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8.962 Lecture 10

March 12, 2018

MATHEMATICAL CONCEPTS

and

DEFINITIONS

Basic Notation

∪ A ∪ B denotes the union of sets A and B

∩ A ∩ B denotes the intersection of the sets A and B

⊂ A ⊂ B denotes that A is a subset of B.
(May or may not mean proper subset.)

− B − A denotes the complement in B of the set A

∈ p ∈ A denotes that p is an element of A

{|} {p ∈ A|Q} denotes the set consisting of those elements
p of the set A which satisfy condition Q

× Cartesian product; A × B is the set {(a, b)|a ∈ A and b ∈ B}

 0 the empty set
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R the set of real numbers
R

n the set of n-tuples of real numbers
C the set of complex numbers
C

n the set of n-tuples of complex numbers
:→ f : A → B denotes that f is a map from the set A

to the set B

◦ f ◦ g denotes the composition of maps g : A → B

and f : B → C, i.e ., for p ∈ A we have
(f ◦ g)(p) = f [g(p)]

[ ] f [A] denotes the image of the set A under the
map f , i.e., the set {f(x)|x ∈ A}
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Cn the set of n-times continuously differentiable functions.
Note that C0 means simply continuous, while C1

means that the first derivative exists and is continuous.
C∞ the set of infinitely continuously differentiable

(i.e., smooth) functions
∃ there exists; i.e., for all u ∈ R, ∃ v | v + u = 0
∀ for all; i.e., ∀u ∈ R, ∃ v | v + u = 0
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Properties of Maps

If f is a function f : M → N , M is called the domain of f ,
and N is called its codomain.

The set of points in N that M gets mapped into is called the
image of f .

For any subset U ⊂ N , the set of elements of M that get
mapped to U is called the preimage of U under f , or f−1(U).

A map f : M → N is called one-to-one (or injective) if each
element of N has at most one element of M mapped into it.

A map f : M → N is called onto (or surjective) if each
element of N has at least one element of M mapped into it.
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A map that is both one-to-one and onto is known as invertible
(or bijective). In this case we can define the inverse map
f−1 : N → M by (f−1 ◦ f)(x) = x, for any x ∈ M .
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Continuity

(Weierstrass definition): For functions f : D → R, where D ⊂
R, f(x) is continuous at x0 if and only if for every ε > 0 there
exists a δ > 0 such that |x−x0| < δ =⇒ |f(x)−f(x0)| < ε.

(General topological definition): If open sets have been
defined, then a function f : X → Y is continuous if and only if
the preimage f−1(V ), where V is an open subset of Y (which
could be the whole set), is always an open subset of X.

For the usual definition of open sets on R, the two definitions
are equivalent.
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If f : D → R
n, where D ⊂ R

m, then the definition of
continuity is a natural generalization of the R → R definition.
f can be described as a collection of functions

f i(x1, x2, . . . , xm) ,

where i = 1, . . . , n. f is Cp if each f i is at least Cp in each of
the variables (x1, x2, . . . , xm).

Suppose that M and N are topological spaces (i.e., spaces on
which open sets have been defined). Then if f : M → N is
continuous, one-to-one, and onto, and its inverse is continuous,
then f is called a homeomorphism, and the spaces M and
N are said to be homeomorphic. As far as topology is
concerned, M and N are then identical. (See Wald. Carroll
never uses the word “homeomorphic”.)
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Suppose that M and N are manifolds (to be defined shortly).
Then if f : M → N is C∞, one-to-one, and onto, and
its inverse is C∞, then f is called a diffeomorphism, and
the spaces M and N are said to be diffeomorphic. As
far as manifold properties are concerned, M and N are then
identical.∗

An open ball is the set of all points x in R
n such that

|x − y| < r for some fixed y ∈ R
n and r ∈ R, where |x − y|2 =∑

i(x
i − yi)2. Note that |x − y| must be less than r. The ball

does not include its boundary.

An open set in R
n is a set constructed from an arbitrary

(maybe infinite) union of open balls. Equivalently, a set V ⊂
R

n is open if, for any y ∈ V , there is an open ball centered at
y that is completely inside V .

∗This entry has been corrected from the version shown in lecture, which mistakenly omitted
the requirement that f and f−1 must be C∞.
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MANIFOLDS!

If M is a set, a chart or coordinate system on M is a
one-to-one map φ : U → R

n such that the image φ(U) of the
map is an open subset of R

n. We do not assume a topology
on M , so U is said to be open in M if φ(U) is open in R

n.

(From Sean Carroll, Spacetime and Geometry.)

Alan Guth

Massachusetts Institute of Technology

8.962 Lecture 10, March 12, 2018 –9–

A C∞ atlas of charts is a collection of charts {(Uα, φα)} that
satisfies two conditions:

1) The Uα cover M , so that any point in M is contained in
at least one chart Uα.

2) The charts smoothly sew together. Whenever two charts
overlap, the map from one coordinate system to the other
must be C∞. In symbols, whenever Uα ∩Uβ 
= 0, the map
(φα ◦φ−1

β ) takes points in φβ(Uα∩Uβ) ⊂ R
n onto the open

set φα(Uα ∩ Uβ) ⊂ R
n. All such maps must be C∞ where

they are defined.
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(From Sean Carroll, Spacetime and Geometry.)
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A C∞ n-dimensional manifold (or n-manifold for
short) is simply a set M along with a maximal atlas,
one that contains every possible compatible chart.
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