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TOPICS COVERED AND RELEVANT LECTURES: This problem concerns Ray-
chaudhuri’s equation, and is based on the class lectures and Carroll’s Appendix F.

PROBLEM 1: THE RAYCHAUDHURI EQUATION, SPACELIKE AND TIME-
LIKE (52 pts)

Raychaudhuri’s equation concerns a congruence of geodesics, where a congruence is a set
of curves in an open region of spacetime such that every point in the region lies on precisely
one curve. Let T µ = ∂xµ/∂τ be the vector field of tangents to the geodesics xµ(si, τ), for a
four-dimensional timelike or lightlike geodesic congruence. (Unlike Carroll’s treatment, here
we will do the two cases together.) Thus,

TµT
µ =

{
−1 (timelike)

0 (lightlike)
(1)

and in both cases T µ∇µT
ν = 0. Let Sµi be a set of three vector fields denoting infinitesimal

deviations between one geodesic and a nearby geodesic, defined by

Sµi =
∂xµ

∂si
. (2)

(a) (5 pts) Show that
DSµi
dτ
≡ T ν∇νS

µ
i = Bµ

νS
ν
i , (3)

where
Bµ

ν = ∇νT
µ . (4)

(b) (3 pts) Using only the geodesic equation and our original definition of the Riemann
curvature tensor,

[∇µ,∇ν ]V
ρ = Rρ

σµνV
σ for any vector V ρ, (5)

∗A parenthetical sentence was added in the paragraph following Eq. (10). Part (e) was modified to include
both timelike and lightlike cases. The wording of part (f) was modified to be clear that we are choosing ∂0Ti
— it was not given to us. In the comment following Eq. (15), the word “rest” was added to the sentence,
“So θ represents the divergence of the fluid in the locally inertial rest frame.”
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derive an expression for
DBµν

dτ
≡ T σ∇σBµν (6)

in terms of Bµν , T
µ, and the curvature tensor. This is Carroll’s Eq. (F.10), and was

derived in class, but you are asked to go through the steps and verify that it works
regardless of whether T µ is timelike, lightlike, or spacelike.

(Note, however, that Carroll’s Eq. (F.10) has some sign errors, and should be

DBµν

dτ
≡ Uσ∇σBµν = Uσ∇σ∇νUµ

= Uσ∇ν∇σUµ + UσRλ
µνσUλ

= ∇ν(U
σ∇σUµ)− (∇νU

σ)(∇σUµ) +RλµνσU
σUλ

= −Bσ
νBµσ +RλµνσU

σUλ .

(7)

Carroll’s Eq. (F.11), however, the Raychaudhuri equation, is printed correctly:

dθ

dτ
= −1

3
θ2 − σµνσµν + ωµνω

µν −RµνU
µUν . ) (8)

(c) (4 pts) Now break up Bµν into symmetric and antisymmetric parts:

Bµν = BS
µν +BA

µν , (9)

where
BS
µν ≡ B(µν) , BA

µν ≡ B[µν] ≡ ωµν . (10)

Use your result from part (b) to derive an equation for DBA
µν/dτ . It should have the

property that if BA
µν vanishes at one point on the geodesic, then it vanishes everywhere

on the geodesic.

Carroll points out that the vanishing ofBA
µν ≡ ωµν will happen if and only if T µ is hypersurface-

orthogonal, but he does not seem to show that hypersurface-orthogonal families of geodesics
can always be constructed. (They can always be constructed, but it does not seem obvious.)
In part (c) you showed that if BA

µν = 0 vanishes at one point on the geodesic, then it vanishes
everywhere on the geodesic. Here we will use that fact to show that an irrotational (BA

µν = 0)
congruence of timelike geodesics can always be constructed.

Consider a (3+1)-dimensional spacetime with metric gµν(x) that contains a spacelike hyper-
surface Σ (i.e., a three-dimensional surface whose normal vector is everywhere timelike). The
surface can be infinite or finite. Suppose that coordinates are chosen for the four-dimensional
space so that

x0 = 0 on the surface Σ. (11)
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We will construct an irrotational congruence of timelike geodesics by first specifying the
congruence on Σ, with BA

µν = 0 on Σ. The geodesics that intersect Σ can then be extended
away from Σ, and the region they fill will then be guaranteed to contain an irrotational
geodesic congruence.

To construct the vector field T µ, we first choose a smooth scalar function φ(xi) defined on
Σ, and consider a covariant vector field Tµ for which the spacelike components (i = 1, 2, or
3) are given on Σ by

Ti =
∂φ

∂xi
. (12)

(d) (3 pts) Show that for spacelike indices i, j,

∇iTj = ∇jTi (on Σ). (13)

(e) (5 pts) The last component T0 can be determined on Σ by normalization, gµνTµTν = −1
for timelike congruences, or gµνTµTν = 0 for lightlike congruences. This will give a
quadratic equation for T0. Show that this quadratic equation always has real solutions
for T0. (Hint: for any given point on Σ, imagine transforming to locally inertial
coordinates centered on that point.)

(f) (5 pts) So far we have only specified Tµ on Σ, but we can uniquely determine its first
derivative in the 0-direction by requiring it to obey the geodesic equation, T µ∇µTν = 0.
Use this relation, plus the fact that we insist that T is normalized, to show that

∇iT0 = ∇0Ti (on Σ). (14)

(Hint: first show that normalization implies that T 0 cannot vanish. Therefore the
truth or falsehood of Eq. (14) is not changed by multiplying it by T 0. Then see what
you can learn by using normalization and the geodesic equation.)

(g) (3 pts) Take the trace of the equation for DBµν/dτ that you derived in part (b), to
obtain an equation for

dθ

dτ
, (15)

where θ ≡ Bµ
µ = ∇µT

µ. Use Eq. (9) to express the right-hand side of the equation in
terms of BS

µν , B
A
µν , T

µ, and the curvature tensor.

Comment: If one thinks of the geodesic congruence as describing a fluid flow, then θ describes
the divergence (θ > 0) or convergence (θ < 0) of the flow. One might be puzzled why θ is
a four-divergence, while the intuitive concept of a divergence would correspond to a three-
divergence of the spatial vector T i. But remember that T µ∇µT

ν = 0, so if we describe the
system in the locally inertial frame in which the fluid is at rest, so T µ = (1, 0, 0, 0), then
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∂0T
0 = 0 and θ = ∂iT

i. So θ represents the divergence of the fluid in the locally inertial rest
frame.

For the timelike case, the next step in the standard treatment is to introduce the projector
onto the subspace orthogonal to T µ,

P µ
ν = δµν + T µTν , (16)

and then decompose BS
µν as

BS
µν ≡

1

3
θPµν + σµν , (17)

where σµν , the shear, is symmetric, traceless, and orthogonal to T µ (i.e., T µσµν = 0). Then,
if we assume that BA

µν = 0, the quantity

B2 ≡ BS
µνB

S,µν , (18)

which appears on the right-hand side of the equation for dθ/dτ , can be bounded by

B2 =
1

3
θ2 + σµνσ

µν ≥ 1

3
θ2 . (19)

This leads finally to the conclusion that timelike irrotational congruences obey the equation

dθ

dτ
≤ −1

3
θ2 −RµνT

µT ν . (20)

For the lightlike case this does not work out as easily, because there is no good analogue
to P µ

ν . Carroll handles this by introducing a frame-dependent projection tensor Qµν , and
then at the end shows (or asks the reader to show) that his result for dθ/dτ is nonetheless
frame-independent. Here we will follow a different approach, using Lagrange multipliers to
minimize BS

µνB
S,µν subject to the relevant constraints.

(h) (3 pts) Show that T µBS
µν = 0.

(i) (8 pts) Minimize B2 ≡ BS
µνB

S,µν subject to the constraints

T µBS
µν = 0 (21)

gµνBS
µν = θ , (22)

by using Lagrange multipliers. Consider the quantity

L = B2 + λνT µBS
µν + λ̄(gµνBS

µν − θ) , (23)

which produces the constraints (21) and (22) when varied with respect to λν and λ̄,
respectively. For the timelike case, use this equation to find the minimum value of B2
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subject to the constraints. (Hint: vary L with respect to BS
µν and obtain an expression

for BS
min,µν in terms of the Lagrange multipliers, where BS

min,µν is the value of BS
µν

which minimizes B2 subject to the constraints. Then impose the constraints to find
the values of the Lagrange multipliers. Finally, evaluate B2

min. To match the result in
Eq. (19), you should find B2

min = 1
3
θ2. You may find it a little tricky to vary L with

respect to BS
µν , since there are various ways of imposing the fact that BS

µν is symmetric.
One approach is to define δL/δBS

µν as the symmetric matrix that satisfies

δL =
δL

δBS
µν

δBS
µν (24)

when BS
µν is varied by an infinitesimal symmetric matrix δBS

µν .)

(j) (5 pts) Minimize B2 subject to the constraints of Eqs. (21) and (22) for the lightlike
case, T 2 = 0. You should find that in this case the values of the Lagrange multipliers
are not completely determined, but the value of B2

min is determined to be 1
2
θ2.

The term on the right-hand side of the Raychaudhuri equation that depends on the curvature
has the form −RµνT

µT ν . The Einstein equation relates Rµν to the energy-momentum tensor
Tµν :

Rµν −
1

2
Rgµν = 8πGTµν , (25)

where G is Newton’s gravitational constant. By taking the trace of this equation and sub-
stituting back into the equation, it can be rewritten as

Rµν = 8πG

(
Tµν −

1

2
gµνT

λ
λ

)
. (26)

Thus, for the timelike case, the term will always contribute negatively to the right-hand side
if (

Tµν −
1

2
T λλgµν

)
T µT ν ≥ 0 (27)

for all timelike vectors T µ, which is called the strong energy condition. For a perfect fluid,
the energy-momentum tensor is given by

Tµν = (ρ+ p)UµUν + pgµν , (28)

where ρ is the energy density, p is the pressure, and Uµ ≡ T µ is the four-velocity of the fluid.

(k) (5 pts) Show that the strong energy condition, for a perfect fluid, is equivalent to

ρ+ p ≥ 0 and ρ+ 3p ≥ 0 . (29)
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(l) (3 pts) For the lightlike case, the term −RµνT
µT ν on the right-hand side of the Ray-

chaudhuri equation will always contribute negatively provided that

Tµν`
µ`ν ≥ 0 (30)

for all lightlike vectors `µ, which is called the null energy condition. Show that for a
perfect fluid, the null energy condition is equivalent to

ρ+ p ≥ 0 . (31)
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