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Classical random sampling

“Useful with high probability”

Possibly helpful in computational complexity
e.g. polynomial identity checking, approximating the permanent and
other hard-to-compute quantities

Provably helpful in communication complexity
e.g. testing of two n-bit strings requires n bits deterministically,
O(log n) bits with randomness or O(1) bits with shared randomness.

Provably helpful in query complexity
e.g. estimating averages or the volume of convex bodies. The key
tool is always sampling.

Absolutely necessary for cryptography
Without (subjective) randomness there are no secrets.
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What it means to sample on a quantum computer

There is no canonical answer. Let p ∈ RN be a probability distribution.
Here are three possibilities, in order of increasing strength.

Model Cost of unifor-
mity testing

1 The ability to prepare an N × N density
matrix ρ with spec ρ = p

Θ(N)

2 The existence of an efficient classical cir-
cuit that can sample from p.

√
N classically,

N1/3 quantumly

3 The ability to prepare
∑N

i=1

√
pi |i〉. O(1)
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When are these possible?

Scenario 1: Preparing ρ with spec ρ = p.

Can be obtained via “Quantum Metropolis Sampling” [Temme et al.,
0911.3635 ], which prepares ρ ∝ e−βH for β ≥ 0 and H a sum of
terms each involving O(1) qubits.

Information-theoretic tasks often work in this setting; e.g.
compressing ρ⊗n for unknown ρ requires only knowing the Shannon
entropy of p = spec ρ.

This ability is weaker than the ability to sample from p.

Scenario 2: p is efficiently classically samplable

By definition, quantum criteria are same as classical.

Being able to sample from p using a quantum circuit is not
necessarily as strong, since classical circuits can be written as
deterministic functions of a random seed.
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When are these possible?

Scenario 3: preparing
∑

i

√
pi |i〉.

Also called “q-sampling” p.

Of the three scenarios, this is the most powerful.

Can be prepared using an oracle that maps j →
∑

i≤j pi .

Using [Aharonov and Ta-Shma; STOC ’03], we can generate this
state if

1 There is a sequence of Markov chains M(0), . . . ,M(t) with stationary
states p(0), . . . , p(t) = p.

2 p(0) is easy to q-sample.
3 Each M(t) has gap ≥ 1/ poly(n) and each p(t) has ≥ 1/ poly(n) overlap

with p(t+1).
4 For each t, i , j we can efficiently compute p

(t)
i /p

(t)
j .

If f : [N] → [M] is efficiently computable, then we can efficiently
create ∑

i∈f (−1)(x) |i〉√
|f (−1)(x)|

,

for a random choice of x .
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Scenario 1: Can create ρ

Measuring N2 observables can estimate ρ.
Unfortunately, this requires Ω(N2) copies in general.
Quantum birthday problem: In [Childs, Harrow, Wocjan; STACS ’07], we
considered the problem of distinguishing the case ρ = I/N from the case
rank ρ ≤ N/2.

If the eigenbasis of ρ is known, then this is the classical birthday
problem and Θ(

√
N) copies are sufficient.

When the basis is not known, Θ(N) copies are necessary and
sufficient to distinguish these two cases.

The intuition is that the quantum problem is harder because of the
unknown basis. This raises the effective number of degrees of
freedom to ∼ N2, so that N copies are needed for a “collision.”

The proof uses the Schur basis, a quantum generalization of the
classical method of types.
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Scenario 2: Defining sampling oracles

We want to treat the classical algorithm creating samples of p as a black
box.

Sampling
Algorithm

i with probability pi

However, this model is too restrictive.

r ∈ {0, 1}m

Random seed
Sampling
Algorithm

i = f (r) where pi = |f −1(i)|
2m

Our quantum algorithm will make use of oracle access to f .
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Scenario 2: Classical results

The symmetric case was mostly solved by [Valiant, STOC ’08].

Canonical tester
1 Draw M samples according to p.

2 Suppose that item i appears s(i) times.

3 If s(i) ≥ θ, then estimate p̂i = s(i)/M. Otherwise, consider the range
p̂i ∈ [0, θ

M ].

4 Hope that p̂ gives an unambiguous answer.

Applications

Estimating trace distance in general requires N1−o(1) samples.

Determining whether p = q or 1
2‖p − q‖1 ≥ ε requires Θ(N2/3)

samples.
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Scenario 2: Previous quantum results

The first example of quantum advantage is Grover’s 1996 search
algorithm. (Proved optimal by BBBV in 1994!)

For any subset S ⊂ [N], let π =
∑

i∈S pi . Grover’s algorithm can

determine whether π = 0 or π ≥ θ in time O(1/
√
θ).

This can be used distinguish 1-1 functions from 2-1 functions in time
O(N1/3). [Brassard, Høyer, Tapp; quant-ph/9705002]

More generally, we can output π ± O(ε) in time O(
√
π/ε).

[Brassard, Høyer, Mosca, Tapp; quant-ph/0005055]
Compare with O(π/ε2) for classical sampling.

[Aaronson and Ambainis; arXiv:0911.0996] prove that for symmetric
problems, any Q-query quantum algorithm can be turned into an
O(Q9)-query randomized algorithm.

Aram Harrow (Bristol) quantum sampling NEC-Rutgers 25 March, 2010 9 / 21



Scenario 2: our results

[Bravyi, Harrow and Hassidim; STACS ’10] Given two distributions p, q
and constants 0 < ε ≤ θ ≤ 1 we consider three problems.

Goal to distinguish

Uniformity testing p = u 1
2‖p − u‖1 ≥ ε

Statistical distance 1
2‖p − q‖1 ≤ θ − ε 1

2‖p − q‖1 ≥ θ
Orthogonality 1

2‖p − q‖1 ≤ 1− ε 1
2‖p − q‖1 = 1

(u denotes the uniform distribution on [N].)

Results:

Goal Classical Quantum

Uniformity testing Θ(N1/2) Θ(N1/3)

Statistical distance N1−o(1) O(N1/2)

Orthogonality Θ(N1/2) Θ(N1/3)

(Uniformity lower bound from [Chakraborty et. al, unpublished].)
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Distribution testing protocols

Algorithm for statistical distance

Consider the r.v. X which equals |pi−qi |
pi+qi

with probability 1
2(pi + qi ).

E(X ) = 1
2‖p − q‖1

Var(X ) ≤ E(X 2) ≤ 1

Estimating X to constant multiplicative accuracy requires O(
√

N/δ)
queries when max(pi , qi ) ≥ δ/2N.
This happens with probability ≥ 1− δ.

Therefore O(
√

N) queries suffice.

Algorithm for fidelity:
∑N

i=1

√
piqi

Now let X equal
√

pi/qi with probability qi .

E(X ) =
∑N

i=1

√
piqi Var(X ) ≤ E(X 2) =

∑N
i=1 pi = 1

Again O(
√

N) queries suffice.
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Distribution testing protocols

Algorithm for uniformity testing

Take M ∼ N1/3.

Sample S = {i1, . . . , iM} according to p.

If there is a collision, then output “not uniform.”

Let pS = pi1 + . . .+ piM .

Estimate pS to constant accuracy and output “uniform” iff
pS ≈ M/N.

Algorithm for orthogonality testing

Take M ∼ N1/3.

Sample S = (i1, . . . , iM) according to p, ignoring duplicates.

Estimate qS = qi1 + . . .+ qiM and output “orthogonal” iff the
estimate is 0.
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Scenario 2: Discussion

Unlike the classical “canonical tester,” there are many different quantum
approaches.

It is unknown whether there is a general framework that encompasses all
optimal quantum algorithms for testing symmetric properties of
distributions.

The only general purpose lower bound is the Aaronson-Ambainis result. It
is probably not tight, and does not suggest a canonical algorithm.

One other subtlety: what if we have a quantum algorithm that can
generate samples according to p? Now there is no seed, but the subroutine
to estimate probabilities still works. Is this ever a weaker primitive?

Aram Harrow (Bristol) quantum sampling NEC-Rutgers 25 March, 2010 13 / 21



Scenario 3: q-sampling

The ability to prepare
∑N

i=1

√
pi |i〉 is a potentially much more powerful

form of sampling.

Swap test

Given
∑N

i=1

√
pi |i〉 and

∑N
i=1

√
qi |i〉, the swap test accepts with

probability

1 +
(∑N

i=1

√
piqi

)2

2
.

Quantities such as fidelity and statistical distance can be estimated with
O(1) samples.
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q-samples and Markov chains

If M is a gapped Markov chain with stationary distribution p, then we can
efficiently distinguish

∑
i

√
pi |i〉 from any orthogonal state.

This is used by [Lutomirski et al., 0912.3825] to verify a particular
candidate for quantum money.

Similarly, quantum expanders can be used to verify arbitrarily large
maximally entangled states. Define |ΦD〉 = 1√

D

∑D
i=1 |i〉 ⊗ |i〉.

Let U1, . . . ,Uk be a D-dimensional quantum expander. Then Alice and
Bob can verify that they share |ΦD〉 by

Alice prepares the control register 1√
k

∑k
i=1 |i〉.

Conditioned on the control register she applies Ui to her data.

She sends the control register to Bob.

Conditioned on the control register Bob applies Ūi to his data.

Bob accepts if the control register is still in the 1√
k

∑k
i=1 |i〉 state.

Achieves accuracy ε using O(log 1/ε) communication.
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Testing productness

Problem: p is a distribution on

n︷ ︸︸ ︷
[d ]× . . .× [d ]. Determine whether p is a

product distribution or is far from any product distribution.

Classical version: Can be achieved with O(dn/2) samples by a relation to
uniformity testing.

Using q-samples:

One sample gives no information.

Two samples are enough for constant accuracy [Harrow and
Montanaro; 1001.0017].

Let 1− ε be the maximum fidelity of
∑N

i=1

√
pi |i〉 with any product state.

Then our test outputs ACCEPT with probability 1−Θ(ε).
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Testing productness

Product test algorithm

1

1

swap
test

2

2

swap
test

3

3

swap
test

...

...

n

n

swap
test

∑
i

√
pi |i〉

∑
i

√
pi |i〉

Accept iff all n swap tests pass.

Why it works. Applied to ρ⊗ ρ, the swap test accepts with probability
(1 + tr ρ2)/2. If

∑
i

√
pi |i〉 is entangled, some of its subsystems must be

mixed and so some swap tests are likely to fail.
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Application of product test

QMA(k)

QMA(k)c,s is the class of Quantum Merlin-Arthur proofs with k
unentangled Merlins. For L ∈ QMA(k)c,s , there is a quantum poly-time
verifier V such that

If x ∈ L, then there exists a proof |ψ1〉 ⊗ . . .⊗ |ψk〉 such that V
accepts x , |ψ1〉 ⊗ . . .⊗ |ψk〉 with probability ≥ c .

If x 6∈ L, then for any purported proof |ψ1〉 ⊗ . . .⊗ |ψk〉, V accepts
x , |ψ1〉 ⊗ . . .⊗ |ψk〉 with probability ≤ s.

Amplification

QMA(1)c,s can be amplified, so c − s > 1/ poly(n) is just as strong
as c = 1− 2− poly(n), s = 2− poly(n).

Amplification was not known to work for QMA(k)c,s when k ≥ 2.
Indeed, perfect parallel repetition fails because Smin

∞ is not additive.
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Application of product test

Our result implies:

Two provers can simulate k provers:
QMA(k)c,1−ε ⊂ QMA(2)c,1−Θ(ε).

QMA(2) can be amplified: If c − s > 1/ poly(n) then
QMA(2)c,s ⊂ QMA(2)1−2− poly(n),0.98.

Short QMA(2) proofs for 3-SAT: [based on Aaronson et al., 0804.0802]

Two provers.
Perfect completeness (c = 1).
Constant soundness (s = 0.98).
Quantum proofs each using

√
n · poly log(n) qubits.

Scaling down, we have NPlog2 ⊂ QMAlog(2)0.98,1.

Hardness of approximation This implies that the following problems
are NPlog2-hard to approximate to within a constant factor:

separability, Smin
α and ground-state energy density of mean-field

Hamiltonians.
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Open questions

Scenario 1: spec ρ = p

Optimal state tomography (i.e. how to estimate ρ) is still not known,
although the Schur basis helps.

Are there algorithmic applications of e.g. the quantum birthday
problem?

Determine performance of the quantum Metropolis algorithm.

Scenario 2: classical sampling possible

Is there a quantum “canonical tester”?

Is the ability to sample with a quantum algorithm ever weaker than
the ability to sample with a classical algorithm?
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Open questions

Scenario 3: q-sampling

We can create a quantum state quickly with the assistance of an
oracle. Can we do the same for a unitary? [Berry and Childs,
0910.4157] presents one difficulty.

Analyze the product state tester for states that are very far from any
product state. This may require new ideas that are more interesting
than the original tester, such as an exponential de Finetti theorem for
product states, or a proof that weak additivity holds.

Can q-sampling be of use in other quantum proof systems?

How strong is QMAlog(2)const,1?

In general there should be more scope for exponential speedups using
tools associated with q-sampling.
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