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8.962 Lecture 14

April 2, 2018

GEODESIC

DEVIATION

Geodesic Deviation: Definition

Geodesic deviation is the study of how nearby geodesics evolve
relative to each other.

In the absence of gravity and all other forces, the relative velocity
of any two geodesics is constant.

Geodesic deviation is a precise formulation of what more generally
is referred to as tidal forces.
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Three Approaches to Geodesic Deviation

1. Weinberg approach: use coordinates.

2. Carroll approach: stick to covariantly defined tensor identities.

3. “8.962” approach: Use covariantly defined tensor identities,
but calculate the scalar quantity d2�

dτ2 , where � is the proper
distance between points moving along two nearby trajectories.
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Geodesic Deviation, Approach 1:

Weinberg's Coordinate Approach

Consider the geodesic equation,

d2xµ

dτ 2
+ Γµ

νλ(x)
dxν

dτ

dxλ

dτ
= 0 ,

where τ is an affine parameter, and now consider a nearby trajectory

xµ(τ ) + δxµ(τ ) .

The geodesic equation for the nearby trajectory reads

d2

dτ 2
[xµ + δxµ] + Γµ

νλ(x + δx)
d

dτ
(xν + δxν)

d

dτ

(
xλ + δxλ

)
= 0 .

Collecting the first order terms,

d2δxµ

dτ 2
+

∂Γµ
νλ

∂ρ
δxρ dxν

dτ

dxλ

dτ
+ 2Γµ

νλ(x)
dxν

dτ

dδxλ

dτ
= 0 .
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d2δxµ

dτ 2
+

∂Γµ
νλ

∂ρ
δxρ dxν

dτ

dxλ

dτ
+ 2Γµ

νλ(x)
dxν

dτ

dδxλ

dτ
= 0 .

Virtues of Weinberg approach: simplicity. With a specified coordinate system,
the Weinberg approach gives immediately a formula for the relative
acceleration d2δxµ/dτ 2.

The curvature tensor does not appear in Weinberg’s formula. In fact, d2δxµ/dτ 2

can be nonzero even in flat space, with Rµ
νλσ = 0, if one is using a non-

Cartesian coordinate system. This can be good or bad — if you want
to know the geodesic deviation in polar coordinates for flat space, this is
just what you need. But if you want to understand the connection between
curvature and geodesic deviation, which is emphasized by other approaches,
then the Weinberg formula does not do it.
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Geodesic Deviation, Approach 2:

Carroll's Covariant Approach

Consider a family of geodesics, xµ(σ, τ ). For each σ, xµ(σ, τ ) is a geodesic in τ .
Define

Tµ ≡ ∂xµ

∂τ
, Sµ ≡ ∂xµ

∂σ
.

Tµ is the tangent vector to the geodesics, which is the 4-velocity.
Sµ is the “geodesic deviation” vector, describing how the geodesic changes

with the parameter σ.
Define further

V ≡ ∇T S , In coords: V µ ≡ T ρ∇ρS
µ =

DSµ

dτ
.

V µ is the “relative velocity of geodesics”. Carroll uses these words, in
quotes.

Aµ ≡ ∇T V , In coords: Aµ ≡ Tσ∇σ [T ρ∇ρS
µ] .

Aµ is the “relative acceleration of geodesics”.
–5–

Define further

V ≡ ∇T S , In coords: V µ ≡ T ρ∇ρS
µ =

DSµ

dτ
.

V µ is the “relative velocity of geodesics”. Carroll uses these words, in
quotes.

Aµ ≡ ∇T V , In coords: Aµ ≡ Tσ∇σ [T ρ∇ρS
µ] .

Aµ is the “relative acceleration of geodesics”.

Note that ∇ρS
µ is not defined for all ρ, since Sµ is only defined in the space

spanned by the 1-parameter family of geodesics. But T ρ∇ρS
µ is well-

defined, since T ρ differentiates within this family of geodesics.
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Reminder: Tµ ≡ ∂xµ

∂τ
, Sµ ≡ ∂xµ

∂σ
, V ≡ ∇T S , Aµ ≡ ∇T V .

Carroll writes: “You should take the names with a grain of salt, but these
vectors are certainly well-defined.”

In particular, the meaning of Aµ ≡ Tσ∇σ [T ρ∇ρS
µ] is subtle, since ∂σ acts on

the affine connections implicit in ∇ρS
µ. So even in locally inertial frame

(LIF), where the affine connections vanish but their derivatives don’t, Aµ

does not reduce to ∂2Sµ/∂τ 2. So Aµ is equal to the relative acceleration,
plus a correction determined by the derivatives of the connection.

Goal: to derive an equation for Aµ.
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Important identity:

∇ST = ∇T S .

Carroll: “Since S and T are basis vectors adapted to a coordinate system, their
commutator vanishes:

[S, T ] = 0 .

From
[X, Y ]µ = Xλ∇λY µ − Y λ∇λXµ ,

we then have
Sρ∇ρT

µ = T ρ∇ρS
µ .”

Carroll is apparently referring to the (σ, τ ) coordinate system of the 2D space
of geodesics.
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In full detail,

(∇ST )µ =
∂xρ

∂σ
∇ρ

(
∂xµ

∂τ

)

=
∂xρ

∂σ

[
∂

∂xρ

(
∂xµ

∂τ

)
+ Γµ

ρλ

∂xλ

∂τ

]

=
∂2xµ

∂σ∂τ
+ Γµ

ρλ

∂xρ

∂σ

∂xλ

∂τ
,

and

(∇T S)µ =
∂xρ

∂τ
∇ρ

(
∂xµ

∂σ

)

=
∂xρ

∂τ

[
∂

∂xρ

(
∂xµ

∂σ

)
+ Γµ

ρλ

∂xλ

∂σ

]

=
∂2xµ

∂τ∂σ
+ Γµ

ρλ

∂xρ

∂τ

∂xλ

∂σ
.

Since ordinary partial derivatives commute, and Γµ
ρλ = Γµ

λρ, we have
∇ST = ∇T S .
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Then,

Aµ =
D2Sµ

dτ 2
= ∇T (∇T S)

= ∇T (∇ST )

= (∇T∇S −∇S∇T )T +∇S∇T T .

But ∇T T = 0, by the geodesic equations, so
Aµ = ([∇T ,∇S]T )µ .

Recall
[∇µ,∇ν ]V ρ = Rρ

σµνV σ

for any V , so
Aµ = [T ρ∇ρ, S

σ∇σ]Tµ

= T ρ∇ρ(Sσ∇σTµ)− Sσ∇σ(T ρ∇ρT
µ)

= (T ρ∇ρS
σ)∇σTµ − (Sσ∇σT ρ)∇ρT

µ

+ T ρSσ∇ρ∇σTµ − SσT ρ∇σ∇ρT
µ

= T ρSσ[∇ρ,∇σ]Tµ

= T ρSσRµ
νρσT ν .
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Aµ = [T ρ∇ρ, S
σ∇σ]Tµ

= T ρ∇ρ(Sσ∇σTµ)− Sσ∇σ(T ρ∇ρT
µ)

= (T ρ∇ρS
σ)∇σTµ − (Sσ∇σT ρ)∇ρT

µ

+ T ρSσ∇ρ∇σTµ − SσT ρ∇σ∇ρT
µ

= T ρSσ[∇ρ,∇σ]Tµ

= T ρSσRµ
νρσT ν .

So finally,

Aµ = Rµ
νρσT νT ρSσ .
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