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Abstract 
 

Animated textures can be used to visualize the spatial structure and temporal evolution of 
vector fields at high spatial resolution.  The animation requires two time-dependent 
vector fields.  The first of these vector fields determines the spatial structure to be 
displayed.  The second is a velocity field that determines the time evolution of the field 
lines of the first vector field.  We illustrate this method with an example in magneto-
quasi-statics, where the second velocity field is taken to be the ExB drift velocity of 
electric monopoles.  This technique for displaying time-dependent electromagnetic fields 
has three pedagogical advantages:  (1) the continuous nature of the representation 
underscores the action-by-contact nature of forces transmitted by fields; (2) the animated 
texture motion shows the direction of electromagnetic energy flow; and (3) the time-
evolving field configuration enables insights into Maxwell stresses.   
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I.  Introduction 
 
 The representation of time dependent vector fields is a central problem in 
scientific visualization.  There have been two advances in computer graphics since 1993 
which combined have fundamentally changed the way time dependent vector fields can 
be visualized in two dimensions.  The first of these was the introduction of the line 
integral convolution (LIC) method for showing the structure of vector fields at a 
resolution near that of the display, using textures generated by convolving the vector field 
with a grid of pixels of random brightness1.  The second was the introduction of a method 
for the animation of a LIC by using a second velocity field to evolve the underlying grid 
of random pixels used to generate the LIC2.  This latter method, dynamic line integral 
convolution (DLIC), produces an animated sequence of LIC images of the first field such 
that the time dependence of that field is evident from frame to frame by the inter-frame 
coherence in the LIC texture pattern.   
 
  In this paper we first discuss at a conceptual level how these two algorithms 
work.  We then apply these methods to crossed electromagnetic fields, where the velocity 
field is taken to be the ExB drift velocity of electric or magnetic monopoles.  We discuss 
the pedagogical utility of these electromagnetic animations in providing insight into 
electromagnetic phenomena.  In addition to the obvious advantage of high spatial 
resolution, the DLIC method has three advantages:  (1) it displays fields in a continuous 
way, which underscores the fact that the forces mediated by fields is via continuous 
contact; (2) it shows the direction of electromagnetic energy flow explicitly; and (3) the 
time-evolving field configuration enables insights into the Maxwell stresses.  We provide 
an open source Java program that implements the DLIC algorithm described here, and 
which contains many examples of applications of this method to electromagnetism3.   
 
 
II. Line Integral Convolution (LIC) 
 
 Most vector visualization algorithms use spatial structures to represent a vector 
field F(x).  One of the most familiar is the field line representation, where a discrete set 
of curves are drawn which are everywhere parallel to the local field direction.  Another is 
the vector field grid representation, where a set of icons on a fixed grid of spatial 
coordinates represents the field direction and perhaps magnitude at a given grid point.  
The use of field lines has the disadvantage that small scale structure in the field can be 
missed depending on the choice for the spatial distribution of the field lines.  The vector 
field grid representation has a similar disadvantage in that the associated icons limit the 
spatial resolution because of the size of the icons and because of the spacing between 
icons needed for clarity.  These two factors limit the usefulness of this representation in 
showing small scale structure in the field. 
 
 The LIC method avoids both of these problems by the use of a texture pattern to 
indicate the spatial structure of the field at close to the resolution of the display.  To 
explain how the LIC algorithm works, first consider a constant field.  Take a square array 
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of NxN pixels of random brightness. We want to replace this white noise array with a 
textured array of the same dimension, where the texture pattern indicates the direction of 
the constant field, to within a sign.   To do this, we process our NxN random array pixel 
by pixel to produce the new texture array, as follows.  At any pixel 1 (see Figure 1), we 
average the brightness of the pixels along a line centered on pixel 1 and in the direction 
of the local field, for n pixels, n << N, and put this value in our new texture array at the 
same location as pixel 1 was in the initial array. 
 
 
 

 
 

Figure 1:  To produce a LIC image for the constant field F, we consider a pixel, for 
example pixel 1, and average the brightness of n pixels lying along a line parallel to F 
centered on pixel 1, as indicated by the while line. 

 
 We now move to an adjacent new pixel and repeat this same process again 
(Figure 2).  If we move parallel to the field to get to the new pixel, say pixel 2 in Figure 
2, then the resulting average that we obtain at pixel 2 is almost the same as the average 
for pixel 1, because most of the pixels are the same.  So the calculated brightness at pixel 
2 is highly correlated with the brightness of pixel 1.  If on the other hand we move 
perpendicular to the field to get to the new pixel, say pixel 3 in Figure 2, the resulting 
average is not correlated at all with the average at pixel 1, because none of the pixels 
whose brightness is being averaged are the same.  This process produces a new array 
which has correlations in brightness along the field direction.  Another way of saying this 
is that we have produced a texture pattern where the streaks in the texture are parallel to 
the field direction.  The results of this process are shown in Figure 3.   
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Figure 2:  We calculate the brightness at pixels 2 and 3 by averaging over the brightness 
of the n pixels lying along the lines parallel to F centered on pixels 2 and 3, as indicated 
by the two white lines. 

 
 

 
 

Figure 3:  A LIC of a constant field, constructed in the manner described in the text. 

 
 
 Now consider the LIC procedure for a field that varies in space.  If we simply 
follow the procedure described above and average the brightness of pixels along straight 
lines in space, where the direction of the straight line is determined by the local direction 
of the field at (for example) pixel 1, we would get a visual representation of the field but 
it would be inherently inaccurate, because we would be assuming that the local 
streamline can be reasonably approximated by a straight line along the entire n pixel 
averaging length.  For locations where the local radius of curvature of a given field line is 
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large compared to the n pixel length of the averaging line, this assumption is valid.  
However, if the local radius of curvature is comparable to or smaller than the length of n 
pixels along the averaging line, this assumption is no longer valid, and correlations in the 
texture pattern so generated will no longer show the details of structure of the field at this 
scale in a faithful manner.   
 
 To correct for this shortcoming, the Cabral and Leedom LIC1 algorithm averages 
over n pixels along a line in space, but the averaging line is no longer a straight line.  
Instead it is the field line that passes through the point at which we are calculating the 
new texture value, that is pixel 1.   That is, the texture pattern is convolved with the field 
structure along a line in space determined by the field lines (thus the name line integral 
convolution).  This procedure retains the property that movement along the local field 
direction exhibits a high correlation in brightness values, but movement perpendicular to 
that direction exhibits little correlation, and this is true even in regions of high curvature.   
 
 Figure 4 shows a LIC for the magnetic field of a conducting ring falling toward a 
stationary magnetic dipole.  Regions of high curvature occur near the two zeroes in the 
magnetic field strength just above the ring.  The zeroes are distinguishable by the tilted 
X-like structure near them.  For comparison we also draw four traditional field lines in 
the figure, to demonstrate that the correlations in the LIC are parallel to the field lines, 
even in regions of high curvature.   
 
 
 
 

 
 

Figure 4:  LIC of the magnetic field of a conducting ring as it falls toward a stationary 
magnetic dipole.  The magnetic field shown includes both the field of the dipole and of 
the eddy currents induced in the ring. 
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III.    Dynamic Line Integral Convolution (DLIC) 
 
 The DLIC method extends the LIC algorithm described above to time-dependent 
fields. The vector field F(x,t) is allowed to vary with time, with the motion of its field 
lines described by a second velocity vector field, D(x,t).  That is, at any time t the field 
line passing through x at time t is displaced in space at time t + Δt  to a new position  x + 
D(x,t) Δt.   To produce an animation, the DLIC algorithm originated by Sundquist2 
evolves the texture input used in LIC in a manner prescribed by the velocity field D.  
That is, if T(x,t) represents our random texture map discussed above, we evolve it with 
time according to 
 

( ) ( )( ),T t t T t t t+ Δ = − Δx x D x, ,                                         (1) 
 

 Unfortunately, the texture pattern is typically stored as a discrete array of values 
on an ordered grid, and repeatedly evolving that array over time results in warping and a 
loss of detail because the velocity field D may have divergent or convergent regions, 
which will spread out or compress the location of the pixels in our texture.   To avoid this 
problem, instead of evolving the input texture according to equation (1), the DLIC 
algorithm tracks a large number of particles of random intensity, roughly on the same 
order as the number of pixels in the original input texture. The particles move over time 
with a velocity given by D, and the DLIC algorithm continuously monitors and adjusts 
their distribution to keep the level of detail roughly the same, by both consolidating and 
creating particles.  At any instant of time for which we want to produce a frame of the 
animation, the texture at that time is generated by simply drawing all of the particles onto 
it. Once we have the texture for a given frame, the LIC method is applied to this texture 
to render the image of the field at that time.  
 
 Intuitively, since the particles that produce the input texture advect according to 
the motion field D, the LIC convolution of a co-moving region of the field lines of F with 
the texture from one frame to the next samples the same part of the texture pattern, since 
the texture particles and field lines move in concert. Thus, the streaks in the LIC of F 
appear to move from one frame to the next according to the motion field D.  Each output 
image in the sequence will individually have the same properties as a static LIC 
rendering, but successive frames will have an inter-frame coherence that depicts the 
prescribed motion of the field lines.   
 

 
IV.  Applications to Electromagnetism 
 
 The above discussion applies to the animation of any vector field for which we 
can specify a corresponding velocity field.  We now turn specifically to electromagnetic 
vector fields and discuss an example of the construction of a DLIC in magneto-quasi-
statics.  We consider a situation in which the electric and magnetic fields are 
perpendicular.  A conducting ring with mass m, radius a, resistance R and self-inductance 
L is located on the z-axis above a stationary permanent magnet with magnetic dipole 
moment vector .  The normal to the ring is along the vertical z-axis, and the ring is ẑoM
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constrained to move along that axis.  The ring is released from rest at t = 0, and falls 
under gravity toward the conducting ring.  Eddy currents arise in the ring because of the 
changing magnetic flux as the magnet falls toward the ring, and the sense of these 
currents will be such as to slow the ring. 
 
 Belcher and Olbert4 argue that the magnetic field lines in this case evolve with a 
velocity field given by 

2B
×

=
E BD

                                                               (2) 
This velocity field represents the guiding center motion of a set of low energy electric 
monopoles initially arranged along any given magnetic field line, as those monopoles 
drift in the time-dependent electric and magnetic fields.     The dynamics of the ring can 
be formulated mathematically in terms of three coupled ordinary differential equations 
for the position Z(t) of the ring, its velocity V(t), and the eddy current I(t) in the ring.  The 
rate at which energy goes into Joule heating in the ring is given by  
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We consider the particular situation where the resistance of the ring (which in this model 
can have any value) is identically zero, and the mass of the ring is small enough (or the 
field of the magnet is large enough) so that the ring levitates above the magnet.  We let 
the ring start out at a rest a distance h above the magnet.  The ring begins to fall under 
gravity.  When the ring reaches a distance of about a above the ring, its acceleration 
slows because of the increasing current in the ring.  As the current increases, energy is 
stored in the magnetic field, and when the ring comes to rest, all of the initial 
gravitational potential of the ring is stored in the magnetic field (that is, in the 21

2 L I  term 
in equation (1)).  That magnetic energy is then returned to the ring as it “bounces” and 
returns to its original position a distance h above the magnet.  Since there is no 
dissipation in the system for our particular choice of R in this example (zero), this motion 
repeats indefinitely.   Figure 4 shows one frame from the DLIC that visualizes the motion 
described above.  The full animation is available on the web3. 

 
 
V.  Pedagogical Advantages 
 
 What are the advantages to the student to this way of representing electromagnetic 
phenomena?   In the field line representation, students frequently ask what is “between” 
the field lines we choose to exhibit.  The DLIC animation helps with this conceptual 
confusion in that it constructs a texture representation of the field that is continuous and 
exists at every point in space.  This construction underscores one of Faraday’s great 
insights.  His concept of fields was developed to replace “action at a distance” with the 
notion of action by continuous contact.  Objects that are not in direct contact (objects 
separated by apparently empty space) exert a force on one another through the presence 
of an intervening mechanism existing in the space between the objects, that is, the field.  
The force between two objects is transmitted by direct contact from the first object to the 
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intervening field immediately surrounding that object, and then from one element of 
space to a neighboring element, in a continuous manner, until the force is transmitted to 
the region of space contiguous to the second object, and thus ultimately to the second 
object itself.  That is, a material object generates a field and through that field influences 
its immediate neighborhood and ultimately the behavior of objects remote from its 
location.   
 
  Another advantage of the animation technique is the reinforcement of Faraday’s 
insights into the connection between the shape and dynamics of electromagnetic fields, 
that is, the connection between their shape and the forces that they transmit. This is 
expressed mathematically by the Maxwell stress tensor, which depends only on the local 
field configuration and strength.  As an example of this, consider the animation of the 
falling ring shown in Figure 4.  As the ring moves downward, it is apparent in the 
animation that the magnetic field “texture” is compressed below the ring. This makes it 
intuitively plausible that the compressed field enables the transmission of an upward 
force to the moving ring as well as a downward force to the magnet.   
 
 We know physically (cf. equation (3)) that as the ring moves downward, there is a 
continual transfer of energy from the kinetic energy of the ring to the magneto-quasi-
static energy of the magnetic field.  The DLIC makes this manifest, because the overall 
appearance of the downward motion of the ring through the magnetic field is that of a 
ring being forced downward into a resisting physical medium, with stresses in the 
medium that develop due to this encroachment. Thus it is plausible to argue based on the 
animation that the energy of the downwardly moving ring is decreasing as more and more 
energy is stored in the magneto-quasi-static field, and conversely when the ring is rising. 
Moreover, because the texture motion is in the direction of the Poynting vector, we can 
explicitly see electromagnetic energy flowing away from the immediate vicinity of the 
ring into the surrounding field when the ring is falling and flowing back out of the 
surrounding field toward the immediate vicinity of the ring when it is rising.  
 
 All of these features make watching the DLIC animation a much more 
informative experience than viewing any single image of this situation, since the 
animation exhibits the actual flow directions of electromagnetic energy everywhere in 
space, as well as showing the field shape at any instant of time, which determine the 
properties of the local Maxwell stresses.    
 
VI.  Use in Instruction 
 
 Students often find the subject of electromagnetism to be esoteric and difficult to 
understand.  Conceptually the student must first grasp what the concept of a field means.  
They must then understand how the interaction of material objects are mediated by the 
fields they generate.  For this last task, they must understand the details of how fields are 
generated and how they change with time.  The mathematics used in understanding these 
field properties is abstract and difficult to master5.  All of these factors together lead to a 
substantial cognitive load (for a discussion of this in the context of, for example, 
Ampere’s Law, sees Manogue et al.6).    
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 One might argue that the use of graphical visualizations increases the cognitive 
load that students already combat in learning electromagnetism, and there is some risk of 
that.   However, if used in a consistent fashion with a consistent format through out the 
subject exposition, we feel that the use of graphical visualization tools can be a positive 
part of the conceptual learning in this subject.   Animated textures are only one way to 
represent fields, and should be only one of multiple representations.   For one thing, the 
computational process used to animate the textures is calculationally intensive, and 
cannot be done in real time.  Thus the student is reduced to passive viewing of movies of 
the animated textures, which has many disadvantages.  In contrast, field lines or vector 
field representations of fields can be calculated rapidly enough that the student can 
interact with e.g. Java applications showing interacting and evolving charges and currents 
and their fields in real time.   In this way students can see and interact with this process, 
and this has many advantages in terms of learning.   
 
 The use of multiple representations of the same phenomena has been the subject 
of considerable research in the physics education research literature7.  The general 
consensus is that representations are important for student learning and those students 
who learn the material in an environment that uses more representations are less affected 
by the representational format of problem statements.  Here is what we consider an idea 
combination of representations of electromagnetic fields:  (1) single static diagrams 
showing field representations in all three formats mentioned above; (2) textured 
animations of dynamical situations illustrating how fields mediate the electromagnetic 
interaction of material objects; this could be for example the falling ring animation of 
Figure 4, or of two interacting charges, or of the interaction of two rings of current, and 
so on;  (3) real time interactive applications containing time varying field lines or vector 
field grids, which can be influenced by student input, either by the dynamic change of 
some parameter in the application (i.e. the charge of a moving interacting charge) or by 
active intervention in the dynamics by clicking and dragging on a given charge or current 
element to see how the other charges or currents present then respond dynamically to that 
change; (4) the ability to pause such real time simulations at any point in time to create a 
single static LIC, which can be rendered in tens of seconds, so as to connect this 
representation to the more standard representations, as well as to show the field 
configuration at the resolution of the display at selected times.   
 
 Building visualizations with the properties described above is not technically 
challenging, and we have already developed examples of these kinds of visualizations for 
freshman physics courses at MIT8, using the DLIC technique describe above, with Java 
3D and Shockwave simulations for real time interaction .  We are in the process of 
developing an entire suite of such electromagnetic visualizations to be incorporated in 
physics classrooms via lecture demos, recitation exercises, online homework modules, 
and other assignment venues.   We are studying how effective this suite of visualizations 
is in demonstrating and conceptualizing fundamental physical phenomena in the realm of 
electromagnetism.  We are interested in student gains both in introductory courses and in 
sophomore/junior level courses in electrodynamics, and are using these curricula 
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materials both in MIT freshman courses and at WPI in freshman and upper level courses.  
The results of these studies will be the subject of future publications.    
 
 
VII.  Summary 
 
 Animated textures can be used to visualize the spatial structure and temporal 
evolution of vector fields at high spatial resolution.  This is particularly useful in 
visualizing time-dependent electromagnetic fields where the magnetic and electric fields 
are perpendicular, since the motion of the texture patterns can be used to indicate the 
direction of electromagnetic energy flow in these systems.  We feel that the use of this 
visualization technique in addition to more traditional techniques for visualization of 
vector fields can be an important aid in student’s conceptualization of the idea of fields.  
We are in the process of investigating this hypothesis quantitatively using guided 
instruction in conjunction with visualizations of the fields using this and other 
visualization techniques.  The Java code and documentation for the creation of the 
animated textures described here are freely available3. 
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