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The result
Given:

1. A classical Cayley graph expander on a group G
with gap 1-A2 and degree d.

2. An irrep H(g) of G with dimension N.

3. An efficient method of implementing p(g) (such as a
QFT on G.)

We have:

An efficient quantum expander with dimension N,
degree d and gap 21-A..



Definition: Cayley graph
Cayley graph:
1. Given by a group G and a generating set D. d=|D|

2. Vertices are elements of G.

3. Neighbours of geG are {xg : x€Dj}. Graph is d-regular.



Example: cyclic group
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Definition: expander

(Classical) expander graph.
Really a family of graphs with N—co vertices and degree d=0(1).

Combinatorial definition: Any not-too-big subset of vertices has lots
of neighbours.

Spectral definition: The random walk matrix on the graph has
second-largest eigenvalue Az =1 - Q(1).

Quantum expander: Spectral definition only.

A family of quantum operations £ acting on an N-dim system.
d=0(1) Kraus operators.
(Typically proportional to unitaries, so &I/N) = I/N.)

Spectral gap:
As a linear operator on density matrices, A2(€) = 1-Q(1).




Representation theory defs

Irrep: Y is a map from G to operators on V, such that
Vu has no non-trivial p-invariant subspace.

Efficiently implementing p(g) means taking time poly(log N) to
apply p(g) to a log N - qubit register. N :=dy = dim V.

Quantum Fourier Transform: Uggt
Implements isomorphism C[G] = E} V, ® V!

: e : H
Ly is the left-multiplication operator: Lilg) = Ixg)

Then UQFTL:BU(EFT = Z )l ® pz) @ Ia,.
uEé

So, if Ugrr and Lx can be implemented efficiently, then so can p(x).

(Assuming that poly(log |Gl) is the same as poly(log d,).)



spectra of Cayley graphs

The walk operator is W = Z L,
‘D‘ xeD

The (normalised) stationary distribution is

: g) -
71T 2

In the Fourier basis

The walk operator is Z ) {p| ® — |D| Z u(zr) ® g,
xeD

The stationary distribution is lp=trivial) [0} 10) .

The second largest eigenvalue is |

Mo(W) = max |l— 3" ()

puFAtrivial ‘D‘




Example: cyclic group

G 78 Fourier basis: k € {0,1,2,3,4,5}
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Warning!
Abelian groups cant have O(1) degree, Q(1) gap. 5 (W*+w?3)/2




Example: symmetric group

Gi= S
D = {(12), (123)3.

|

trivial 1

sign 0

2-dim i( )




The quantum expander
construction

Given a classical Cayley graph with generators DCG

and given an irrep Y;
the quantum expander is:

Elp) = ‘%‘ > () pp()!

rxecD

Kraus operators = |D| = degree of classical expander
€ is efficient if p(x) is efficient.

It remains to show that Ax(&) < Aa(W).



Analysis of quanfum expander

E(p) ‘D| > @) pp(z

xelD

As a linear operafor (instead of a super-operator), this is:

)*  We want A3 (E).
-~ D] é” s

Now the inevitable representation theory:
U®P* is a reducible representation of G, and can be decomposed

info irreps If v appears with mul’riplici’ry my, then
e )" = Z\ v ®v(z)® I,

AND! Schur's Lemma says Miriviai=1.



Analysis of quantum expander

£ = 5 2 #) @ule)’

rxe D

S vl e (% a u<x>) B

xeclD

12

Mirivial=L corresponds to \i=l.
The second largest eigenvalue is

1 1
Ao (s B ;V(x)
m, >0 27

AN

max ﬁ Z v(z)|| = A2(W) Q.E.D.

v=Ztrivial
7 reD —



Applying the recipe

Recall: We want run-time to be poly(log d,), but implementing
using a QFT usually requires poly(log IG|) time. This works
when dy is sufficiently large.

PSL(2, Fq): The LPS expander. d=6, A2 = /5 / 3.
Irreps are large, but no efficient QFT is known.

SU(Z): Another LPS expander. d=6, A2 = /5 / 3.
Irreps are large, but no efficient QFT is known.
quant-ph/0407140 claims to implement p(x) in time
poly(log dy), but the algorithm is incomplete.



Applying the recipe

Sn: The Kassabov expander. d=0(1), Az = 1-Q(1)

Irreps are large: log dy = (log ISql) / 2
QFT runs in poly(log ISnl) = poly(n).

SN+1: The Kassabov expander. d=0(1), Az = 1-Q(1)

There is an N-dimensional irrep that can be directly
implemented in time poly(log N).

HiHJ...: zig-zag product [Rozenman-Shalev-Wigderson]
IH| = O(1). H=[H,H].
Has large irreps and efficient QFT.

AFF(Z, Fq): Margulis expander. d=8, A; < 542 / 8.

No efficient QFT but one irrep can be efficiently
constructed. [Eisert-Gross; 0710.0651]



Related work

quantum zig-zag product:

[Ben-Aroya, Schwartz, Ta-Shma; 0709.0911]

Not the same as applying my construction to the classical
zig-zag product.

Another QFT-based construction:
[Ben-Aroya, Ta-Shma; 0702129]
Not yet known to be efficient.

Quantum Margulis expanders

[Eisert-Gross; 0710.0651]

Also vields efficient constant-gap, constant-degree
expanders for any dimension.




Coming attractions!

approx. 1-design

expander {pi, U} s.1.
ZpiUipU; ~ /dU UpUT
approx. k-design
{Pi, Ui} s.t.
k T\ Rk
k-tensor product ZPiUz‘@ p(U{)®
expander WP e

~ / QUE " p(UTT) D"

with M. Hastings: random unitaries are tensor product expanders.

with R. Low: random circuifs are tensor product expanders. (we think)







