
Solving linear systems of equations on a
quantum computer

arXiv:0811.3171
PRL 15:150502 (2009)

Aram Harrow1 Avinatan Hassidim2 Seth Lloyd2

1University of Bristol

2MIT

Rutgers
April 9, 2010

Aram Harrow
0811.3171v3 Slide 1/18

Outline

I The problem.

I Classical solutions.

I Our quantum solution.

I How it works.

I BQP-completeness / (near-)optimality

I Related work / extensions / applications.

Aram Harrow
0811.3171v3 Slide 2/18

Goal: solving linear systems of equations

I We are given A, a Hermitian N × N matrix.

I ~b ∈ CN is also given as input.

I We want to (approximately) find ~x ∈ CN such that A~x = ~b.

I If A is not Hermitian or square, we can use
(

0 A
A† 0

)
. Why?

Because (
0 A
A† 0

) (
0
~x

)
=

(
~b
0

)
.

I Some weaker goals are to estimate ~x†M~x (for some matrix M)
or sample from the probability distribution Pr[i] ∝ |xi |2.

Aram Harrow
0811.3171v3 Slide 3/18

Application: linear regression

Goal: find the best fit line, low-degree polynomial, etc.

Technically we choose ~x to minimise ‖A~x − ~b‖2.

Aram Harrow
0811.3171v3 Slide 4/18

Application: partial differential equations

Approximate a continuous function with a finite element model.

∂
∂t →


0 1 0 0
−1 0 1 0
0 −1 0 1
0 0 −1 0



∂2

∂t2 →


2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2


A is a discretised PDE, ~b specifies boundary conditions.
~x gives solution to boundary-value problem.

Aram Harrow
0811.3171v3 Slide 5/18

Classical algorithms
I The LU decomposition finds ~x in time O(N2.376 poly(log(κ/ε))).

I Here “2.376” is the matrix-multiplication exponent.
(By contrast, Gaussian elimination takes time O(N3).)

I ε is a bound on error in ~x .
I κ is the condition number.

κ = ‖A‖ · ‖A−1‖ =
σ1(A)

σN(A)

Here σi(A) is the i th singular value and ‖A‖ = σ1(A).
κ measures how hard A is to invert, or equivalently, how
sensitively A−1 depends on changes in A.

I Iterative methods (e.g. conjugate gradient) require
O(
√
κ log(1/ε)) matrix-vector multiplications.

I If A is s-sparse (i.e. has ≤ s nonzero entries per row) then the
total time is O(Ns

√
κ log(1/ε)).

I |support(~b)| · (s/ε)O(
√

κ) · poly(log(N)) is also possible.

Aram Harrow
0811.3171v3 Slide 6/18

Quantum computing review
Classical Randomised Quantum

basic unit of
information bit: b ∈ {0,1}

distribution
p ∈ R2

p0 + p1 = 1

qubit
|ψ〉 ∈ C2

|ψ0|2 + |ψ1|2 = 1

n bits
2n states 2n dimensions 2n dimensions

basic unit of
computation

NAND, XOR,
etc.

stochastic ma-
trices

unitary matrices

poly-time
P BPP BQP

measurement
no problem Bayes’ rule collapses state

Aram Harrow
0811.3171v3 Slide 7/18

Our results
I Quantum Algorithm. Suppose that

I |b〉 =
∑N

i=1 bi |i〉 is a unit vector that can be prepared in time TB;
I A is s-sparse, efficiently row-computable and κ−1I ≤ |A| ≤ I
I |x ′〉 = A−1 |b〉 and |x〉 =

|x ′〉
‖ |x′〉‖ .

Then our (quantum) algorithm produces |x〉 and 〈x ′|x ′〉, both up
to error ε, in time

Õ(κTB + log(N)s4κ2/ε).

Reminder: classical algorithms output the entire vector ~x in
time Õ(min(N2.376,Ns

√
κ, (s/ε)O(

√
κ))). This is exponentially

slower when s = O(1) and κ = poly log(N).
I Optimality. Given plausible complexity-theoretic assumptions,

these run-times (both quantum and classical) cannot be
improved by much. Argument is based on BQP-hardness of the
matrix inversion problem.

Aram Harrow
0811.3171v3 Slide 8/18

Algorithm idea: diagonal case
I Suppose A is diagonal:

A =


λ1 0 · · · 0
0 λ2
...

. . .
0 λN


Then our task is called filtering.

I Our desired transform is the non-unitary operation:
|i〉 → λ−1

i |i〉.
I This can be achieved probabilistically by

1. Choosing c such that c|λ−1| ≤ 1.
2. Mapping |i〉 → (

√
1− c2|λi |−2 |0〉+ cλ−1

i |1〉)⊗ |i〉
3. Measuring the first qubit and hoping we get outcome “1”.

The resulting state is proportional to A−1 |b〉.

Aram Harrow
0811.3171v3 Slide 9/18

Algorithm idea: general case
I If we could work within the eigenbasis of A, then we could use

the diagonal algorithm.
I Finding the eigenbasis of A is done with two primitives:

I Hamiltonian simulation. We can apply eiAt in time Õ(ts4 log(N)).
(Uses fancy versions of ei(A1+A2)ε ≈ eiA1εeiA2ε.)1

I Phase estimation. Applying eiλt for a carefully chosen
superposition2 of times from 0 to t0 can be used to produce
λ̃ ≈ λ±O(1/t0).

I Phase estimation on eiAt automatically resolves |b〉 into the
eigenbasis of A by (approximately) measuring λ.

I Doing this coherently can (approximately) map |b〉 to

|0〉 ⊗
√

I − c2A−2 |b〉+ |1〉 ⊗ cA−1 |b〉 ,
where c is chosen so that ‖cA−1‖ ≤ 1.

I Measure the first qubit. Upon outcome “1” we are left with |x〉.
1D.W. Berry, G. Ahokas, R. Cleve and B.C. Sanders. Efficient Quantum

algorithms for sparse Hamiltonians. CMP 2007, quant-ph/0508139.
2V. Buzek, R. Derka and S. Massar. Optimal quantum clocks. PRL 1999.

Aram Harrow
0811.3171v3 Slide 10/18

Analysis of the algorithm
I The Hamiltonian simulation produces negligible error. (Error ε

incurs overhead of exp(O(
√

log(1/ε))) = ε−o(1).) Recall that it
takes time Õ((log N)s4t0).

I Phase estimation produces error of O(1/t0) with tail probability
dying off fast enough to not bother us.

I An additive error of 1/t0 in λ translates into an error in λ−1 of
λ−2/t0 ≤ κ2/t0. Thus, we can take t0 ∼ κ2/ε.

I We can take C = 1/2κ to guarantee that ‖CA−1‖ ≤ 1/2.
(C = 1/κ should work, but the analysis is more painful.)

I Thus post-selection succeeds with probability at least O(1/κ2)
and blows up error by at most O(κ). With enough algebra, the
run-time magically stays at O(κ2/ε).

I Our best lower bound for the run-time is κ.

Aram Harrow
0811.3171v3 Slide 11/18

How large is κ?
I For many practical problems, it is Nc , in which case our

speedup ranges from polynomial to not a speedup.
I There are many classical techniques used to reduce condition

number to No(1) or even poly log(N), e.g. multi-scale methods
and preconditioners [D. Spielman and S.-H. Teng.
“Nearly-Linear Time Algorithms for Preconditioning and Solving
Symmetric, Diagonally Dominant Linear Systems”
arXiv:cs/0607105]. However, their applicability to quantum
algorithms is not obvious.

I For random Hermitian matrices, κ = NO(1). But if A is chosen
independently of ~x , then ~b will have low overlap with the small
eigenvalues, and we can find |x〉 up to error ε in time
poly(log(N)/ε).

I Finite-element models have extremely wide application. If we
take lattice spacing h in d dimensions, then we have N = hd ,
s ∼ d and κ ∼ dh. For best results, fix h and let d grow.

Aram Harrow
0811.3171v3 Slide 12/18

Q-sampling |x〉 vs. computing ~x
Types of solutions: roughly from strongest to weakest

1. Output ~x = (x1, . . . , xN). Classical algorithms
2. Produce |x〉 =

∑N
i=1 xi |i〉. Our algorithm

3. Sample i according to pi ∼ | 〈i |x〉 |2.
4. Estimate 〈x |M |x〉 for some (perhaps diagonal) matrix M.

Compare with classical Monte Carlo algorithms

The old-fashioned way to get an exponential speed-up.
I They work with a sample drawn from ~p = (p1, . . . ,pN).
I If A is stochastic and sparse then ~p 7→ A~p is efficient.
I If −1 ≤ m1, . . . ,mN ≤ 1, then

∑N
i=1 mipi can be estimated to

error ε using O(1/ε2) samples.

Is matrix inversion easier if we only need to estimate ~x†M~x?
Aram Harrow
0811.3171v3 Slide 13/18

BQP-hardness of matrix inversion
Consider a quantum circuit on n qubits that starts in the state |0〉⊗n,
applies two-qubit gates U1, . . . ,UT and then measures the first qubit.

Theorem
Estimating the acceptance probability of this circuit reduces to
estimating 〈x |M |x〉 where M is diagonal, A~x = ~b, ~b = |0〉, A has
dimension N = O(T2n) and κ = O(T).

Corollary

I A classical poly(log(N), κ) algorithm for estimating 〈x |M |x〉 to
constant accuracy would imply BPP=BQP (i.e. randomized
algorithms are as strong as quantum algorithms).

I If we allow only black-box access to A, then no quantum
algorithm can run in time κ1−δ ·poly log(N) or poly(κ) · (N/ε)o(1).

Aram Harrow
0811.3171v3 Slide 14/18

Proof of BQP-hardness
An idea that almost works

I Our quantum circuit is UT · · ·U1.
I On the space CT ⊗ C2n

define

V =
T∑

t=1

|t + 1 (mod T)〉 〈t | ⊗ Ut . is unitary

A = I − e−
1
T V has κ ≤ 2T

I Expand

A−1 =
∞∑

k=0

e−
k
T V k

So that κ−1A−1 |1〉 |ψ〉 has Ω(1/T) overlap with

V T |1〉 |ψ〉 = |1〉UT · · ·U1 |ψ〉 .

But undesirable terms contribute too.
Aram Harrow
0811.3171v3 Slide 15/18

Proof of BQP-hardness
The correct version

I Define

UT+1 = . . . = U2T = I⊗n

U2T+1 = U†
T , . . . ,U3T = U†

1

so that U3T . . .U1 = I⊗n and Ut . . .U1 = UT . . .U1 whenever
T ≤ t < 2T .

I Now define (on the space C3T ⊗ C2n
) the operators

V =
3T∑
t=1

|t + 1 (mod 3T)〉 〈t | ⊗ Ut

A = I − e−
1
T V

I This time κ−1A−1 |1〉 |ψ〉 has Ω(1) overlap with successful
computations (i.e. |t〉 ⊗ UT . . .U1 |ψ〉 for T ≤ t < 2T) and there
is no extra error from wrap-around.

Aram Harrow
0811.3171v3 Slide 16/18

Related work
I [L. Sheridan, D. Maslov and M. Mosca. Approximating

Fractional Time Quantum Evolution. 0810.3843] show how
access to U can be used to simulate U t for non-integer t .

I [S.K. Leyton and T.J. Osborne. A quantum algorithm to solve
nonlinear differential equations. 0812.4423] requires time
poly log(number of variables) · exp(integration time).

I [Szkopek et al., Eigenvalue Estimation of Differential Operators
with a Quantum Algorithm, quant-ph/0408137] has similar
scaling, and also resembles our application to finite-element
methods.

I [S. P. Jordan and P. Wocjan. Efficient quantum circuits for
arbitrary sparse unitaries. 0904.2211] is also based on
Hamiltonian simulation.

I [D. Janzing and P. Wocjan. Estimating diagonal entries of
powers of sparse symmetric matrices is BQP-complete.
quant-ph/0606229] is similar to our BQP-hardness result.

Aram Harrow
0811.3171v3 Slide 17/18

Extensions: known and unknown
(Mostly unknown)

I If A is ill-conditioned, we can choose κ arbitrarily, invert the part
with eigenvalues � 1/κ and flag the bad part with eigenvalues
� 1/κ (with some gray area around the 1/κ threshold).

I If ‖A‖ � 1, then we should be able to rescale A and disregard
large eigenvalues of A that contribute very little to A−1.
This raises a Hamiltonian simulation problem of independent
interest: how costly is it to simulate a high-energy theory on
low-energy states?

I B is a preconditioner if κ(AB) � κ(A). If B is sparse, then BA is
as well, and we can apply (BA)−1 to B |b〉. Preconditioners are
crucial to practical (classical) iterative methods and we would
like to make use of them with our algorithm.

I More applications, please! Candidates are deconvolution,
solving elliptical PDE’s and speeding up linear programming.

Aram Harrow
0811.3171v3 Slide 18/18

