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The problem: testing probability distributions

I We are given samples of [N] drawn according to p.
I The goal is to determine some (often symmetric) property of p.

For example:
I Entropy: H(p) =

∑N
i=1 pi log 1

pi
.

I Distance from uniform distribution:

1
2
‖p − u‖ =

1
2

N∑
i=1

∣∣∣∣pi −
1
N

∣∣∣∣
I Alternatively, we can draw samples according to p or q.

I Statistical distance: Given thresholds 0 ≤ α < β ≤ 1, determine
whether 1

2‖p − q‖1 ≤ α or 1
2‖p − q‖1 ≥ β.

I Special cases include when α = 0 (determining whether p = q)
and when β = 1 (determining whether p and q have orthogonal
support.)
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Motivation

I This is a basic example of property testing.

I It is a primitive in other tasks, such as testing whether a graph
is bipartite.

I Estimating trace distance is a complete problem for SZK.
Quantum computers can speedup the naive algorithm for
solving problems in NP. Can they do the same for SZK?
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What it means to sample on a quantum computer
There is no canonical answer. Let p ∈ RN be a probability
distribution. Here are three possibilities, in order of increasing
strength.

Model Cost of unifor-
mity testing

1 The ability to prepare an N×N density
matrix ρ with spec ρ = p

Θ(N)

2 The existence of an efficient classical
circuit that can sample from p.

√
N classically,

N1/3 quantumly
3 The ability to prepare

∑N
i=1

√
pi |i〉. O(1)

Scenario 1 is weaker and scenario 3 is stronger.

In this talk, we will focus on scenario 2.
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Defining sampling oracles

We want to treat the classical algorithm creating samples of p as a
black box.

Sampling
Algorithm i with probability pi

However, this model is too restrictive.

r ∈ {0, 1}m
Random seed

Sampling
Algorithm

i = f (r) where pi = |f−1(i)|
2m

Our quantum algorithm will make use of oracle access to f .
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Classical results
The symmetric case was mostly solved by [Valiant, STOC ’08].

Canonical tester

1. Draw M samples according to p.
2. Suppose that item i appears s(i) times.
3. If s(i) ≥ θ, then estimate p̂i = s(i)/M. Otherwise, consider the

range p̂i ∈ [0, θ
M ].

4. Hope that p̂ gives an unambiguous answer.

Applications

I Estimating trace distance in general requires N1−o(1) samples.
I Determining whether p = q or 1

2‖p − q‖1 ≥ ε requires Θ(N2/3)
samples.

Aram Harrow
Distribution testing Slide 6/1



Previous quantum results

I The first example of quantum advantage is Grover’s 1996
search algorithm. (Proved optimal by BBBV in 1994!)

I For any subset S ⊂ [N], let π =
∑

i∈S pi . Grover’s algorithm can
determine whether π = 0 or π ≥ θ in time O(1/

√
θ).

I This can be used distinguish 1-1 functions from 2-1 functions in
time O(N1/3). [Brassard, Høyer, Tapp; quant-ph/9705002]

I More generally, we can output π ±O(ε) in time O(
√

π/ε).
[Brassard, Høyer, Mosca, Tapp; quant-ph/0005055]
Compare with O(π/ε2) for classical sampling.

I [Aaronson and Ambainis; arXiv:0911.0996] prove that for
symmetric problems, any Q-query quantum algorithm can be
turned into an O(Q9)-query randomized algorithm.
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Our results
Given two distributions p, q and constants 0 < ε ≤ θ ≤ 1 we
consider three problems.

Goal to distinguish
Uniformity testing p = u 1

2‖p − u‖1 ≥ ε

Statistical distance 1
2‖p − q‖1 ≤ θ − ε 1

2‖p − q‖1 ≥ θ

Orthogonality 1
2‖p − q‖1 ≤ 1− ε 1

2‖p − q‖1 = 1

(u denotes the uniform distribution on [N].)

Results:

Goal Classical Quantum
Uniformity testing Θ(N1/2) Θ(N1/3)

Statistical distance N1−o(1) O(N1/2)

Orthogonality Θ(N1/2) Θ(N1/3)

(Uniformity lower bound from [Chakraborty et. al, unpublished].)
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Distribution testing protocols
Algorithm for statistical distance

Consider the r.v. X which equals |pi−qi |
pi+qi

with probability 1
2(pi + qi).

I E(X ) = 1
2‖p − q‖1

I Var(X ) ≤ E(X 2) ≤ 1
I Estimating X to constant multiplicative accuracy requires

O(
√

N/δ) quantum queries when max(pi , qi) ≥ δ/2N.
This happens with probability ≥ 1− δ.

I Therefore O(
√

N) queries suffice.

Algorithm for fidelity:
∑N

i=1
√

piqi

Now let X equal
√

pi/qi with probability qi .
I E(X ) =

∑N
i=1

√
piqi Var(X ) ≤ E(X 2) =

∑N
i=1 pi = 1

I Again O(
√

N) queries suffice.
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Distribution testing protocols
Algorithm for uniformity testing

I Take M ∼ N1/3.
I Sample S = {i1, . . . , iM} according to p.
I If there is a collision, then output “not uniform.”
I Let pS = pi1 + . . . + piM .
I Estimate pS to constant accuracy and output “uniform” iff

pS ≈ M/N.

Algorithm for orthogonality testing

I Take M ∼ N1/3.
I Sample S = (i1, . . . , iM) according to p, ignoring duplicates.
I Estimate qS = qi1 + . . . + qiM and output “orthogonal” iff the

estimate is 0.
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Discussion

Unlike the classical “canonical tester,” there are many different
quantum approaches.

It is unknown whether there is a general framework that
encompasses all optimal quantum algorithms for testing symmetric
properties of distributions.

The only general purpose lower bound is the Aaronson-Ambainis
result. It is probably not tight, and does not suggest a canonical
algorithm.

One other subtlety: what if we have a quantum algorithm that can
generate samples according to p? Now there is no seed, but the
subroutine to estimate probabilities still works. Is this ever a weaker
primitive?
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