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PROBLEM SET 6

DUE DATE: Thursday, March 22, 2018, at 5:00 pm.

TOPICS COVERED AND RELEVANT LECTURES: This problem set covers co-
variant derivatives and curvature, primarily following material presented in lecture. Rel-
evant sections of Carroll are 3.1–3.4, 3.6, 3.7.

MAXIMUM GRADE: This problem set has a total of 70 points.

PROBLEM 1: WALD’S DEFINITION OF A TANGENT SPACE (15 pts)

Wald (Robert M. Wald, General Relativity, The University of Chicago Press, 1984) defines
the tangent space of a point p in a manifold M by first defining F as the collection of C∞

functions from M into R. Then a tangent vector v at point p ∈ M is a map v : F → R
which (1) is linear and (2) obeys the Leibnitz rule:

(1) v[af + bg] = av[f ] + bv[g], for all f, g ∈ F ; a, b ∈ R; (1.1)

(2) v[fg] = f(p)v[g] + g(p)v[f ] . (1.2)

Note that the definition allows v[f ] to be an arbitrary functional of f , subject only to
Eqs. (1.1) and (1.2). In particular, the only indication that v[f ] depends on the behavior of
f(x) in the vicinity of p is the appearance of p in the Leibnitz rule.

Our goal is to reconstruct Wald’s argument that these conditions imply that, within a coor-
dinate chart, the tangent space is spanned by the basis vectors ∂/∂xµ, so the most general
functional v can be written as

v[f ] = vµ
∂f(x)

∂xµ

∣∣∣∣
x=p

, (1.3)

for an n-tuple of real numbers (v1, v2, . . . , vn), where n is the dimension of M . This implies
that Wald’s definition is equivalent to the coordinate-based definition that we used in lecture,
where the tangent space was defined as the space of first-order differential operators as in
Eq. (1.3). You may look at Wald’s argument if you wish, but we recommend that you first
try the problem without looking at Wald’s book.

Wald’s text uses parentheses v(f) for the argument of v, but we are using square brackets,
which are frequently used to indicate the argument of a functional, a mapping from a function
to a real number. A goal of this problem will be to simplify Wald’s argument, at least from
the viewpoint of most physicists, by using notation more familiar to physicists. Hence we
will use a chart that contains the point p, and say that a point in the manifold can be called
x, and is specified by its chart coordinates xµ. In Wald’s text, by contrast, a general point is
indicated by q, and its coordinates are written as xµ ◦ψ(q), where ψ(q) maps q to the subset
of Rn of the chart, and then xµ maps from the point in Rn to the µ’th coordinate.
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(a) [5 pts] Show that conditions (1) and (2) imply that if h ∈ F is a constant function
(i.e., if for all x, h(x) is equal to a constant c), then v[h] = 0. Hint: consider v[h2], and
separately see what you can learn about it from conditions (1) and (2).

(b) [5 pts] Let the coordinates of p be xµp , and consider any other point xµ in the chart.
Consider a linear path

ξµ(t) = t(xµ − xµp) + xµp , (1.4)

so ξ(0) = xµp and ξ(1) = xµ. Starting from the identity

f(xµ) = f(xµp) +

∫ 1

0

dt
d

dt
f
(
ξµ(t)

)
, (1.5)

show that f(xµ) can be written as

f(xµ) = f(xµp) + (xµ − xµp)Hµ(x) , (1.6)

where Hµ(x) is a (C∞) function of x with the property that

Hµ(p) =
∂f(x)

∂xµ

∣∣∣∣
x=p

. (1.7)

Write an explicit equation for Hµ(x). You do not have to show that it is C∞.

(For intuition, note that if f(xµ) can be expanded in a Taylor series about xµp ,

f(xµ) = f(xµp)+(xµ−xµp)
∂f(x)

∂xµ

∣∣∣∣
x=p

+
1

2
(xµ − xµp)(xν − xνp)

∂2f(x)

∂xµ∂xν

∣∣∣∣
x=xp

+ . . . , (1.8)

then Eq. (1.6) follows immediately, with

Hµ(x) =
∂f(x)

∂xµ

∣∣∣∣
x=p

+
1

2
(xν − xνp)

∂2f(x)

∂xµ∂xν

∣∣∣∣
x=p

+ . . . . (1.9)

Thus Eq. (1.6) is essentially just a way of writing the Taylor series so that the first
term is explicit, and the rest of the information is hidden in the behavior of Hµ(x)
for xµ 6= xµp . It is important, however, that C∞ functions do not necessarily have
convergent Taylor series, but Eq. (1.6) is always valid if f is C∞.)

(c) [5 pts] Calculate v[f ], where f is written as in Eq. (1.6), and show that it reduces to
something of the form of Eq. (1.3). Explicitly justify each step in terms of Eqs. (1.1)
and (1.2).
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PROBLEM 2: COVARIANT DERIVATIVES AND LOCALLY INERTIAL FRAMES
(15 pts)

In lecture I stated that a covariant derivative can be defined by the statement that in a
locally inertial coordinate system, the covariant derivative is equal to the ordinary derivative.
We implemented this definition indirectly, by noting that the definition implies that the
covariant derivative of the metric must vanish (a property called metric compatibility), and
we used this criterion to determine the form of the connection.

In this problem we will apply the locally-inertial-frame definition of the covariant deriva-
tive directly. We will assume that a region of the manifold is covered by coordinates xµ, and
that we have also found coordinates ξν

′
(x) that are locally inertial coordinates at some point

X0. So, by the definition of locally inertial coordinates,

gµ′ν′ = ηµ′ν′ (at X0), (2.1)

and
∂ρ′gµ′ν′(x

′) = 0 (at X0). (2.2)

Since gµν is a tensor, it follows that in the original coordinates,

gµν =
∂ξµ

′

∂xµ
∂ξν

′

∂xν
ηµ′ν′ (at X0) , (2.3)

and

∂ρgµν(x) =

[
∂2ξµ

′

∂xρ∂xµ
∂ξν

′

∂xν
+
∂ξµ

′

∂xµ
∂2ξν

′

∂xρ∂xν

]
ηµ′ν′ (at X0). (2.4)

(a) [5 pts] Assuming that the covariant derivative ∇µV
ν of the vector field V ν transforms

as a tensor, and assuming that in the locally inertial frame it is equal to the ordinary
derivative, so

∇µ′V
ν′ =

∂V ν′

∂ξν′
, (2.5)

show that the covariant derivative in the original coordinate system can be written in
the form

∇µV
ν =

∂V ν

∂xµ
+ F ν

µλV
λ , (2.6)

where F ν
µλ is an expression in terms of partial derivatives of the coordinate transfor-

mation xµ(ξν
′
) and/or its inverse.

(b) [5 pts] Using the answer to part (a) and Eq. (2.4) for ∂ρgµν(x), find an expression for
F ν
µλ in terms of gµν , its inverse, and its derivatives. Verify that F ν

µλ = Γνµλ, the usual
Christoffel symbol.
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(c) [5 pts] Carry out the same exercise for a covariant (i.e., lower-indexed) vector field, to
show that

∇µVν =
∂Vν
∂xµ
− ΓλµνVλ , (2.7)

where Γλµν is the usual Christoffel symbol, as in part (b). Again assume that the
covariant derivative can be defined to be just the ordinary derivative in the locally
inertial frame.1

PROBLEM 3: CURVATURE ON A TWO-SPHERE (15 pts)

Consider a sphere of radius A. Answer the following questions in whatever coordinate
system is most convenient.

(a) [10 pts] Compute the metric, connection, Riemann curvature tensor, Ricci tensor, and
Ricci scalar. Show that the Ricci scalar is constant.

(b) [5 pts] Compute the change in direction of a vector that is parallel transported around
a closed counter-clockwise loop surrounding a region of area A2/10 on the sphere using
the Christoffel connection. The answer should be the same for any region of this area,
but you are not asked to show that.

PROBLEM 4: NEGATIVE CURVATURE (10 pts)

Consider a 3-dimensional space given by the set of points {(x, y, z), x ∈ R, y ∈ R, z > 0}
with the metric

ds2 =
a

z2
(dx2 + dy2 + dz2) . (4.1)

Compute the metric, connection, Riemann curvature tensor, Ricci tensor, and Ricci scalar.

PROBLEM 5: CURVATURE AND THE SCHWARZSCHILD METRIC (15 pts)

Consider the Schwarzschild metric

ds2 = −
(

1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1
dr2 + r2 dΩ2 , (5.1)

where
dΩ2 = dθ2 + sin2 θ dφ2 . (5.2)
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(a) [10 pts] For this metric, calculate all nonvanishing components of the Riemann tensor
Rλ

σµν . You may use the affine connections

Γttr = Γtrt = −Γrrr =
GM

r(r − 2GM)
,

Γrtt =
GM(r − 2GM)

r3
,

Γrθθ = −(r − 2GM) ,

Γrφφ = −(r − 2GM) sin2 θ ,

Γθrθ = Γθθr = Γφrφ = Γφφr =
1

r
,

Γθφφ = − sin θ cos θ ,

Γφθφ = Γφφθ = cot θ .

(5.3)

which are also given in Carroll as Eq. (5.52).

(b) [5 pts] Calculate the Ricci tensor, showing (hopefully) that it vanishes.
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