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The problem: testing probability distributions

» We are given samples of [N] drawn according to p.
» The goal is to determine some (often symmetric) property of p.
For example:

> Entropy: H(p) = Y1, pilog %,-'
» Distance from uniform distribution:

1 1
§||P—U|| ZEZ;

» Alternatively, we can draw samples according to p or g.

» Statistical distance: Given thresholds 0 < o < 3 < 1, determine
whether 1(lp — qlli < aor 3|lp—qlli > 5.

» Special cases include when o = 0 (determining whether p = q)
and when g = 1 (determining whether p and g have orthogonal
support.)
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Motivation

» This is a basic example of property testing.

» |t is a primitive in other tasks, such as testing whether a graph
is bipartite.

» Estimating trace distance is a complete problem for SZK.
Quantum computers can speedup the naive algorithm for
solving problems in NP. Can they do the same for SZK?
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What it means to sample on a quantum computer

There is no canonical answer. Let p € RN be a probability
distribution. Here are three possibilities, in order of increasing
strength.

Model Cost of unifor-
mity testing
1 The ability to prepare an Nx N density ©(N)
matrix p with specp =p
2 The existence of an efficient classical /N classically,
circuit that can sample from p. N'/3 quantumly
3 The ability to prepare SN, \/p; |i). o(1)

Scenario 1 is weaker and scenario 3 is stronger.

In this talk, we will focus on scenario 2.

Aram Harrow

niversity of

(2
Distribution testing Slide 4/1

Ui
J BR



Defining sampling oracles

We want to treat the classical algorithm creating samples of p as a

black box.
f\%rgﬂfr?, i with probability p;

However, this model is too restrictive.

Random seed s i
m ampling [ — 1))
re{0,1} Algorithm i=1f(r) where p; = "1

Our quantum algorithm will make use of oracle access to f.
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Classical results
The symmetric case was mostly solved by [Valiant, STOC ’08].

Canonical tester

1. Draw M samples according to p.

2. Suppose that item i appears s(/) times.

3. If s(i) > 6, then estimate p; = s(i)/M. Otherwise, consider the
range P € [0, 5]

4. Hope that p gives an unambiguous answer.

Applications

» Estimating trace distance in general requires N'=°() samples.

» Determining whether p = g or J||p — ql|1 > e requires ©(N?/3)
samples.
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Previous quantum results

» The first example of quantum advantage is Grover’'s 1996
search algorithm. (Proved optimal by BBBV in 1994!)

» For any subset S C [N], let 7 = >, 5 p;. Grover’s algorithm can
determine whether 7 = 0 or = > 6 in time O(1//9).

» This can be used distinguish 1-1 functions from 2-1 functions in
time O(N'/3). [Brassard, Hayer, Tapp; quant-ph/9705002]

» More generally, we can output 7 £+ O(e) in time O(\/7/¢).
[Brassard, Hoyer, Mosca, Tapp; quant-ph/0005055]
Compare with O(7/¢?) for classical sampling.

» [Aaronson and Ambainis; arXiv:0911.0996] prove that for
symmetric problems, any Q-query quantum algorithm can be
turned into an O(Q°)-query randomized algorithm.
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Our results
Given two distributions p, g and constants 0 < e < 0 < 1 we

consider three problems.
Goal to distinguish
Uniformity testing p=u slp—uli >
Statistical distance | 3|p—ql1 <0 —¢ | Slp—qll1 >0
Orthogonality | 5llp—qlls <1—€| 3llp—ql1 =1

(u denotes the uniform distribution on [N].)

Results:

Goal Classical | Quantum
Uniformity testing | ©(N'/?) | ©(N'/3)
Statistical distance | N'-°() | O(N'/2)
Orthogonality O(N'/2) | ©(N'/?)

(Uniformity lower bound from [Chakraborty et. al, unpublished].)
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Distribution testing protocols
Algorithm for statistical distance

Consider the r.v. X which equals 'g’+g" with probability % (p; + qi).
> E(X) = 3lp—qll;
» Var(X) < E(X?) <1
» Estimating X to constant multiplicative accuracy requires

O(1/N/d) quantum queries when max(p;, g;) > ¢/2N.
This happens with probability > 1 — 6.

» Therefore O(v/N) queries suffice.

Algorithm for fidelity: SN . \/piG;
Now let X equal \/p;/q; with probability g;.

E(X) = Y iy VBiGi Var(X) <E(X2) =Y, pi=1
» Again O(v/N) queries suffice.
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Distribution testing protocols
Algorithm for uniformity testing

» Take M ~ N'/3.

» Sample S = {iy, ..., iy} according to p.

» If there is a collision, then output “not uniform.”
» Let ps =p;, + ...+ pi,-

» Estimate pg to constant accuracy and output “uniform” iff

Algorithm for orthogonality testing

» Take M ~ N'/3.
» Sample S = (i, ..., iy) according to p, ignoring duplicates.

» Estimate gs = gj, + ... + gj,, and output “orthogonal” iff the
estimate is 0.
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Discussion

Unlike the classical “canonical tester,” there are many different
quantum approaches.

It is unknown whether there is a general framework that
encompasses all optimal quantum algorithms for testing symmetric
properties of distributions.

The only general purpose lower bound is the Aaronson-Ambainis
result. It is probably not tight, and does not suggest a canonical
algorithm.

One other subtlety: what if we have a quantum algorithm that can
generate samples according to p? Now there is no seed, but the
subroutine to estimate probabilities still works. Is this ever a weaker
primitive?
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