
6.S979: Problem Set 1 Solutions

Anand Natarajan

Due: October 2, 2020

1. Maximally entangled states: In this problem, we will work with a generalization of the
EPR state called the maximally entangled state. Consider the state space Cd ⊗ Cd, and
denote the standard basis of Cd by {|1〉 , . . . , |d〉}. The maximally entangled state in this
space is defined to be

|Φ〉 =
1√
d

d∑
i=1

|i〉 ⊗ |i〉 .

(a) Show that for any d× d matrix A, it holds that

A⊗ I |Φ〉 = I ⊗AT |Φ〉 ,

where AT is the transpose of A. (Extra food for thought: is the transpose basis-
dependent?) In bra-ket notation, A =

∑
ij Aij |i〉 〈j|. Substituting this into the LHS of

the equation we wish to show, we have

A⊗ I |Π〉 =
∑
ij

Aij |i〉 〈j| ⊗ I

(
1√
d

d∑
k=1

|k〉 ⊗ |k〉

)

=
1√
d

∑
ij

Aij |i〉 ⊗ |j〉

=
1√
d

∑
ij

(I ⊗Aij |j〉 〈i|) |i〉 ⊗ |i〉

=
∑
ij

I ⊗Aij |j〉 〈i|

(
1√
d

d∑
k=1

|k〉 ⊗ |k〉

)
= I ⊗AT |Φ〉 .

The transpose is “basis dependent” in the sense that it’s not invariant under unitary
changes of basis. The quantity that is invariant is the Hermitian conjugate (i.e. the
conjugate transpose).

(b) Show that for any two d× d matrices A and B, it holds that

〈Φ|A⊗B |Φ〉 =
1

d
tr(ABT ).
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Observe that by the previous part, A⊗B |Φ〉 = I ⊗BAT |Φ〉. So we have

〈Φ|A⊗B |Φ〉 = 〈Φ| I ⊗BAT |Φ〉

=
1

d

∑
ij

〈ii| (I ⊗BAT ) |jj〉

=
1

d

∑
ij

〈i|j〉 〈i| (BAT ) |j〉

=
1

d

∑
i

〈i| (BAT ) |i〉

= tr(BAT ) = tr((BAT )T ) = tr(ABT ).

(For compactness, we have written |ii〉 instead of |i〉 ⊗ |i〉.)
(c) Show that for any orthonormal basis {|v1〉 , . . . , |vd〉} of Cd, the maximally entangled

state can be expressed as

|Φ〉 =
1√
d

d∑
i=1

|vi〉 ⊗ |v∗i 〉 ,

where |v∗i 〉 is the complex conjugate of the vector |vi〉. For any such orthonormal basis,
there exists a unitary U such that U |i〉 = |vi〉 for all i ∈ {1, . . . , d}. The given state can
be expressed in terms of |Φ〉 as defined in the rest of the problem by

1√
d

∑
i

|vi〉 ⊗ |v∗i 〉 = U ⊗ U∗ |Φ〉 = I ⊗ U∗UT |Φ〉 = |Φ〉 ,

where the last equality holds since U is a unitary, and thus U∗UT = (UU †)∗ = I.

2. Stabilizers: Recall the Pauli X and Z matrices from class

X =

(
0 1
1 0

)
, Z =

(
1 0
0 −1

)
.

(a) Write an eigendecomposition for X ⊗ X and Z ⊗ Z. Both of these matrices are
observables, with eigenvalues ±1. For Z ⊗ Z, the +1 eigenspace is spanned by |00〉
and |11〉, and the −1 eigenspace is spanned by |01〉 and |10〉. One can say something
analogous for X⊗X in terms of the eigenbases |±〉 for X; an alternate set of eigenvectors
is 1√

2
(|00〉 + |11〉) and 1√

2
(|01〉 + |10〉) for the +1 eigenspace, and 1√

2
(|00〉 − |11〉) and

1√
2
(|01〉 − |10〉) for the −1 eigenspace.

(b) A state |ψ〉 is stabilized by an operator M if M |ψ〉 = |ψ〉. Write down the states
stabilized by

i. X ⊗ I and I ⊗ Z. |ψ〉 = |+〉 |0〉 = 1√
2
(|00〉+ |10〉).

ii. X ⊗X and Z ⊗ Z. |ψ〉 = 1√
2
(|00〉+ |11〉) = |EPR〉

iii. X ⊗X and −Z ⊗ Z. |ψ〉 = 1√
2
(|01〉+ |10〉).

(c) Is there a state stabilized by X ⊗ X and Z ⊗ I? If not, why not? There is no such
state. One argument is to observe that X ⊗ X anticommutes with Z ⊗ I. So if there
were a state |ψ〉 stabilized by both, we would have

|ψ〉 = (X⊗X) |ψ〉 = (X⊗X)(Z⊗I) |ψ〉 = −(Z⊗I)(X⊗X) |ψ〉 = −(Z⊗I) |ψ〉 = − |ψ〉 ,

implying that |ψ〉 = 0.
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(d) (Optional:) Suppose that 〈ψ| (X ⊗ X + Z ⊗ Z) |ψ〉 ≥ 2 − ε. Find a bound on the
minimal Euclidean distance minθ ‖eiθ |ψ〉 − |EPR〉 ‖ between a state that is a multiple
of |ψ〉 and the EPR state, as a function of ε. (Hint: consider the eigendecomposition
of the matrix X ⊗ X + Z ⊗ Z.) Let M = X ⊗ X + Z ⊗ Z. Before we bust out
Mathematica to calculate the eigendecomposition of M , let’s try guessing, based on the
vectors we’ve already constructed for the previous parts. We know already that there
is a +2 eigenvector, namely |EPR〉, and that there’s a 0 eigenvector, namely the state
stabilized by X ⊗ X and −Z ⊗ Z. We can guess the other two egeinvectors: one with
eigenvalue 0, and one with eigenvalue −2.

λ1 = 2, |v1〉 =
1√
2

(|00〉+ |11〉)

λ2 = 0, |v2〉 =
1√
2

(|01〉+ |10〉)

λ3 = 0, |v3〉 =
1√
2

(|00〉 − |11〉)

λ4 = −2, |v4〉 =
1√
2

(|01〉 − |10〉).

We can write M =
∑

i λi |vi〉 〈vi|. We are given

〈ψ|M |ψ〉 =
∑
i

λi| 〈vi|ψ〉 |2 ≥ 2− ε

2| 〈EPR|ψ〉 |2 − 2| 〈v4|ψ〉 |2 ≥ 2− ε
| 〈EPR|ψ〉 |2 ≥ 1− ε/2

Now observe

‖eiθ |ψ〉 − |EPR〉 ‖2 = 〈ψ|ψ〉+ 〈EPR|EPR〉 − 2< 〈EPR| eiθ |ψ〉
= 2− 2< 〈EPR| eiθ |ψ〉
≥ 2− 2| 〈EPR|ψ〉 |,

and this inequality becomes an equality for appropriately chosen θ (so that |ψ〉 is real
and has positive inner product with |EPR〉). Thus, we have

min
θ
‖eiθ |ψ〉 − |EPR〉 ‖ =

√
2− 2| 〈EPR|ψ〉

=≤
√

2− 2
√

1− ε/2.

3. The GHZ game: In this problem, we will introduce tripartite states, corresponding to three
quantum systems. Suppose Alice, Bob, and Charlie each have a single qubit. Then their joint
state space is C2 ⊗ C2 ⊗ C2. As usual, we denote the standard basis of C2 by {|0〉 , |1〉}. X
and Z are the Pauli matrices as in the previous problem.

(a) The GHZ state is the following entangled state

|GHZ〉 =
1√
2

(|0〉 ⊗ |0〉 ⊗ |0〉+ |1〉 ⊗ |1〉 ⊗ |1〉).
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(b) Write down all tensor products of X, Z, and the identity I that stabilize |GHZ〉. You
should find five such matrices, including I⊗I⊗I. They are III,XXX,ZZI, ZIZ, IZZ
(where we have suppressed the tensor product symbol for compactness).

(c) Suppose Alice and Bob have lost contact with Charlie. Show that nevertheless they can
distinguish between the GHZ state and the following state

|ψ〉 =
1√
2

(|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉)AB ⊗ |1〉C .

Do this by finding an observable O acting on Alice and Bob’s systems such that

〈ψ| O ⊗ I |ψ〉 6= 〈GHZ| O ⊗ I |GHZ〉 .

(Hint: consider a tensor product of X or Z matrices). Take O = X ⊗X ⊗ I. This has
expectation value 0 on the GHZ state and expectation value 1 on |ψ〉.

(d) In the GHZ game, Alice, Bob, and Charlie are separated so that they cannot communi-
cate, and play together against a referee. The referee samples a triple of bits (x, y, z) from
{(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)} uniformly at random, and sends x to Alice, y to Bob,
and z to Charlie. Each player responds with a single-bit answer; we denote Alice, Bob,
and Charlie’s answers by a, b, and c respectively. The players win if x∨ y∨ z = a⊕ b⊕ c.

i. What is the maximum probability of winning for Alice, Bob, and Charlie if they use
a classical strategy? First of all, we can restrict to deterministic strategies by the
argument given in class. So we have four equations

a0 + b0 + c0 = 0

a0 + b1 + c1 = 1

a1 + b0 + c1 = 1

a1 + b1 + c0 = 1

in binary variables that we would like to satisfy. From adding the four equations
together, we obtain 0 = 1, showing that they cannot all be satisfied simultaneously.
We can easily satisfy three out of the four by setting ai = bi = ci = i for i ∈ {0, 1}.
So the classical value is 3/4.

ii. Describe a quantum strategy for the players to win the game with certainty. (Hint:
use the GHZ state, and the stabilizers you found in the first part of the problem.)

Just as in the previous part, the conditions for a perfect strategy can be expressed
as a system of equations, this time in the observables used by the players:

A0 ⊗B0 ⊗ C0 |ψ〉 = |ψ〉
A0 ⊗B1 ⊗ C1 |ψ〉 = − |ψ〉
A1 ⊗B0 ⊗ C1 |ψ〉 = − |ψ〉
A1 ⊗B1 ⊗ C0 |ψ〉 = − |ψ〉

Let’s guess |ψ〉 = |GHZ〉. Then, from the first part of the problem, we know that
X ⊗X ⊗X is a stabilizer, so let’s set A0 = B0 = C0 = X. Now, for the remaining
equations, we want three stabilizers that have an X on one tensor factor. Observe
that if we multiply X⊗X⊗X by I⊗Z⊗Z, we get X⊗(−iY )⊗(−iY ) = −X⊗Y ⊗Y .
So we can choose A1 = B1 = C1 = Y .

4


