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PROBLEM SET 3

DUE DATE: Thursday, March 1, 2018, at 5:00 pm.

TOPICS COVERED AND RELEVANT LECTURES: This problem set covers met-
rics, geodesics, and the equivalence principle, primarily following material presented in
lecture. Some short segments in Carroll are closely related to some of the material covered
in lectures: §2.5 describes aspects of the metric, general coordinate transformations and
local inertial coordinates, and the extremal trajectory derivation of the geodesic equation
is given in the last part of §3.3, beginning at Eq.(3.44). The Equivalence Principle is
discussed in §2.1.

MAXIMUM GRADE: This problem set has a total of 45 points.

PROBLEM 1: ROTATIONALLY SYMMETRIC EMBEDDING SURFACES (19
pts)

Consider a surface described by embedding the plane R2 into Euclidean 3-space through
the map

(r, θ)→ (r, θ, z = f(r))

where r, θ are standard polar coordinates and f(r) describes a rotationally invariant height
function for the embedding into the third dimension.

(a) [2 pts] Compute the metric gij(r, θ) for an arbitrary height function f(r).

(b) [2 pts] Repeat the computation for an embedding in Euclidean coordinates through
the map (x, y) → (x, y, z = f(x, y)), and use a general coordinate transformation to
check that your answers from the first two parts are in agreement.

(c) [2 pts] Compute the metric in the case f(r) = 1
2
r2, describing a paraboloid surface

embedded in three dimensions.

(d) [3 pts] Compute the Christoffel coefficients for the metric on the paraboloid surface
in coordinates (r, θ).

(e) [2 pts] Compute the metric in the case f(r) = ar, describing a cone, where a = tanφ
is an arbitrary real parameter.

(f) [2 pts] Compute the Christoffel coefficients in the case of the cone.

(g) [3 pts] For the conical geometry with parameter a, compute a geodesic that begins
at (r, θ) = (cosφ, 0) with initial velocity dr(λ)/dλ = 0 and show that it satisfies the
geodesic equation. (Hint: find a coordinate system in which the metric is simpler).

(h) [3 pts] For what value of the parameter a does the geodesic from the previous part
cross itself at a right angle?
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PROBLEM 2: AN INERTIAL COORDINATE SYSTEM IN THE NEWTO-
NIAN LIMIT (11 pts)

Consider the spacetime metric with components

g00 = −(1 + az), g0i = 0, gij = δij

in a region near the origin O = (0, 0, 0, 0) where az � 1, and a is a constant.

(a) [3 pts] Compute the nonzero Christoffel coefficients of this metric.

(b) [3 pts] Assuming that a particle is initially at the origin with velocity v � 1, compute
the leading term in the geodesic equation describing the acceleration of the particle at
t = 0.

(c) [5 pts] Find a coordinate transformation

xµ = Aµν′x
ν′ +

1

2
Cµ

ν′σ′xν
′
xσ

′
+O(x3)

giving a local inertial coordinate system in which gµ′ν′(O) = ηµ′ν′ and ∂λ′gµ′ν′(O) = 0.
(xµ is the old coordinate, xµ

′
is the new, locally inertial coordinate). Explain the

physical meaning of this coordinate system.

PROBLEM 3: ROTATING COORDINATES (10 pts)

Flat space with metric gµν = ηµν can be described in static cylindrical coordinates with

ds2 = −dt2 + dr2 + r2dφ2 + dz2.

Consider a coordinate system xµ
′

that is rotating about the z axis with angular velocity ω
relative to the static cylindrical coordinate system.

(a) [4 pts] Compute the metric in the rotating coordinate frame.

(b) [6 pts] Compute the Christoffel connection and geodesic equation in the rotating
coordinate frame. Indicate how the terms in the geodesic equation relate to the familiar
centripetal and Coriolis forces when ωr � 1.
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PROBLEM 4: GEODESIC PARAMETERIZATION (5 pts)

Show directly that the quantity

A ≡ gµν
dxµ

dλ

dxν

dλ

has a constant value along any solution to the geodesic equation. You may use either the
standard form of the geodesic equation,

d2xµ

dλ2
+ Γµρσ

dxρ

dλ

dxσ

dλ
= 0 ,

or the “primitive” form,
d

dλ

[
gµν

dxν

dλ

]
=

1

2

∂gρσ
∂xµ

dxρ

dλ

dxσ

dλ
.

Recall that when we derived the geodesic equation, we assumed that the solution was
parameterized so that A = constant, so this result shows that our formalism is consistent.
We do not have to separately impose the property that A = constant, but instead we can
be assured that if we find a solution to the geodesic equation, in either form shown above,
then it will automatically have this property. The result also shows that any solution to the
geodesic equation that is null, timelike, or spacelike at one point in the trajectory has the
same property everywhere.


