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• Applications



The method of types
Given a string xn = (x1,...,xn)∈[d]n                   [d]:={1, ..., d}

define the type of xn to be the letter frequency distribution:
t = T(xn) = (t1, ..., td)
where tc := | { j : xj = c } |.

For a type t, the type class of t is the set of strings with type t:
Tt = {xn : T(xn) = t}

Example: 
T(babcba) = (2,1,3)
T(2,3,1) = {aabbbc, ababbc, abcaab, cbbaaa, ...}

Total of              strings



Properties of types
1. Size of type classes is given by entropic expression

2. Number of types is polynomial

3. i.i.d. sources



types and  i.i.d. sources
Further note that:
1. p⊗n(xn) depends only on the type of xn

(i.e. conditional on the type, xn is uniformly distributed)

2. The observed type t is closely concentrated near p.

Application: randomness concentration
Given xn distributed according to p⊗n,

we would like to extract a uniformly distributed random variable.

Algorithm:
Condition on the type of xn.

This yields ≈nH(p) random bits w.h.p.



Applications of types
Data compression:
Given a string xn drawn from an i.i.d. source p⊗n,

represent it using ≈nH(p) bits.

Algorithm:
1. Transmit the type t using O(log n) bits.
2. Transmit the index of the string within Tt using
                                                        bits.



Alternate perspective 
on types

Divide a type t (e.g. t = (2,5,2,3)) into 
a list of frequences λ (e.g. λ = (5,3,2,2))
and a list of corresponding letters q (e.g. q = (b, d, a, c)).

Note that:
1. Each xn can be uniquely written as (λ, q, p), where

2. The range of λ and q is ≤ poly(n).

3. Sd acts on q, while Sn acts on p.  Both leave λ unchanged.



symmetries of (Cd)­n
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The Schur Transform



Properties of the Schur 
basis

1. |Par(n,d)| ≤ (n+1)d ~ poly(n)

2. 

3.

4. i.i.d. sources:
(a) The Pλ register of ρ⊗n is maximally mixed.

(b) 

Summary:
Most of the dimensions are in the Pλ register.
There the spectrum is flat for i.i.d. sources and the dimension is 
controlled by λ, which is tightly concentrated.



Schur duality applications
Entanglement concentration:
Given |ψABi­n, Alice and Bob both perform the Schur transform, 
measure λ, discard Qλ and are left with a maximally entangled state in 
Pλ (by Schur’s Lemma) equivalent to log dim Pλ ¼ nS(ψA) EPR pairs.

Hayashi and Matsumoto, Universal entanglement concentration. quant-ph/0509140

Universal data compression:
Given ρ­n, perform the Schur transform, weakly measure λ, and we obtain 
Pλ with dimension ¼ exp(nS(ρ)).  (λ and Qλ can be sent uncompressed.)

Hayashi and Matsumoto, quant-ph/0209124 and references therein.

State estimation:
Given ρ­n, estimate the spectrum of ρ, or estimate ρ, or test to see 
whether the state is σ­n. λ is related to the spectrum, Qλ to the 
eigenbasis, and Pλ is maximally mixed.

Keyl, quant-ph/0412053 and references therein.



Joint types
Classical noisy channel:

x N(y|x) y

tx=T(xn) is the type of the input
ty=T(yn) is the type of the output
txy=T(x1y1, ... , xnyn) is the joint type

Properties of joint types:
1. For each N, n, ε>0, there is a set of feasible joint types, which can 
occur with probability ≥ε on some inputs.  These correspond roughly to 
the feasible pairs (p, N(p)).

2. N⊗n(yn|xn) depends only on txy.



Classical Reverse 
Shannon Theorem

Goal:
Simulate n uses of a noisy channel N using shared randomness and an 
optimal (≈n maxp(X) I(X;Y)) rate of communication.

Approach:

1. On input xn, Alice first simulates N⊗n to obtain a joint type txy. 

2. She sends txy to Bob using O(log n) bits.

3. Conditioned on txy, the action of N⊗n is easy to describe and to 

simulate, using the appropriate amount of communication.

Bennett et al., quant-ph/0106052.  Winter, quant-ph/0208131.



quantum channels
Church of the Larger Hilbert space:
Purify the input and output of a channel to obtain a tripartite pure state.
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Two definitions of feasible joint types:
1. (Spec ψA, Spec ψB, Spec ψE) if |ψiABE is the output of one use of N.

2. (λA, λB, λE) such that hψ| ΠλA ⊗ ΠλB ⊗ ΠλE |ψi ≥ε for some |ψiABE 

resulting from n uses of N.
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quantum joint types
Two definitions of feasible joint types:
1. (Spec ψA, Spec ψB, Spec ψE) if |ψiABE is the output of one use of N.

2. (λA, λB, λE) such that hψ| ΠλA ⊗ ΠλB ⊗ ΠλE |ψi ≥ε for some |ψiABE 

resulting from n uses of N.

Results:

1. These two definitions are approximately equivalent.

2. There is a sense in which conditioning on a joint type makes all 
transition probabilities equal.

References:
H., PhD thesis, 2005; quant-ph/05122255.
Christandl, H., Mitchison, “On nonzero Kronecker coefficients and their 
consequences for spectra.” CMP 2007; quant-ph/0511029.



normal form of i.i.d. channels
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Tripartite Sn-invariant 
pure states

Obtained e.g. by purifying (ρAB)⊗n.

Interpretation:
This is almost completely general!
Except that μA, μB and μE are each maximally mixed (by Schur’s Lemma).



Application: additivity of 
minimum output entropy

joint work with P. Hayden and A. Winter.

Smin(N) := minψ S(N(ψ))

Additivity question: Does Smin(N1⊗N2) = Smin(N1) + Smin(N2)? 

Equivalently: Does limn→∞ Smin(N⊗n) / n = Smin(N) ?

Our result: min|Ψi∈SymnCd ≥ n Smin(N) - o(n)

where SymnCd = {|ψi : π|ψi=|ψi ∀π∈Sn}

Proof: Most of the entropy is in the |µi register.  If λA is trivial then PλB and 
PλE are maximally entangled, so Bob’s entropy ≈ log dim PλB ≈ nH(λB).
Finally, λB is ε-feasible ⇔ ∃ a nearby feasible single-copy state.



Application: Quantum 
Reverse Shannon Theorem

joint work with C. Bennett, I. Devetak, P. Shor and A. Winter.

Goal: Simulate N⊗n using an optimal rate of communication.

Establish qualitative equivalence of all channels.

Idea: Previously constructions were known for i.i.d. input, or for 
inputs restricted to a single value of λA and qA.
To generalize, Alice splits her input according to λA and qA and 
simulates Vn

N  locally to generate λB, qB, λE, qE and μ. 

• μ is simple, and easily compressible.
• λB, qB are small, and can be sent uncompressed.

Subtlety: Different values of λB require different amounts of entanglement.



Entropy-increasing quantum channels

joint work with A. Childs

Result: If S(N(ρ))>S(ρ) for all ρ then N⊗n ≈ ∑ν pνVν, where {pν} is 

a probability distribution and {Vν} are isometries.

Related to quantum Birkhoff conjecture: If N is unital (i.e. N(I/d)=I/d, or 
equivalently, dA=dB and S(N(ρ))≥S(ρ) for all ρ) then N⊗n ≈ ∑ν pνVν, 

where {pν} is a probability distribution and {Vν} are unitaries.

Noisy state analogue:  For any state ρAB, one can decompose ρAB⊗n as a 

mixture of pure states with average entanglement ≈ n min(S(ρA), S(ρB)).

Proof idea for states: If dim PλB  ≫ dim PλA , then a random measurement 
on PλC will leave PλA  nearly maximally mixed w.h.p. 

[Smolin-Verstraete-Winter, quant-ph/0505038]

Proof idea for channels: Consider the Jamiolkowski state obtained from 
inputting ∑λA |λAihλA| / |Par(n,dA)| ⊗ I/dim QλA  ⊗ I/dim PλA to N⊗n.



Future research directions
1. The quantum Birkhoff conjecture.

2. Applying the Schur basis to core questions of quantum information 
theory: additivity, strong converse of HSW theorem, coding.

3.Analyzing product states, e.g. in HSW coding.

4. Performing more protocols efficiently.
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