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PROBLEM SET 7

DUE DATE: Thursday, April 5, 2018, at 5:00 pm.

TOPICS COVERED AND RELEVANT LECTURES: This problem set focuses on
two properties of curvature. Problem 1 concerns the relation between curvature and the
parallel transport of a vector around an infinitesimal loop, discussed in Carroll’s Sec. 3.6.
The second two concern the geodesic deviation equation, which is discussed in Carroll’s
Sec. 3.10. Both of these topics will also be discussed in lecture on April 2, which will
include a discussion of Eq. (2.4) below, which is not in Carroll’s book.

MAXIMUM GRADE: This problem set has a total of 65 points.

PROBLEM 1: PARALLEL TRANSPORT AROUND AN INFINITESIMAL
LOOP (15 pts)

Following Carroll’s description on p. 121, we can imagine parallel transporting a vector V µ

around an infinitesimal loop, specified by two infinitesimal vectors. We will depart slightly
from Carroll’s notation by calling these two vectors εAµ and εBν (rather than Aµ and Bν),
where ε is infinitesimal, and Aµ and Bµ are finite. We then imagine parallel transporting
V µ by first moving it along the vector εAµ, then along εBν , then backward along εAµ and
backward along εBν , to return to the starting point, as shown in the figure below (adapted
from Fig. 3.5 of Carroll):

Show that to second order in ε, the change in V µ is given by

δV ρ = −ε2Rρ
σµνV

σAµBν , (1.1)

where Rρ
σµν is the Riemann curvature tensor, defined by the statement that

[∇µ,∇ν ]V
ρ = Rρ

σµνV
σ , (1.2)
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for any vector field V ρ, or equivalently as

Rρ
σµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓ

λ
νσ − ΓρνλΓ

λ
µσ . (1.3)

Note that the sign shown in Eq. (1.1) is the opposite of the sign in Carroll’s book, but I
think the sign shown here is correct. Recall that a vector V µ(λ) defined on a curve xµ(λ) is
said to be parallel transported along the curve if

DV µ

dλ
≡ dxν

dλ
∇νV

µ = 0 , (1.4)

which can be written more explicitly as

dxν

dλ

[
∂V µ

∂xν
+ ΓµνσV

σ

]
=

dV µ

dλ
+

dxν

dλ
ΓµνσV

σ = 0 . (1.5)

PROBLEM 2: GEODESIC DEVIATION ON A TWO-SPHERE (25 pts)

In Problem 3 of Problem Set 6, you calculated the metric, connection, Riemann curvature
tensor, Ricci tensor, and Ricci scalar on a two-sphere of radius A. In this problem we will
consider a family of geodesics on the two-sphere of radius A, using them as an example to
explore the meaning of the geodesic deviation equation. We will use the usual polar angles
θ (angle from north pole) and φ (azimuthal angle) as coordinates.

Consider the family of geodesics xµ(φ0, t) that start on the equator at longitude (az-
imuthal angle) φ0, with an initial tangent vector dxµ/dt pointing north. Take t to be the
distance along the geodesics, starting with t = 0 on the equator.

(a) (5 pts) Consider in particular two trajecties in the family described above, one starting
at φ0 = 0 and the other at φ0 = ∆φ. Calculate the geodesic separation h (i.e., the
great circle distance) between the two trajectories as a function of t. Calculate this first
exactly, and then imagine that ∆φ is very small, giving a small angle approximation for
h(t) that is accurate to first order in ∆φ. Calculate the acceleration of the separation,
d2h/dt2, using this small angle approximation.

(b) (8 pts) Using the notation of Carroll, Section 3.10, which we also used in lecture,
consider the geodesic deviation equation,

Aµ ≡ D2

dt2
Sµ ≡ ∇T (∇TS

µ) = Rµ
νρσT

νT ρSσ , (2.1)

where

T µ ≡ ∂xµ

∂t
and Sµ ≡ ∂xµ

∂s
, (2.2)
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where s parameterizes a family of geodesics xµ(s, t) ∈ M , so for each s, xµ(s, t) is a
geodesic with affine parameter t, and

∇T ≡ T ρ∇ρ and ∇S ≡ Sρ∇ρ . (2.3)

For the family of geodesics described in the preamble, taking s = φ, calculate the two
components of the right-hand side of Eq. (2.1).

(c) (7 pts) The left-hand side of the geodesic equation, Aµ ≡ ∇T (∇TS
µ) is also rather

complicated, since each ∇ involves both derivative and connection terms. Expand the
left-hand side, deriving expressions for Aθ and Aφ in terms of ordinary derivatives of
Sµ with respect to t, plus other terms. Is the behavior that you found in part (a)
consistent with the geodesic deviation equation?

(d) (5 pts) Aµ is referred to as the “relative acceleration of geodesics,” but Carroll warns
us that we should take this name with a grain of salt. Carroll doesn’t explain the
need for the salt, but the calculations in part (c) should give you an example of the
complications: the calculation of Aµ involves derivatives of connections, which give
nontrivial corrections which need not vanish even in a locally inertial frame. In lecture
we developed a related equation which directly determines the 2nd derivative of the
metric distance between infinitesimally separated geodesics:

d2`

dt2
=

1

`
RµνρσS

µT νT ρSσ +
1

`3

[
S2DS

dt
· DS

dt
−
(
S · DS

dt

)2
]
, (2.4)

where ` ≡
√
gµνSµSν , and for any two vectors, A · B ≡ AµBµ. Show that the second

term on the right-hand side of Eq. (2.4) vanishes (either by direct calculation or by
a more general argument), and evaluate the first term, as applied to the family of
geodesics described in the preamble. Is the behavior you found in part (a) consistent
with Eq. (2.4)?

PROBLEM 3: GEODESIC DEVIATION IN THE HYPERBOLIC PLANE (25
pts)

In Problem 4 of Problem Set 6, you calculated the connection, Riemann curvature tensor,
Ricci tensor, and Ricci scalar for a space of constant negative curvature, described by the
metric

ds2 =
a

z2
(dx2 + dy2 + dz2) , (3.1)

where {(x, y, z), x ∈ R, y ∈ R, z > 0}. In Problem 4 of Problem Set 2, you showed that
geodsics in this space are semicircles centered around any point with z = 0. Here we will
consider a one-parameter family of such geodesics, defined by initial conditions

xµ(s, 0) = (0, 0, Z + s) (3.2)
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and
∂xµ

∂t
(s, t)

∣∣∣∣
t=0

= (1, 0, 0) . (3.3)

(a) (8 pts) Using the same definitions as in Problem 1, calculate the right-hand side of
the geodesic deviation equation, Eq. (2.1), for this family of geodesics, at the point
(s, t) = (0, 0).

(b) (7 pts) Calculate the left-hand side of the geodesic deviation equation for this family
of geodesics, again at (s, t) = (0, 0). Does your answer agree with what you found in
part (a)?

Hint: The calculation involves taking partial derivatives of xµ(s, t), but we only need
the behavior of xµ(s, t) near the origin, (s, t) = (0, 0). So we can describe xµ(s, t) as a
power series in s and t, and calculate the desired coefficients from the initial condition
equations (3.2) and (3.3) and the geodesic equations of motion.

(c) (10 pts) Eq. (2.4) holds for any smooth family of geodesics xµ(s, t), but it is much
simpler for the cases in which the second term vanishes. The second term will not
vanish for the family of geodesics described above. However, the term can be made
to vanish by reparameterizing the family, replacing t by t̃, the distance along the
geodesic curves, so that then T̃ µ ≡ ∂xµ/∂t̃ is a unit vector, with T̃ 2 = 1. With this
reparameterization, show that, at (s, t) = (0, 0), the second term in Eq. (2.4) vanishes,
and evaluate the left-hand side and the first term on the right-hand side. Did you find
that the equation holds?


	Problem 1
	Problem 2
	Problem 3

