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1 Introduction

Formal implemented models of analogy face two opposing challenges. On the one hand, they must be

powerful and flexible enough to handle gradient and probabilistic data. This requires an ability to notice

statistical regularities at many different levels of generality, and in many cases, to adjudicate between

multiple conflicting patterns by assessing the relative strength of each, and to generalize them to novel

items based on their relative strength. At the same time, when we examine evidence from language change,

child errors, psycholinguistic experiments, we find that only a small fraction of the logically possible

analogical inferences are actually attested. Therefore, an adequate model of analogy must also be

restrictive enough to explain why speakers generalize certain statistical properties of the data and not

others. Moreover, in the ideal case, restrictions on possible analogies should follow from intrinsic

properties of the architecture of the model, and not need to be stipulated post hoc.

Current computational models of analogical inference in language are still rather rudimentary, and we

are certainly nowhere near possessing a model that captures not only the statistical abilities of speakers, but

also their preferences and limitations.1 Nonetheless, the past two decades have seen some key advances.

Work in frameworks such as neural networks (Rumelhart and McClelland 1987; MacWhinney and

Leinbach 1991; Daugherty and Seidenberg 1994, and much subsequent work) and Analogical Modeling of

Language (AML; Skousen 1989) have focused primarily on the first challenge, tackling the gradience of

∗Thanks to Jim Blevins, Bruce Hayes, Donca Steriade, participants of the Analogy in Grammar Workshop (Leipzig, 22–23
September 2006), and especially to two anonymous reviewers, for helpful comments and suggestions; all remaining errors are, of
course, my own.
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the data. This work has had several positive influences on the study of analogy, particularly as a synchronic

phenomenon. First, it has fostered a culture of developing computationally implemented models. These

allow for objective tests of the extent to which a particular pattern can be extracted from the training data,

given an explicitly formalized set of assumptions. In a few cases, such work has even led to implemented

models of analogical change over time (e.g., Hare and Elman 1995). More generally, it has inspired a good

deal of empirical work probing the detailed statistical knowledge that native speakers have about

regularities and subregularities surrounding processes in their language. The overall picture that has

emerged from such work is one of speakers as powerful statistical learners, able to encode a wide variety of

gradient patterns.

In this paper, I will take on the latter side of the problem, which has so far received far less attention in

the literature: why do speakers generalize some regularities and not others? I discuss three general

restrictions on analogical inference in morphophonology. The first is a restriction on how patterns are

defined, which distinguishes between patterns that can be noticed and extended, and those that are evidently

ignored. The second is a restriction on how patterns are evaluated, and concerns what it means for a pattern

to be “well attested” or strong enough to generalize to novel items. The last is a restriction on which forms

in a morphological paradigm are open to analogical change, and what determines the direction of influence.

I argue that in all three cases, the observed restrictions correspond to limitations imposed by formulating

processes as SPE-style rewrite rules (A→ B / C D). This observation is not a trivial one, since this rule

notation is a very particular hypothesis about how linguistic knowledge is structured, and how it makes

reference to positions, variables, and so on. I demonstrate ways in which statistical models that lack this

type of structure suffer in their ability to model empirical data, by overestimating the goodness of various

possible but unattested types of analogical inference. Based on this observation, I argue that the best formal

model of analogy is one that adds a probabilistic component to a grammar of context-sensitive statements.

The outline of the paper is as follows: for each of the three proposed restrictions, I first present

empirical data illustrating how it distinguishes attested from unattested analogies. Then, I compare two

representative models, one with and one without the restriction imposed by rule-like structure. Finally, I

discuss the broader implications of these observations for formal models of analogy.

2



2 What is a linguistically significant pattern?

2.1 Structured vs. unstructured inference

To illustrate the role that a formalism can play in restricting possible analogies, it is instructive to start by

considering the most traditional of all formalisms: four-part analogy. In four-part notation, analogies are

expressed in the form in (1):

(1) Four-part notation:A:B :: X:Y

“Whatever the relationship is between A and B, it should also hold between X any Y”

Discussions of four-part analogy frequently point out that the relation between wordsA andB is in

many cases part of a much more general pattern, and that the examplesA andB should be construed as

representative members of a larger analogical set, consisting of more words (A1:B1 :: A2:B2 :: A3:B3 :: . . . )

and perhaps also more paradigmatically related forms (A1:B1:C1 :: A2:B2:C2 . . . ). The notation itself does

not provide any way to indicate this fact, however, and thus has no formal means of excluding or

disfavoring analogies supported by just one or a few pairs. Furthermore, the notation does not impose any

restrictions on what properties particularAi :Bi pairs can have in common with one another. In fact the

pattern itself—i.e., the relation betweenA andB, and the equation forY—is left entirely implicit. This

means that there are many possible ways to construct analogical sets, and few concrete ways to compare

competing analogical inferences.

As an example, consider mid vowel alternations in Spanish present tense indicative verb paradigms. In

some verbs, when the mid vowels /e/ and /o/ are stressed, they irregularly diphthongize to [jé] and [ẃe],

respectively. This occurs in the 1sg, 2sg, 3sg, and 3pl (as well as the entire present subjunctive). In other

verbs, the alternation does not occur, and invariant mid vowels or diphthongs are found throughout the

paradigm.
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(2) Spanish present tense diphthongization

a. Diphthongizing verbs

Verb stem Infin. 3sg. pres. indic. Gloss

sent- sent-́ar sj́ent-a ‘seat’

kont- kont-́ar kwént-a ‘count’

b. Non-alternating verbs

Verb stem Infin. 3sg. pres. indic. Gloss

rent- rent-́ar ŕent-a ‘rent’

mont- mont-́ar mónt-a ‘ride/mount’

orjent- orjent-́ar orj́ent-a ‘orient’

frekwent- frekwent-́ar frekẃent-a ‘frequent’

Since diphthongization is lexically idiosyncratic, Spanish speakers must decide whether or not to apply

it to novel or unknown words. For example, if a speaker was faced with a novel verb [lerrár], they might

attempt to construct analogical sets that would support a diphthongized 3sg form [ljérra]. Using the

four-part notation, there are numerous ways this could be done, including:

(3) Analogical set 1:

errar:yerra

enterrar:entierra

aserrar:asierra

aferrar:afierra

cerrar:cierra

. . .


:: lerrar:lierra

(4) Analogical set 2:

serrar:sierra

alentar:alienta

helar:hiela

querer:quiere

. . .


:: lerrar:lierra
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The first set looks more convincing, since all of its members rhyme with [lerr-] and belong to the-ar

inflectional class. Intuitively, this provides better support for the outcome [ljérra] than set 2 does; however,

such a high degree of similarity is neither required nor rewarded by the formalism. In addition, nothing

formally rewards a larger set (a point we will return to below). In sum, while the generality and flexibility

of four-part notation have made it convenient tool for describing analogical changes, as is often noted in the

literature, an explanation theory of analogy depends on being able to impose restrictions on possible

proportions (Morpurgo Davies 1978).

Let us start by addressing the first shortcoming of four-part notation, namely, its inability to capture the

relative similarity of different analogical pairs to the target word. A common intuition about analogical sets

is that they are not chosen randomly from the lexicon at large, but rather should represent the words that are

expected to have the greatest influence because they are phonologically most similar to the target

word—i.e., the closest analogs. For example, the existing Spanish verbs that are most similar to the novel

verb [lerrar] are shown in (5) (similarity values are in arbitrary units, higher= more similar):

(5) Existing Spanish verbs similar to [lerrar]

lerrar

errar

cerrar
aserrar

helar

aferrar

.493

.110 .446

.093

.105

The restriction that we want the model to obey, then, is that generalization of a pattern to novel items

must be supported by sufficiently many close analogs. One obvious way to do this is to adopt a

similarity-based classification model, which decides on the treatment of novel items by considering its

aggregate similarity to the set of known items. In such a model, the advantage of being similar to many

existing words is anything but accidental; it is built in as core principle of the architecture of the model.

There are many ways to be similar, however, and it is an empirical question what types of similarity

matter most to humans in deciding how to treat novel words. For instance, the existing Spanish verbserrar

‘err’ andcerrar ‘close’ are similar to novellerrar by ending in root-final [err]. The verbhelar ‘freeze’ is

also (at least somewhat) similar tolerrar, but this is due to the shared [l] (or perhaps the similarity of [l]

and [r]), a similar syllabic structure, and so on. Hypothetical verbs likelerdar, lenar, andlorrar also share
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commonalities withlerrar, but each in its own unique way. Looking back at analogical set 1 in (3), there

are intuitively two factors that make this group of analogs seem particularly compelling. First, all of these

verbs share a set of common properties with each other and with the target word: they all end in [err] and

all belong to the-ar inflectional class. In addition, those shared properties are perceptually salient

(involving rhymes of stressed syllables), and are local to the change in question (being either in the same

syllable as the stressed mid vowel, or in the adjacent syllable). Albright and Hayes (2003) refer to this

situation, in which the comparison set can be defined by their shared properties, asSTRUCTURED

SIMILARITY . If we compare analogical set 2 in (4), we see thatserrar, alentar, helar, andquerershare no

such properties.2 Albright and Hayes refer to this asVARIEGATED SIMILARITY .

Not all similarity-based models care about the exact source or nature of similarity. In principle, the

similarity of the novel word to each existing word could be calculated independently. (An example will be

given in the next section.) In order to give preference to structured similarity, a model must be able to align

words with one another, determine what they have in common, and ignore what is unique to individual

comparisons. This requires that the model have the capacity to encode the fact that a number of words all

have the same type of element in the same location—that is, the model must be able to impose structure on

the data, and encode its knowledge in terms of these structures (features, prosodic positions, etc.). This

sounds like a simple requirement, but in fact it represents a fundamental divide between two classes of

models: those that generalize using “raw” (unstructured) similarity to known words, and those that

generalize by imposing structure on novel items and parsing them for elements in common with known

words.

The goal of the rest of this section is to show that structured similarity is an important component in

modeling how speakers generalize morphophonological patterns. The strategy will be as follows: first, in

sections 2.2–2.3, I will present two computationally implemented models, one lacking structured

representations, and one that encodes its knowledge in structural terms. Then in section 2.4, the

performance of the two models will be compared against experimentally obtained data concerning the

relative likelihood of different novel Spanish verbs to undergo diphthongization. To preview the results, it

will emerge that the ability to make use of variegated (unstructured) similarity turns out to be not only

unnecessary, but even harmful in modeling human intuitions.
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2.2 Analogy without structure: “pure” similarity-based classification

To asses the contribution of structured similarity to the performance of a model, we first need a baseline

model that does not require structured comparisons. One commonly used model of similarity-based

classification that has been widely applied in many domains is the GENERALIZED CONTEXT MODEL

(GCM; Nosofsky 1986, 1990). For some applications in linguistics, see Johnson (1997), Nakisa, Plunkett,

and Hahn (1997), and Albright and Hayes (2003). In this model, the treatment of a novel item is determined

by calculating its similarity to classes of known items (exemplars). In deciding whether to assign a novel

item i to a particular classc, the model compares itemi to each existing memberj of classc. The similarity

of i to the entire class is a function of the summed similarities of each individual class member:

(6) Similarity of novel itemi to classc (with membersj) =
∑

e(−d i,j /s), where

• di ,j = the psychological distance betweeni andj

• s = sensitivity (a free parameter of the model)

The probability of actually treatingi as a member of classc is simply proportional to its similarity to

the individual members:

(7) Probability of assigning itemi to classc =
Similarity of i to c

Total similarity of i to all classes

This model is based on the premise that analogical sets are more compelling when they contain more

members, and when those members are more similar to the novel item. In this way, the model satisfies the

restriction that analogical generalization must be sufficiently supported by known items. The model does

not place any inherent restrictions on the nature of the similarity relations, however, specifying only that it

reflect some generic notion of thepsychological distancebetween two words. At its simplest and most

neutral, this would simply be theirperceptual distance, or some holistic measure of how similar the words

sound. Intuitively, words sound similar to one another if their component segments are similar—that is, if

the sounds of one word are well-matched to those of the other. In order to calculate this, we need

perceptual similarity values for arbitrary pairs of sounds, and also a method of determining the optimal

alignment of sounds, given their similarities.
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One technique for estimating the similarity of pairs of segments is to consider how many natural

classes they both belong to. Frisch, Pierrehumbert and Broe (2004), following Broe (1993) and Frisch

(1996), propose the following ratio:

(8) Similarity of sounds s1, s2 =
Number of shared natural classes

Number of shared + unshared natural classes

Given these similarity values, an optimal alignment of the sounds in two words is one in which they

can be transformed into one another in as few steps as possible (Bailey and Hahn 2001; Hahn, Chater, and

Richardson 2003). This can be calculated by finding the minimum string edit (Levenshtein) distance

(Kruskal 1983); see Bailey and Hahn (2001) and Albright and Hayes (2003) for details of how this is

implemented based on segmental similarity. The result is a score for each pair of words, reflecting the

degree of similarity between corresponding segments and the extent of mismatches (non-corresponding

material). For example, the similarity of the novel verblerrar to the existing Spanish verberrar is

calculated to be 0.493 (in arbitrary units), while the similarity oflerrar to reglar is 0.268, and tolograr is

0.203.

We can use this model to calculate the likelihood of diphthongizing a novel Spanish verb, by simply

comparing the aggregate similarity of that verb against the set of existing diphthongizing and

non-diphthongizing verbs. For example, the summed similarity of the novel verblerrar to diphthongizing

verbs is 4.936 (again, in arbitrary units), with the top contributors including verbs likeerrar (0.493),cerrar

(0.446),aserrar (0.110),helar (0.105), andaferrar (0.093). The summed similarity oflerrar to

non-diphthongizing verbs is 15.551, with top contributors includingreglar (0.268),orlar (0.240),ahorrar

(0.213),forrar (0.211), andlograr (0.203). We see that the higher score for the non-diphthongizing comes

not from greater similarity of any individual member—in fact,errar andcerrar in the diphthongizing class

are much more similar than any non-diphthongizing verb. Rather, this advantage is due to the fact that there

are many more non-diphthongizing verbs, so small amounts of moderate similarity sum up to outweigh a

small numer of very similar verbs. Using the equation in (7), the overall probability of applying

diphthongization tolerrar is predicted to be 4.936 / (4.936+ 15.551), or 24.09%.

There are a couple points to note about the workings of this model. First, the model has the ability to

make use of variegated similarity, since similarity is based on the optimal alignments of individual pairs of
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items. However, the examples in the preceding paragraph show that not all inferences make equal use of it;

in fact, the closest analogs supporting diphthongization almost all contain-errar. This turns out to be quite

typical, and analogical sets are frequently dominated by words that all happen to share the same feature(s)

in common with the target word—i.e., a structured similarity. This aspect of the model will be important to

keep in mind when evaluating the performance of the GCM, since we are interested not only in how well

the model does, but also in the question of whether it benefits from its ability to use variegated similarity.

2.3 Analogy with structure: probabilistic context-sensitive rules

As noted above, an ability to refer to particular properties of words (having a certain type of sound in a

certain location, having particular prosodic properties, etc.) is crucial in requiring that analogical sets share

structural similarities. In fact, many modeling frameworks use structural properties to decide how to treat

novel items. Feature-based classification models (Tversky 1977), such as TiMBL (Daelemans, Zavrel,

Van der Sloot, and Van den Bosch 2000) and AML (Skousen 1989) directly incorporate the idea that in

order for a group of items to be similar, they must share certain properties (feature values). Linguistic rules

impose an even more specific structure. For example, context-sensitive readjustment rules (e→ je / X

rro]1sg) specify a change location, immediately adjacent left and right contexts, precedence relations, and

so on. Although rule application is often thought of as fundamentally different from (and incompatible

with) analogical inference, in fact, it is possible to think of rules as a very specific theory of how analogical

sets are constructed—namely, by picking out groups of words that can be captured using the rule notation

format.

The MINIMAL GENERALIZATION LEARNER (MGL; Albright and Hayes 2002) is a computationally

implemented model that finds rules covering sets of words that behave consistently (belong to the same

inflectional class, share the same morphophonemic change, etc.). It employs a bottom-up inductive

procedure to compare pairs of words in the input data, find what they have in common, and encode these

commonalities using a grammar of stochastic rules. For details of the model, the reader is referred to

Albright and Hayes (2002) and Albright and Hayes (2003); in this section I provide a brief overview.

The model takes as its input pairs of forms that stand in a particular morphological relation, such as

present/past, or infinitive/1sg, as in (9). In the present case, the relation between diphthongized and
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non-diphthongized stem variants is conditioned by stress placement, rather than any particular

morphological category. Therefore, in the simulations reported here, input data are represented as pairs of

stressed and stressless stem allomorphs, abstracting away from the suffixal material of the particular

inflected forms that require one or the other, but retaining an indication of inflection class information (-ar,

-er, -ir ).

(9) Input to the minimal generalization learner: some sample-ar verbs

Stressless Stressed Gloss Orthography (infinitive)

jeg jég ‘arrive’ (llegar)

dex d́ex ‘leave’ (dejar)

jeb jéb ‘bring’ (llevar)

ked ḱed stay (quedar)

enkontr enkẃentr ‘find’ (encontrar)

pens pj́ens ‘think’ (pensar)

kont kwént ‘tell, count’ (contar)

entr éntr ‘enter’ (entrar)

tom tóm ‘take’ (tomar)

kre kŕe ‘create’ (crear)

empes empjés ‘start’ (empezar)

esper esṕer ‘wait, hope’ (esperar)

rekord rekẃerd ‘remember’ (recordar)

tembl tj́embl ‘tremble’ (temblar)

The first step in learning is to analyze individual (stressless, stressed) pairs, by factoring them into

changing and unchanging portions. This allows each pair to be expressed as a rule, encoding both the

change (A→ B) and the non-changing portion (C D). For example, the pair (tembl, tjémbl) has a vowel

change surrounded by unchanging consonants: e→ jé / t mbl (“stressless [e] corresponds to stressed

[je] when preceded by [t] and followed by [mbl]”). The pair (jeg, jég) on the other hand differs only in

stress: e→ é / j g.

Once the input pairs have been re-cast as word-specific rules, they are compared to find what they have
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in common, according to the rule scheme in (10):

(10) Comparingtembl/tiembl- ‘tremble’, desmembr-/desmiembr-‘dismember’:

Residue Shared Shared Change Shared Shared

feats segs loc. segs feats

t mb l

des m mb r

X

 −syllabic

−continuant

 mb



−syllabic

+sonorant

+continuant

+voice

+coronal

+anterior


The comparison in (10) yields a very specific rule that retains all of the properties shared bytembl-and

demembr-, subject to the restriction that they can be encoded in the structural components of the rule.

Shared material is expressed in terms of phonological features, while unshared material is expressed as

variables. By convention, unmatched material on the left side is collapsed into a variable called ‘X’, and

material on the right into a variable ‘Y’. When such comparisons are carried out iteratively across the entire

data set, however, much broader rules can emerge through comparison of diverse forms, while further

comparison of similar forms will yield additional narrow rules. A small sample of the many possible rules

that could be learned from a set of Spanish verbs is given in (11).

(11) Representative rules for Spanish verbs3

i. o→ wé / [+consonantal] rs

ii. o→ wé /

 −continuant

−voice

 r

 −continuant

−syllabic


iii. o→ wé /

 −syllabic

+consonantal

 [−syllabic]
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iv. o→ ó /


−syllabic

−sonorant

+consonantal



−syllabic

+consonantal

-continuant


v. o→ ó /

 −syllabic

+voice

 [−syllabic]

vi. o→ ó / [−syllabic]

These rewrite rules incorporate many types of structure that limit possible comparisons. Rules specify

linear relations such as precedence and adjacency. This notation rules out many logically possible sets of

words, such as those that all have a certain sound, but its location is variably either the right or the left of the

change. This particular procedure also compares words by starting immediately adjacent to the change and

working outwards, meaning that the descriptions of the left and right side contexts are limited to the local

contexts.4 Rule notation also embodies a form of strict feature matching: rules apply if their structural

description is met, and not otherwise. Finally, although SPE-style rewrite rules are written in a way that

could theoretically make use of the full power of context-sensitive grammars, the rules employed by this

model obey commonly observed conventions for phonological rewrite rules by referring to a fixed number

of positions and applying non-cyclically, and thus are restricted to expressing regular relations which can

be captured with a finite state transducer (Johnson 1972; Kaplan and Kay 1994; Gildea and Jurafsky 1996).

The system thus embodies a very strong form of structured similarity: all that matters is that words are the

same in the relevant respect, and there are no penalties or rewards for additional similarities or differences.

Once all of the possible rules have been discovered, it remains to decide which dimensions of

similarity the speaker should actually pay attention to. In order to do this, the rules are evaluated according

to their accuracy in the training data. TheRELIABILITY of a rule is defined as the number of cases that it

successfully covers (itsHITS), divided by the number of cases that meet its structural description (its

SCOPE). Raw reliability scores are then adjusted slightly downwards using lower confidence limit statistics,

to yield a score calledCONFIDENCE. This has the effect of penalizing rules that are based on just a small

amount of data (a small scope). The confidence scores for the rules in (11) are shown in (12):
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(12) Representative rules for Spanish, evaluated (hits/scope⇒ confidence)

i. o→ wé / [+cons] rs 4/4 ⇒ .786

ii. o→ wé /

 −contin

−voice

 r

 −contin

−syll

 6/8 ⇒ .610

iii. o→ wé /

 −syll

+cons

 [−syll] 68/545 ⇒ .116

iv. o→ ó /


−syll

−sonor

+cons



−syll

+cons

-contin

 101/106 ⇒ .934

v. o→ ó /

 −syll

+voice

 [−syll] 19/22 ⇒ .795

vi. o→ ó / [−syll] 588/668 ⇒ .871

Finally, the grammar of rules can be used to generalize patterns to novel items. The probability of

generalizing a process is defined as in (13). Since this calculation is intended to mimic the probability with

which a particular pattern will be employed to produce a target output, it is referred to as thePRODUCTION

PROBABILITY of that pattern:

(13) Production probability

=
Confidence of the best rule applying the pattern to the input

Summed confidence of best rules applicable to the input, for each pattern

For example, in calculating the likelihood to diphthongize the novel verblerrar, the best (= most

confident) applicable diphthongization and non-diphthongization rules are:
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(14) Likelihood to diphthongizelerrar

• Best applicable diphthongization rule:

– e→ jé /

 +consonantal

+coronal


 +consonantal

+voice


Reliability = 10/29; Confidence = .290

• Best applicable non-diphthongization rule:

– e→ é /

 −syllabic

+voice

 [+sonorant]

Reliability = 86/86; Confidence = .989

• Production probability(lierro) =
.290

.290 + .989
= 23%

For both the Minimal Generalization Learner and the Generalized Context Model, support for

generalizations comes from large numbers of words that are similar to the target word and behave

consistently. In the MGL, however, similarity is defined (in boolean fashion) as presence of certain

structural features. This prevents the model from using variegated similarity, since such diverse sets of

relations cannot be captured in the rule notation. We can contrast this with the GCM, in which the

supporting words need not be similar to one another in any particular way. This leads to the possibility that

analogical inference may be based on variegated support. In the next section, we attempt to test whether

this additional ability is helpful or harmful to the GCM.

Finally, it is worth noting that proportional analogy is most often used in a way that conforms to the

structural restrictions imposed by the rule-based model, since the antecedent in four-part notation requires

that there is a well-defined relation, and ideally also a group of words that all share the same relation.

Although individual analysts may disagree about what constitutes a valid relation (see Morpurgo Davies

1978 for a review of some prominent points of view), in practice, relations are most naturally thought of as

a single rewrite relation, much as in SPE-style rules. This is not to say that the formalisms are equivalent,

however, since proportional analogy is certainly flexible enough to encompass relations that cannot be

expressed in rule-based terms. For example, nothing formally precludes setting up proportions showing

relations that involve multiple changes (prefixation of [s] and nasalization of final consonant:tick:sting::
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crab:scram:: cat::scan?), or changes that depend on the presence of an element somewhere in the word

regardless of linear order (change of [I] → [2] adjacent to e [p]:pinch::punch:: sip::sup:: pig:pug?). A

hypothesis of the rule-based model is that in order for a relation to be linguistically active—i.e., extended

systematically to new forms—it must involve a change defined in terms of phonological features, applied

to a set of words that share a common structure (again, defined over linearly arranged combinations of

natural phonological classes).

2.4 An empirical test: modeling diphthongization in novel words

In order to test whether humans are restricted to inferences based on structured similarity, we can compare

the performance of the two models against experimentally obtained data in which Spanish speakers were

likewise tested on how they would produce stressed forms of novel verbs. Albright, Andrade, and Hayes

(2001) asked 96 native speakers to inflect novel verbs containing mid vowels, to measure the relative

likelihood of diphthongized responses in different contexts. Participants were given novel verbs in an

unstressed form (e.g., [lerrámos] ‘welerr ’) and were asked to produce a stressed form (e.g., [lerro]/[ljérro]

‘I lerr ’), For each verb, the production probability of diphthongization was calculated by dividing the

number of diphthongized responses by the total number of diphthongized+ undiphthongized responses.

For example, for the verblerrar, 19 participants volunteered [ljérro] and 76 volunteered [lérro],5 yielding a

20% production probability of diphthongization. (For additional details of the experimental design and

results, see Albright, Andrade, and Hayes (2001)).

In order to test the models, predictions were obtained by training each model on a lexicon of Spanish.

Two different data sets were tested: one that included all of the verbs in the LEXESP corpus containing

stressable mid vowels (1,881 verbs total), and another that included just the subset of verbs that fall in the

-ar inflectional class (1,669 of the total set). The choice of data set turns out to matter slightly for the

results, with the GCM performing slightly better on the full set and the MGL performing slightly better on

the smaller set. The differences were relatively small, however, and I simply report here the better result for

each model (i.e., treating the choice of dataset as a parameter that can vary independently across models).

Figure 1 shows the overall ability of the two models to predict the probability of diphthongization on a

verb-by-verb basis. We see that both models do reasonably well, though the MGL does somewhat better (r
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= .77) than the GCM (r = .56). Most of this difference comes from the exceptionally poor performance of

the GCM on a single outlier, however (entar); if this one item is excluded, the performance of the GCM is

approximately as good as the MGL (r increases to .74).

So what do we conclude from this result? Clearly, neither model can be rejected outright based on raw

performance. In fact, the predictions of the two models are also significantly correlated with one another (r

= .53). This means that the models are not merely making equivalently good predictions—in fact, to a

large extent they are making the very same predictons.6 When the outputs of the two models are inspected,

the reason is not hard to find: in very many cases, the two models pick out overlapping analogical sets. For

example for the novel wordsolmar, the MGL found that the most confident applicable diphthongization

rule was o→ wé / s l Y] -ar class(including such words assolar ‘pave’, soltar ‘release’, andsoldar

‘solder’). These same words figure prominently in the analogical set that the GCM employs; the five top

contributors aresolar (similarity .493),soldar (.417),soltar (.338),cerrar (.214), anddormir (.164).

Similarly for the verblorrar , the MGL used a rule o→ wé /

24 +coronal

+continuant

35 24 +coronal

+voice

35 Y] -ar class,

supported by positive examples likesolar, sonar, soldar, rodar, andsoltar. Here too, the rule includes

three of the GCM’s five closest analogs:errar (.278),cerrar (.252),solar (.095),rodar (.094), andsoldar

(.085). The upshot is that although the GCM has access to variegated similarity—seen, for example, in the

presence of analogs likecerrar—there is no guarantee that it is actually using it to a significant extent in

any particular case. Thus, overall comparisons like the one in Figure 1 are unlikely to be illuminating about

what mechanism speakers actually use to make analogical inferences.7

The examples in the preceding paragraph show that although in practice the role of variegated

similarity is less than what is theoretically possible, the GCM does use it at least to a certain extent. What

we need, then, is a way to focus specifically on the contribution of the variegated analogs, which the MGL

cannot include as support for inferences. This requires a means of separating analogs that share a structured

relation from those that do not. For a set like{solar, soldar, soltar, cerrar, dormir}, the intuitive division is

between the first three, which share#sol(and the-ar inflectional class), as opposed tocerrar anddormir,

which look like odd men out. Strictly speaking, however, it is not the case that these verbs completely lack

structural properties with the remaining forms. In fact, all five verbs share the set of properties in (15):
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Figure 1: Predicted vs. observed production probability of diphthongization
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(15) Structural commonality:solar, soldar, soltar, cerrar, anddormir

#[−sonorant]


+syllabic

−high

−low




+consonantal

+sonorant

−nasal

 Y

The description in (15) expresses a structured similarity, but expanding the context to includecerrar

anddormir comes at a price. The description is now so general that it includes not just these five verbs, but

also many others—including, importantly, some that do not diphthongize. In other words, although the

description in (15) unifies all of the members of the GCM’s analogical set, it does not accurately or

uniquely describe what sets them apart from the rest of the verbs in the language. A rule-based model like

the MGL could state a rule that applies diphthongization in this context, but it would not be a useful rule

since it has too many exceptions.

This suggests a refinement to how we isolate sets of structured analogs: they must not only have in

common a set of shared properties, but those properties must also be reliably associated with class

membership. For example, it is not enough to be able to state whatcerrar has in common withsoldarand

soltar; the properties that they share must also distinguish these verbs from non-diphthongizing verbs. In

order to separate structured from unstructured analogs, then, we need a hypothesis about what those

distinguishing properties are. Not coincidentally, this is precisely what the MGL model is designed to

identify. For example, as noted above, the MGL determines that the properties ofsolmarthat are most

reliably associated with diphthongization are the preceding /s/ and the following /l/, makingsolar, soldar,

soltar the analogs that share the set of most relevant structural properties. It should be possible, therefore,

to use the structural descriptions that the MGL selects to help identify when the GCM is making use of

unstructured, or variegated similarity.

In order to quantify the contribution of non-structured analogs in the predictions of the GCM, I first ran

the MGL, finding for each nonce form the set of properties that were found to be most reliably associated

with diphthongization (i.e., the structural description of the best applicable rule that could derive a

diphthongized output). I then ran the GCM, collecting the set of diphthongizing analogs. For each nonce

verb, the analogical set was then separated into two groups: the structured analogs, which contained the

best context identified by the MGL, and the variegated analogs, which fell outside this context. Examples
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for the novel verbssolmarandlorrar are given in (16).

(16) Separating structured vs. variegated analogs

a. solmar: best context= [sol. . . ]-ar class)

Structured analogs Unstructured analogs

solar .493 serrar .214

soldar .417 dormir .164

soltar .338 sonar .157

serner .139

socar .126

(and 235 others)

b. lorrar : best context= [

 +coronal

−continuant

o

 +coronal

+voice

]-ar class

Structured analogs Unstructured analogs

solar .095 errar .278

rodar .094 serrar .252

soldar .085

forsar .084

(and 236 others)

The contribution of variegated analogy was then defined as the summed similarity of the unstructured

analogs divided by the summed similarity of all analogs (structured and unstructured). This ratio is taken as

a measure of the extent to which the GCM is relying on variegated similarity for any particular nonce word.

We are now in a position to evaluate the usefulness of variegated similarity. If speakers make

analogical inferences in a way that is blind to structure, then the MGL model should suffer in cases where

variegated similarity is needed, since it is unable to make use of a crucial source of support. Conversely, if

structure is critical to how speakers generalize, then the GCM should do worse the more it relies more on

variegated similarity. The word-by-word performance of each model was tested by fitting the predictions of

each model against the experimentally obtained human responses using a linear regression. For each word,
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Figure 2: Calculation of “GCM advantage” score based on residuals

it was then determined how far off the model was, by subtracting the observed from the predicted values

(i.e., calculating the residuals). The performance of the two models was collapsed into a single “GCM

advantage” score by subtracting the GCM error from the MGL error for each word; this score is positive for

a particular word if the MGL’s prediction is less accurate than the GCM’s, and negative if the GCM that is

farther off. This comparison is illustrated in Figure 2. Finally, the GCM advantage scores were correlated

against the contribution of variegated analogy, as defined in the preceding paragraph. If variegated analogs

are important to speakers, we expect a positive correlation, since in cases where variegated similarity plays

a larger role, the MGL should suffer more (positive GCM advantage). If speakers do not use variegated

similarity, we expect a negative correlation, since the GCM’s reliance on variegated analogs would

encourage generalizations that humans do not make. In fact, when the correlation is calculated as described

above, the result is weakly negative (r = −.195). Thus, we fail to find any support for the idea that

variegated similarity is needed—and in fact, there is an indication that it may even be harmful.

The same result can also be seen another way, by calculating for each novel item the degree to which

the GCM overestimated the goodness of each output. This amount will be positive if the GCM assigned too

high a score (overpredicting the goodness of the output), and zero if the GCM is right on or under. The

rational for restricting the analysis tooverpredictionsis the following: suppose that speakers do not notice

variegated similarity, and that the GCM is incorrect to use it. If this is true, then access to variegated

analogs should let the GCM (incorrectly) gather extra support for some outputs, leading to overestimation

of their goodness. Therefore, the negative effects of variegated similarity should be seen most clearly in the

GCM’s overprediction errors. To test this, the GCM’s overestimation scores were correlated against the

relative contribution of variegated similarity, as defined above. The result here was a positive correlation

between variegated similarity and overestimation (r = .33). This shows that the extra sources of support

that the GCM has access to are not helpful in modeling speakers more accurately—in fact, they are
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deleterious, causing the model to overestimate the probability of diphthongization. Albright and Hayes

(2003) also make a similar point about the GCM, using data from English past tense formation.

There is finally one last way in which structure can be seen to matter. If we examine the GCM

predictions in Figure 1a, we see that the most blatant gaffe by far that the GCM makes is in overpredicting

the probability of diphthongization inentar. This prediction is based on the support of diphthongizing

analogs likesentar‘seat’,mentar‘mention’, tentar ‘touch’, dentar‘teethe’,ventar‘sniff’, and so on. All

of these analogs have a preceding consonant, and in fact diiphthongization of initial vowels is overall quite

rare in Spanish (particularly in the-ar class). The MGL is able to encode this fact by requiring that a

consonant is a crucial part of the context when formulating rules. The GCM, on the other hand, has no way

to encode this beyond the standard penalty for inserted or deleted a single segment in the process of

calculating the optimal string alignment; therefore, it cannot categorically block analogy to similar

consonant-initial words. This is yet another indication that speakers encode knowledge of patterns in terms

of properties of elements that appear in particular positions—that is, in terms of linguistic structure.

2.5 Local summary

In this section, I have discussed a major restriction on what type of pattern can be generalized through

analogy: it must be supported by sets of words that share a particular combination of properties in

common, both with each other and with the target word. This may seem like an obvious or trivial

restriction, and in fact many models simply assume it without argument. However, it is certainly not a

logically necessary part of how analogy is formalized. Many examplar-based models, such as the GCM, do

not obey this restriction. This allows them to capture a wider range of patterns, and thereby makes them

them less constrained models. I have shown that the extra power afforded by unstructured comparisons

does not help—and indeed, it seems to hurt by inflating the predicted goodness of certain generalizations.

This confirms similar results shown previously for English by Albright and Hayes (2003).

Importantly, the restriction to structured comparisons is exactly what we would expect if speakers

encode patterns using something like probabilistic context-sensitive rules, of the sort employed by the

MGL. Of course, this is not the only model that imposes structure on its representations; similar restrictions

are also found in feature-based models, such as TiMBL (Daelemans, Zavrel, Van der Sloot, and Van den
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Bosch 2000) and AML (Skousen 1989).

3 Type vs. token frequency

Another possible restriction on analogical models concerns the way in which the support for competing

patterns is evaluated. In principle, a pattern could be strengthened in at least two different ways: by

occurring in a large number of different words (high type frequency), or by occurring in a smaller number

of words that are used very commonly (high token frequency). In fact, it appears that the propensity to

generalize morphophonological patterns to new forms depends primarily on type frequency, and not on

token frequency. This restriction has been noted numerous times in the literature; see Baayen and Lieber

(1991) for English derivational suffixes Bybee (1995) for French conjugation classes, German past

participles, and others, Albright (2002) for Italian conjugation classes, Albright and Hayes (2003, p. 133)

for English past tenses, Ernestus and Baayen (2003, p. 29) for stem-final voicing in Dutch, Hay,

Pierrehumbert, and Beckman (2004) for medial consonant clusters in English, and additional references in

Bybee (1995)). In this section, I provide further evidence for this conclusion, and suggest that it favors a

model in which patterns are abstracted from individual words and encoded in some form that is separate

from the lexicon (such as a grammar).

The formal definition of similarity in the Generalized Context Model ((6) above) is compatible with

counting based either on type or token frequency, since “members of a class” could be taken to mean either

types or individual tokens. In practice, however, the most natural interpretations of the model would lead us

to expect a role for token frequency. If we assume, as is often done, that the GCM operates over exemplar

representations (Johnson 1997; Pierrehumbert 2001), then every single token should contribute a measure

of support to the strength of the pattern. Furthermore, even if we assume that the GCM operates over a

more schematic lexicon that abstracts away from individual exemplars, there is ample evidence from

on-line recognition and processing tasks that words with higher token frequency are accessed more readily

than low frequency words. Therefore, even if the GCM counts over a lexicon distinct word types, it seems

likely that token frequency effects would emerge simply because of the way the lexicon is accessed. Stated

more generally, the premise of the GCM is that generalization is carried out by consulting the lexicon

directly, and token frequency effects are characteristic—perhaps even diagnostic—of lexical access. It is
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important to note that the GCM is also very sensitive to type frequency, since each type contributes at least

one token to the summed support for a particular class.

In principle, the Minimal Generalization Learner could also evaluate rules using types or tokens, but

the rules it discovers are most naturally interpreted in terms of types. The comparisons that it carries out to

abstract away from individual lexical items ((10) above) require just a single instance of each word, and

nothing more can be learned from further tokens of previously seen data. In a system in which additional

tokens are gratuitous, it would perhaps be a surprising design feature if token frequency played a crucial

role in how rules are evaluated. In fact, calculating the confidence of rules according to their token

frequency would require extra work in this model, since repeated tokens of the same lexical item could

otherwise be disregarded as uninformative. This also relates to the more general hypothesis that grammars

are intrinsically about kinds of words, rather than about particular instances of their use. Therefore, even if

it is not strictly speaking required by the formalism, a rule-based account of analogy is most naturally

limited to the influence type frequency.

Spanish diphthongization provides a direct test of the relative importance of type vs. token frequency,

since although diphthongization is a minority pattern in the Spanish lexicon, affecting only a relatively

small number of mid-vowel verbs (lowish type frequency), the verbs that undergo it tend to be among the

most frequent verbs in the language (high token frequency). There is abundant prima facie evidence that

the high token frequency of diphthongization does not make it a strong pattern: synchronically it is

relatively unproductive in experimental settings (Bybee and Pardo 1981; Albright, Andrade, and Hayes

2001), and diachronically verbs tend to lose diphthongization alternations (Penny 2002; Morris 2005).

Furthermore, overregularization errors among children acquiring Spanish consistently result in omitting

diphthongization (Clahsen, Aveledo, and Roca 2002), even though diphthongizing tokens constitute a large

portion—perhaps even the majority—of childrens’ experience.

In order to test the influence of token frequency more systematically, I ran both the GCM and the MGL

with and without taking token frequency into account. Specifically, a weighting term was introduced in the

GCM, so the contribution of each analog was defined not only in proportion to its similarity, but also in

proportion its (log) token frequency. A weighting term was also introduced into the MGL, such that the

contribution of each word to the hits and/or scope of a rule was weighted according to its log token
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frequency. The result was that both models did slightly worse when token frequency was taken into

account, as shown in (17).

(17) A negative effect of token frequency (Pearson’sr)

Type frequency alone Weighted by (log) token frequency

GCM .743 .730

MGL .767 .742

We see that the overall effect of token frequency weighting is quite small. The reason for this is that

most words in the average corpus (and presumably also the average lexicon) have very low frequency

(“Zipf’s Law”). As a result, weighting by token frequency influences just a small number of high frequency

words. Therefore, weighting by token frequency has relatively little effect, unless the target word happens

to be very similar to an existing high frequency word. It should be noted that these particular experimental

items were not constructed for the purpose of dissociating type and token frequency, and ultimately the

fairest test would be based on items that diverge more in their predictions. Nonetheless, the trend is clear

across both models: to the extent that token frequency makes a difference, it is harmful in modeling

speaker intuitions about the strength of the diphthongization pattern.

Like variegated similarity, high token frequency is a type of information that speakers could logically

make use of in deciding whether or not to generalize a pattern to novel items. The fact that they apparently

do not do so requires a formal model that is similarly restricted. As noted above, it is certainly possible to

construct exemplar models that ignore token frequency; the amount and nature of frequency weighting is

an independent parameter in the GCM that can be turned off completely, and Bybee (1995) explicitly

defines schema strength in terms of type frequency. Conceptually, however, part of the appeal of exemplar

models is that they rely on no special mechanisms except activating memory traces—a mechanism that

intrinsically leads to token frequency effects (Bybee 2006). Insensitivity to token frequency follows quite

naturally from a grammar of rules, however, since rules encode information that has been abstracted away

from the particular exemplars that led to their creation. A rule-based account of analogy therefore involves

no particular expectation that token frequency should play a role, and indeed is naturally restricted not to

have access to information about token frequency.
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4 The directionality of analogical inference

In the preceding sections, we have seen that an adequate model of analogical inference must be able to

identify properties that are consistently associated with membership in a particular class, and must ensure

that the association holds for sufficiently many different word types. Models that can find support for

inferences in other ways, such as unstructured similarity or high token frequency, end up overestimating

the goodness of many outcomes. A model without these abilities is more constrained, and has the

advantage that it can more narrowly predict which analogical inferences speakers actually make. In this

section I discuss one final restriction, concerning the direction of analogical inference.

Logically, statements about the relation between one form and another could be made in either

direction. For example, statements about the correspondence of stressed and unstressed root allomorphs

could relate either form to the other, symmetrically or asymmetrically, as in (18). This means that in

principle, analogical inferences could proceed in multiple directions, both from stressless to stressed (e.g.,

rentár:rénta:: sent́ar:*sénta) and stressed to stressless (e.g.,siénta:sent́ar :: oriénta:*orentár).

(18) Some logically possible directions of influence (solid and doubled lines represent progressively

greater pattern strength)

a. Stressed Unstressed
é e+3ks 44

tthhhhhhhh+3ks 44
tthhhhhhhh+3ks 44
tthhhhhhhh+3ks 44
tthhhhhhhh

jé je//oo //oo //oo //oo

b. Stressed Unstressed
é eks

tthhhhhhhhks
tthhhhhhhhks
tthhhhhhhhks
tthhhhhhhh

jé jeoo oo oo oo

c. Stressed Unstressed
é +3+3+3+3 e
jé

44hhhhhhhh //
44hhhhhhhh //
44hhhhhhhh //
44hhhhhhhh // je

What we observe, however, is a striking restriction: both in historical change (Penny 2002; Morris

2005) and child errors (Clahsen, Aveledo, and Roca 2002), there is an overwhelming (or even exclusive)

tendency for analogical rebuilding of stressed forms (i.e.,rentár:rénta:: sent́ar:*sénta), consistent with

(18b).8 A typical example from the Spanish portion of CHILDES is given in (19).

(19) Overgeneralization of stressed mid vowels (Jorge, age 6;1)

y
and

estonces
then (=entonces)

*volo
fly-1sg (=vuelo)

a
to

la
the

pasteleŕıa
pastry shop

‘. . . and then I fly to the pastry shop’
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Remarkably, the converse error (e.g., infinitive *vuelar instead ofvolar) never occurs, and children

also apparently never substitute mid vowels for non-alternating diphthongs (e.g.,el *frecónta ‘he

frequents’ instead offrecúenta). Similarly asymmetric error patterns have also been observed for Greek

(Kazazis 1969), German (Clahsen, Aveledo, and Roca 2002) and Korean (Kang 2006), and appear to be the

norm among children acquiring languages with morphophonological alternations. An explanatory model of

analogy must be able to capture and ideally even predict such asymmetries.

Characterizing the direction of analogy has been a longstanding preoccupation in the historical

linguistics literature, and numerous tendencies have been observed (Kuryłowicz 1947; Mańczak 1980;

Bybee 1985, and many others). The Spanish case seems atypical in several respects. It has sometimes been

claimed that more frequent paradigm members are more influential (Mańczak 1980; Bybee 1985). In

Spanish, the most frequent paradigm members (3sg, 1sg, 2sg) are all stressed, which should favor a

stressed→ stressless direction of influence. What we observe, however, is that the more frequent stressed

forms are rebuilt on the basis of the less frequent stressless forms, counter to the more usual trend.

Furthermore, it is often the case that the most influential forms are also less marked (in some intuitive sense

of morphosyntactic markedness). What we see in Spanish, however, is that the 3sg, which is almost

universally agreed to be the least marked combination of person and number features, is rebuilt on the basis

of non-singular, non-3rd person forms. Furthermore, diphthongs appear in the majority of present tense

indicative forms (the 1sg, 2sg, 3sg, and 3pl= 4 out of 6), yet reanalysis is done on the basis of the minority

stressless forms. In short, the direction of influence that prevails in Spanish does not appear to follow from

any general principle of frequency or markedness.

Albright (2002) proposes that speakers generalize in some directions and not others because of a

restriction on how paradigm structure is encoded. In particular, it is proposed that paradigms have an

intrinsically asymmetrical organization in which certain forms are designated as “basic” and the remaining

forms are derived from them by grammatical rules. For example, the error data suggests that in Spanish, a

stressless form of the root (as found in the infinitive, 1pl, or 2pl) is taken as basic, and stressed forms are

predicted—sometimes incorrectly—on the basis of a stressless form. The challenge is to understand why

Spanish speakers choose this particular direction, and why paradigm organization may differ from

language to language.
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Figure 3: Candidate grammars, using asymmetrical mappings from a single base

One principle of paradigm organization, explored also by Stump and Finkel (this volume), is

PREDICTABILITY: a form is basic (≈ a PRINCIPAL PART) if it contains enough information to predict other

forms in the paradigm. As Stump and Finkel point out, there are many ways in which paradigms could be

organized around predictive forms, depending on whether how many basic forms we are allowed to refer

to, whether paradigm structure may differ from class to class, and so on. Many paradigm-based theories of

morphology designate specific forms as “reference forms” in one way or another, and use these forms as

the basis of computation for the remaining forms in the paradigm (Wurzel 1989; Stump 2001; Blevins

2006). Albright (2002) adopts a particularly restrictive hypothesis: paradigm structure is the same (static)

across all lexical items, and each form in the paradigm is based on just one other base form. The task of the

learner is to find the base forms that permit the most accurate mappings, while still obeying this restriction.

The base identification algorithm, in brief, works as follows: the learner starts with a small batch of

initial input data, consisting of paradigmatically related forms (1sg, 2sg, 3sg, etc.). Each one of these forms

is considered as a potential base form, and the minimal generalization learner is used to find sets of rules

that derive the remaining forms in the grammar. The result is a set of competing organizations, shown in

Figure 3. In the usual case, at least some parts of the paradigm suffer from phonological or morphological

neutralizations, with the result that not every form is equally successful at predicting the remainder of the

paradigm. In these cases, some of the competing grammars will be less certain or accurate than others. The

learner compares the candidate organizations to determine which form is associated with the most accurate

rules, and this is chosen as the base for the remainder of the paradigm. This process may also be run

recursively among the derived forms, to establish additional intermediate bases. (See Albright 2002 for

details.)

When this procedure is run on an input of Spanish present tense verb paradigms, the organization in
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Highly predictable mapping
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Figure 4: Predicted organization of Spanish present tense paradigms

Figure 4 results. Crucially, due to the restriction that each form be based on exactly one other base form,

the model allows only five possible directions of inference (out of 5× 6 = 30 logical possible pairwise

relations). Some of these relations, such as infinitive→1pl. or 3sg.→2sg., are virtually 100% predictable,

and leave no room for error. The greatest opportunities for analogical errors involve the mapping from

stressless to stressed forms (here, infinitive→ 3sg.), and to the 1sg. in particular. In fact, both of these

mappings correspond to attested child errors:

(20) Stem errors among children acquiring Spanish (Clahsen, Aveledo, and Roca 2002)

a. Stressed stem replaced by stressless stem:

*volo for vuelo‘fly-1sg’, *juga for juega‘play-3sg’,*tenefor tiene‘have-3sg’,*teno for

tengo‘have-1sg’

b. Irregular 1sg replaced by stem from 3sg:

*tieno for tengo‘have-1sg’;*sabofor sé ‘I know’; *conozofor conozco‘I know’; *parezo

for parezco‘I appear’;*salo for salgo‘I leave’; *oyo for oigo ‘I hear’

Although this analysis is somewhat skeletal and leaves many broader questions about paradigm

structure unanswered,9 it highlights some of the virtues of a rule-based model of analogy. In particular,

grammatical formalisms place strong restrictions on possible analogical inferences by dictating which

forms may be effected, which patterns can be extended, and so on. Naturally, the strength and nature of

these restrictions may vary considerably depending on the formalism; I have argued here in favor of a

grammar of probabilistic context-sensitive rules that asymmetrically relate forms in the paradigm, but other

formalisms are possible. The advantage of such a restrictive model is that it makes very specific and

testable predictions about possible errors, and presumably also eventual historical changes. In the cases
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examined, these predictions appear to be substantially correct.

5 Conclusion

The results in the preceding sections have a common theme: in each case, the data of Spanish contains

patterns that might logically lead to analogical inferences, yet speakers appear not to generalize them to

novel or unknown items. I have argued that this reveals fundamental restrictions on how speakers learn to

encode linguistic knowledge, which make these patterns either inaccessible or unimpressive. Furthermore,

I have shown that a model based on probabilistic context-sensitive rules is well suited to capturing these

restrictions. First, it limits the type of similarity relations that are relevant in supporting analogy: they must

be “structured” in the sense that supporting analogs must all share a set of properties that are reliably

correlated with class membership. As shown in section 2, speakers, too, appear to obey this restriction, and

models that lack such structure overpredict the goodness of many logically possible inferences. In addition,

attributing analogy to a grammar of rules leads us to expect that generalizations should be based on high

type frequency of similar words, and that token frequency should be irrelevant; in section 3, we saw that

this, too, appears to be correct. Finally, rewrite rules are an intrinsically directional formalism (A→ B),

corresponding to the idea that inference proceeds in some directions but not others. In section 4, I argued

that a model of paradigm structure based on predictability relations between related forms can predict

which directions speakers actually choose, in a way that appears to line up well with data from child errors

and historical change. In each case, the payoff of the more restrictive formalism is clear: it provides an

account for why some errors occur and some do not, providing a more explanatory model of how speakers

carry out analogy in morphophonological systems.

The examples discussed here are also intended to highlight some virtues of computationally

implemented models of analogy. At the most basic level, the models facilitate a quantitative assessment of

the relative contribution of different types of analogical reasoning, by allowing us to compare directly the

predictions of models with and without a particular capacity. Such comparisons are potentially quite

important in an area where it is easy to posit many potentially relevant factors (high token frequency,

semantic effects, phonetic factors, etc.), but difficult to establish their explanatory value. Equally important,

though, is the role that modeling may play in shaping and refining theoretical distinctions. An example of
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this was seen in section 2.4, in which comparison of the two models required a more careful definition of

the concept of structured similarity, and testing the distinction was only possible by interpreting one model

with respect to the other. We are only beginning to develop the analytical tools needed to construct

theoretical arguments from such modeling results. I hope to have shown, however, that computational

modeling can play a role not only in testing, but also in developing theories of what constitutes a possible

analogy.
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Notes

1 Recent decades have seen a wealth of frameworks for modeling analogical inference and decision mak-

ing more generally; see especially Gentner, Holyoak, and Kokinov (2001) and Chater, Tenenbaum, and

Yuille (2006).

2 Or, more precisely, they share only very general properties which do not distinguish them from other

verbs in the language, such as having a liquid, a stressable mid vowel, and so on.

3 Since the implemented model uses linear (flat) phonological representations, stress is encoded here as

a feature of the stressed vowel, rather than as a property of the syllabic context.

4 Ultimately, this is too strong an assumption, since contexts are sometimes non-local. For an attempt to

extend this system to find non-local contexts, and discussion of some of the issues involved, see Albright

and Hayes (2006).

5 One additional subject volunteered an unexpected and idiosyncratic change for this verb; this response

was excluded.

6 This was confirmed by a stepwise multiple regression analysis, in which the MGL predictions were

entered first with a high degree of significance (p < .0001), and the GCM predictions were unable to make

any additional significant contribution.

7 The reason that the GCM tends to stick to such structurally interpretable analogical sets appears to

be due to the fact that diphthongizing verbs in Spanish themselves happen to fall into such clusters. The

explanation for this may be partly phonological, since phonotactic restrictions on stem-final consonant com-

binations would restrict the set of possibilities in this position, and make it easier for commonalities to

emerge. There may also be a historical component: suppose the structured model of analogy is the correct

one, and structure-guided inferences have been shaping Spanish over the centuries. In this case, we would

expect verbs to retain diphthongization most readily if they fall into structurally definable gangs, creating

structure in the lexicon of Spanish. If this were true, then the GCM could do good job of capturing the

modern language, but would be unable to explain how the language came to be this way. If, on the other

hand, the GCM model were correct, we would expect diphthongizing verbs to be retained on the strength of
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variegated similarity, and the set of existing diphthongizing verbs could consist of variegated analogical sets

which the structured model would be unable to locate. A full diachronic analysis of verb-by-verb changes

in diphthongization is left as a matter for future research.

8 Rebuilding stressless forms to include diphthongs has been reported in some dialects of Spanish (Judeo-

Spanish, New Mexico Spanish). This data should be treated with care, however, since the morphology of

these dialects also differs in more radical ways from literary Spanish. A similar effect is also reported in the

experimental results of Bybee and Pardo (1981), but my preliminary attempts to replicate this finding have

so far been unsuccessful.

9 In particular, it is natural to wonder how such a restrictive model could cope with systems that involve

significantly more ambiguity—i.e., systems that motivate multiple principal parts in Stump and Finkel’s

terms. It is important to keep in mind that nothing in the current model precludes the possibility that at a

given point in time, languages may exhibit patterns that may be characterized as symmetrical predictability

relations. A prediction of the asymmetrical model, however, is that learners will learn implications in just

one direction, and that analogical generalizations should therefore go primarily in one direction. One type of

data that is often telling in this regard is the relative size and frequency of the inflectional classes involved.

Frequently classes that can be distinguished only in derived (non-basic) forms are small and consist of words

with high token frequency, which may be correlated with their status as memorized exceptions rather than

as grammatically principled forms.
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