (MMU)

PTR1

main memory

instructions and
data for program1

instructions and
data for program2

…

page table for
program2

page table for
program1

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

0x007A1200
PTR2 0x003D0900

…

this level 1 table is the only
one that will be allocated

initially, and the top eight bits
index into it. so it has 28

entries, not 220(we’re using 8/8/4 in this example, but
you can generalize to M/N/P)

0x02 indexes into this table

multilevel page tables often use less space

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

0x02013148

CPU1 (used by program1)

EIP

0x02013148
031

memory management unit (MMU)

PTR1

main memory

instructions and
data for program1

instructions and
data for program2

…

page table for
program2

page table for
program1

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

0x007A1200
PTR2 0x003D0900

…

this level 1 table is the only
one that will be allocated

initially, and the top eight bits
index into it. so it has 28

entries, not 220(we’re using 8/8/4 in this example, but
you can generalize to M/N/P)

0x02 indexes into this table

row 0x02 points
to a level 2 table

multilevel page tables often use less space

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

0x02013148

CPU1 (used by program1)

EIP

0x02013148
031

memory management unit (MMU)

PTR1

main memory

instructions and
data for program1

instructions and
data for program2

…

page table for
program2

page table for
program1

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

0x007A1200
PTR2 0x003D0900

…

this level 1 table is the only
one that will be allocated

initially, and the top eight bits
index into it. so it has 28

entries, not 220

…

(we’re using 8/8/4 in this example, but
you can generalize to M/N/P)

28 entries

0x02 indexes into this table

row 0x02 points
to a level 2 table

multilevel page tables often use less space

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

0x02013148

CPU1 (used by program1)

EIP

0x02013148
031

memory management unit (MMU)

PTR1

main memory

instructions and
data for program1

instructions and
data for program2

…

page table for
program2

page table for
program1

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

0x007A1200
PTR2 0x003D0900

…

this level 1 table is the only
one that will be allocated

initially, and the top eight bits
index into it. so it has 28

entries, not 220

…

(we’re using 8/8/4 in this example, but
you can generalize to M/N/P)

28 entries

0x02 indexes into this table

row 0x02 points
to a level 2 table

0x01 indexes into this table

multilevel page tables often use less space

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

0x02013148

CPU1 (used by program1)

EIP

0x02013148
031

memory management unit (MMU)

PTR1

main memory

instructions and
data for program1

instructions and
data for program2

…

page table for
program2

page table for
program1

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

0x007A1200
PTR2 0x003D0900

…

this level 1 table is the only
one that will be allocated

initially, and the top eight bits
index into it. so it has 28

entries, not 220

…

(we’re using 8/8/4 in this example, but
you can generalize to M/N/P)

28 entries

0x02 indexes into this table

row 0x02 points
to a level 2 table

0x01 indexes into this table

row 0x01 points to a
level 3 table

multilevel page tables often use less space

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

0x02013148

CPU1 (used by program1)

EIP

0x02013148
031

memory management unit (MMU)

PTR1

main memory

instructions and
data for program1

instructions and
data for program2

…

page table for
program2

page table for
program1

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

0x007A1200
PTR2 0x003D0900

…

this level 1 table is the only
one that will be allocated

initially, and the top eight bits
index into it. so it has 28

entries, not 220

……
0xF0110

(we’re using 8/8/4 in this example, but
you can generalize to M/N/P)

28 entries24 entries

0x02 indexes into this table

row 0x02 points
to a level 2 table

0x01 indexes into this table

row 0x01 points to a
level 3 table

multilevel page tables often use less space

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

0x02013148

CPU1 (used by program1)

EIP

0x02013148
031

memory management unit (MMU)

PTR1

main memory

instructions and
data for program1

instructions and
data for program2

…

page table for
program2

page table for
program1

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

0x007A1200
PTR2 0x003D0900

…

this level 1 table is the only
one that will be allocated

initially, and the top eight bits
index into it. so it has 28

entries, not 220

……
0xF0110

(we’re using 8/8/4 in this example, but
you can generalize to M/N/P)

28 entries24 entries

0x02 indexes into this table

row 0x02 points
to a level 2 table

0x01 indexes into this table

row 0x01 points to a
level 3 table

row 0x3 contains the
physical page number

multilevel page tables often use less space

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

0xF01101480x02013148

CPU1 (used by program1)

EIP

0x02013148
031

memory management unit (MMU)

PTR1

main memory

instructions and
data for program1

instructions and
data for program2

…

page table for
program2

page table for
program1

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

0x007A1200
PTR2 0x003D0900

…

this level 1 table is the only
one that will be allocated

initially, and the top eight bits
index into it. so it has 28

entries, not 220

……
0xF0110

(we’re using 8/8/4 in this example, but
you can generalize to M/N/P)

28 entries24 entries

0x02 indexes into this table

row 0x02 points
to a level 2 table

0x01 indexes into this table

row 0x01 points to a
level 3 table

row 0x3 contains the
physical page number

multilevel page tables often use less space

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

0x02013148

CPU1 (used by program1)

EIP

0x02013148
031

memory management unit (MMU)

PTR1

main memory

0xF0110148
instructions and

data for program1

instructions and
data for program2

…

page table for
program2

page table for
program1

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

0x007A1200
PTR2 0x003D0900

…… …

28 entries24 entries

0xF0110

28 entries

(we’re using 8/8/4 in this example, but
you can generalize to M/N/P)

level 1 tablelevel 2 tablelevel 3 table

each row in the level 1 table (typically) corresponds to a
different level 2 table, but each level 2 table (and level 3

table) is allocated as needed

multilevel page tables often use less space

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

0x02013148

CPU1 (used by program1)

EIP

0x02013148
031

memory management unit (MMU)

PTR1

main memory

0xF0110148
instructions and

data for program1

instructions and
data for program2

…

page table for
program2

page table for
program1

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

0x007A1200
PTR2 0x003D0900

multilevel page tables often use less space, at the expense of more table look-ups and more exceptions (to
allocate additional tables)

…… …
0xF0110

(we’re using 8/8/4 in this example, but
you can generalize to M/N/P)

28 entries24 entries 28 entries
level 1 tablelevel 2 tablelevel 3 table

each row in the level 1 table (typically) corresponds to a
different level 2 table, but each level 2 table (and level 3

table) is allocated as needed

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

0x02013148

CPU1 (used by program1)

EIP

0x02013148
031

memory management unit (MMU)

PTR1

main memory

0xF0110148
instructions and

data for program1

instructions and
data for program2

…

page table for
program2

page table for
program1

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

0x007A1200
PTR2 0x003D0900

…… …

28 entries24 entries

0xF0110

level 1 tablelevel 2 tablelevel 3 table
28 entries

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

0x02013148

CPU1 (used by program1)

EIP

0x02013148
031

memory management unit (MMU)

PTR1

main memory

0xF0110148
instructions and

data for program1

instructions and
data for program2

…

page table for
program2

page table for
program1

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

0x007A1200
PTR2 0x003D0900

…… …

28 entries24 entries

0xF0110

performance issue #2: looking up the same piece of data over and over again takes time; can we make it faster?

level 1 tablelevel 2 tablelevel 3 table
28 entries

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

0x02013148

CPU1 (used by program1)

EIP

0x02013148
031

memory management unit (MMU)

PTR1

main memory

0xF0110148
instructions and

data for program1

instructions and
data for program2

…

page table for
program2

page table for
program1

0xFFFFFFFF

0x00000000

0x003D0900

0xF0000000

0xE000000

0x007A1200

(232-1)

0x007A1200
PTR2 0x003D0900

…… …

28 entries24 entries

0xF0110

performance issue #2: looking up the same piece of data over and over again takes time; can we make it faster?

yes. caches are involved in a variety of places here, to (in theory) make common look-ups faster. you’ve also seen
caching in the context of DNS.

level 1 tablelevel 2 tablelevel 3 table
28 entries

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

operating systems enforce modularity on a single machine
in order to enforce modularity + have an effective operating system, a few things need to happen

1. programs shouldn’t be able to refer to
(and corrupt) each others’ memory

2. programs should be able to
communicate with each other

3. programs should be able to share a
CPU without one program halting the
progress of the others

virtualize memory

assume they don’t need to

(for today)

assume one program per CPU

(for today)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

operating systems enforce modularity on a single machine
in order to enforce modularity + have an effective operating system, a few things need to happen

1. programs shouldn’t be able to refer to
(and corrupt) each others’ memory

2. programs should be able to
communicate with each other

3. programs should be able to share a
CPU without one program halting the
progress of the others

the primary technique that an operating system uses to enforce modularity is virtualization.
some components are difficult to virtualize (e.g., the disk); for those, the operating system
presents abstractions

virtualize memory

assume they don’t need to

(for today)

assume one program per CPU

(for today)

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

operating systems enforce modularity on a
single machine via virtualization and
abstraction

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

operating systems enforce modularity on a
single machine via virtualization and
abstraction

you’ll talk much more about abstractions
during the recitations on UNIX;

designing good abstractions is part of
designing a good operating system

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

operating systems enforce modularity on a
single machine via virtualization and
abstraction

virtualizing memory prevents programs from
referring to (and corrupting) each other’s memory. the
MMU translates virtual addresses to physical
addresses using page tables, and there are a
number of performance issues to take into account

you’ll talk much more about abstractions
during the recitations on UNIX;

designing good abstractions is part of
designing a good operating system

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

operating systems enforce modularity on a
single machine via virtualization and
abstraction

virtualizing memory prevents programs from
referring to (and corrupting) each other’s memory. the
MMU translates virtual addresses to physical
addresses using page tables, and there are a
number of performance issues to take into account

you’ll talk much more about abstractions
during the recitations on UNIX;

designing good abstractions is part of
designing a good operating system

amount of memory used, speed of
access

Katrina LaCurts | lacurts@mit.edu | 6.1800 2025

operating systems enforce modularity on a
single machine via virtualization and
abstraction

virtualizing memory prevents programs from
referring to (and corrupting) each other’s memory. the
MMU translates virtual addresses to physical
addresses using page tables, and there are a
number of performance issues to take into account

the kernel handles any exceptions triggered in this
process; protecting the kernel from user programs is
just as important as protecting user programs from
each other

you’ll talk much more about abstractions
during the recitations on UNIX;

designing good abstractions is part of
designing a good operating system

amount of memory used, speed of
access

