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Goal: solving linear systems of equations
» We are given A, a Hermitian N x N matrix.
» b e CNis also given as input.

» We want to (approximately) find X € CN such that AX = b.

» If Ais not Hermitian or square, we can use (,4(\)1 '3) Why?
0 A\ /0\ /(b
At 0)\xX) \0o/"

» Some weaker goals are to estimate X' MX (for some matrix M)
or sample from the probability distribution Pr[i] oc | x;|2.

Because
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Application: linear regression

Goal: find the best fit line, low-degree polynomial, etc.
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Technically we choose X to minimise ||AX — bJ|2.
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Application: partial differential equations

Approximate a continuous function with a finite element model.

0 1 0 O
5 1 0 1 0
a71lo -1 0 1
0 0 —10
2 -1 .0 0
o2 -1 2 -1 0
or 0 -1 2 -1
0 0 -1 2

Aiis a discretised PDE, b specifies boundary conditions.
X gives solution to boundary-value problem.
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Classical algorithms

» The LU decomposition finds X in time O(N2376 poly(log(x/¢))).
» Here “2.376” is the matrix-multiplication exponent.
(By contrast, Gaussian elimination takes time O(N?®).)
» cis abound on errorin X.
» r is the condition number.

k= Al A =2 (())

Here o;(A) is the " singular value and || A|| = o1(A).
x measures how hard A is to invert, or equivalently, how
sensitively A~' depends on changes in A.

» lterative methods (e.g. conjugate gradient) require
O(y/rlog(1/€)) matrix-vector multiplications.
» If Ais s-sparse (i.e. has < s nonzero entries per row) then the
total time is O(stlog(1 /€)).
> |support(b)| - (s/¢)°(V) . poly(log(N)) is also possible.
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Quantum computing review

Classical Randomised Quantum
int getRondomNumber () ®
basic unit of distribution qubit
information bit: b€ {0,1} | p € R? |y) € C?
Po+p1 =1 [tol® + [y 2 = 1
. 21 states 2" dimensions | 2" dimensions
n bits
basi it of NAND, XOR, | stochastic ma- | unitary matrices
asic um't o etc. trices
computation
. P BPP BQP
poly-time
no problem Bayes’ rule collapses state
measurement
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Our results

» Quantum Algorithm. Suppose that

> |b) = Zf\; b; i) is a unit vector that can be prepared in time Tg;
» Alis s-sparse, efficiently row-computable and x=1/ < |A| </

~ [x) = A" |b) and [x) = /A
Then our (quantum) algorithm produces |x) and (x’|x’), both up

to error ¢, in time
O(kTg + log(N)s*x2? /e).

Reminder: classical algorithms output the entire vector X in
time O(min(N2378 Ns,/x, (s/¢)°(V®)). This is exponentially
slower when s = O(1) and x = poly log(N).

» Optimality. Given plausible complexity-theoretic assumptions,
these run-times (both quantum and classical) cannot be
improved by much. Argument is based on BQP-hardness of the
matrix inversion problem.
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Algorithm idea: diagonal case

» Suppose A is diagonal:

A O 0
0 A

A= 2
0 AN

Then our task is called filtering.
» Our desired transform is the non-unitary operation:
i) = A7 i)
> This can be achieved probabilistically by
. Choosing ¢ such that ¢|]A~"| < 1.

2 Mapping |i) — (/T — 2[Xi[72]0) + A 1)) @ |i)

3. Measuring the flrst qubit and hoping we get outcome “1”.
The resulting state is proportional to A= |b).
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Algorithm idea: general case

» |f we could work within the eigenbasis of A, then we could use
the diagonal algorithm.
» Finding the eigenbasis of A is done with two primitives:
» Hamiltonian simulation. We can apply €”! in time O(ts* log(N)).
(Uses fancy versions of g/(AitA)e r gihic gitec )1
» Phase estimation. Applying e for a carefully chosen
§uperposi’[ion2 of times from 0 to ) can be used to produce
A=+ O(1/t).
» Phase estimation on 4! automatically resolves |b) into the
eigenbasis of A by (approximately) measuring \.
» Doing this coherently can (approximately) map |b) to

|0) ® VI — c2A-2|b) +|1) @ cA~ 1 |b),

where c is chosen so that |[cA~"|| < 1.
» Measure the first qubit. Upon outcome “1” we are left with |x).

'D.W. Berry, G. Ahokas, R. Cleve and B.C. Sanders. Efficient Quantum
algorlthms for sparse Hamiltonians. CMP 2007 quant ph/0508139.

Aram Harrow .% Um\el sity of
0811.3171v3 Slide 10/18 BB




Analysis of the algorithm

» The Hamiltonian simulation produces negligible error. (Error ¢
incurs overhead of exp(O(+/log(1/¢))) = e~ °(1).) Recall that it
takes time O((log N)s*ty).

» Phase estimation produces error of O(1/1) with tail probability
dying off fast enough to not bother us.

» An additive error of 1/t, in X translates into an error in A~ of
A\"2/ty < K2 /fy. Thus, we can take fy ~ K2 /e.

» We can take C = 1/2« to guarantee that ||CA~"|| < 1/2.
(C = 1/k should work, but the analysis is more painful.)

» Thus post-selection succeeds with probability at least O(1/x2)
and blows up error by at most O(x). With enough algebra, the
run-time magically stays at O(x?/¢).

» Our best lower bound for the run-time is .

Aram Harrow & niversity of
d BR.

0811.3171v3 Slide 11/18



How large is 7

» For many practical problems, it is N°, in which case our
speedup ranges from polynomial to not a speedup.

» There are many classical techniques used to reduce condition
number to N°() or even poly log(N), e.g. multi-scale methods
and preconditioners [D. Spielman and S.-H. Teng.
“Nearly-Linear Time Algorithms for Preconditioning and Solving
Symmetric, Diagonally Dominant Linear Systems”
arXiv:cs/0607105]. However, their applicability to quantum
algorithms is not obvious.

» For random Hermitian matrices, x = NO(). But if A is chosen
independently of X, then b will have low overlap with the small
eigenvalues, and we can find |x) up to error ¢ in time
poly(log(N)/e).

» Finite-element models have extremely wide application. If we
take lattice spacing hin d dimensions, then we have N = h?,
s ~ d and k ~ dh. For best results, fix h and let d grow.
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Q-sampling |x) vs. computing X
Types of solutions: roughly from strongest to weakest

1. Output X = (X, ..., Xn). Classical algorithms
2. Produce |x) = Zf; X |i). Our algorithm
3. Sample i according to p; ~ | {i|x) |?.

4. Estimate (x| M |x) for some (perhaps diagonal) matrix M.

Compare with classical Monte Carlo algorithms
The old-fashioned way to get an exponential speed-up.
» They work with a sample drawn from p = (ps, ..., pn)-
» If Ais stochastic and sparse then p — Ap is efficient.
> If—1 < my,...,my<1,then SN mp; can be estimated to
error e using O(1/¢?) samples.

Is matrix inversion easier if we only need to estimate X' MXx?
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BQP-hardness of matrix inversion

Consider a quantum circuit on n qubits that starts in the state |0)®”,
applies two-qubit gates Uy, ..., Ur and then measures the first qubit.

Theorem

Estimating the acceptance probability of this circuit reduces to
estimating (x| M |x) where M is diagonal, AX = b, b = |0), A has
dimension N = O(T2") and x = O(T).

Corollary

» A classical poly(log(N), ) algorithm for estimating (x| M |x) to
constant accuracy would imply BPP=BQP (i.e. randomized
algorithms are as strong as quantum algorithms).

» If we allow only black-box access to A, then no quantum
algorithm can run in time x'~? - poly log(N) or poly(x) - (N/€)°(1),
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Proof of BQP-hardness

An idea that almost works
» Our quantum circuit is Ur - - - U;.
» On the space CT @ C?" define

;
V=>[t+1 (mod T))(t| ® U is unitary
t=1
A=l—e TV has & < 2T
» Expand

AT = e Tk
k=0
So that k" TA=1|1) |2) has Q(1/T) overlap with
VI [1) ) = 1) Ur - Ug [9).

But undesirable terms contribute too.
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Proof of BQP-hardness
The correct version
» Define

Urpg = ... = Upy = [®7

Usriq = UL, ... Usr = U]
sothat Usr... Uy = I®"and U;... U; = Ur...U; whenever
T <t<2T.
» Now define (on the space C37 @ C?") the operators
3T
V=>[t+1 (mod 3T))(t|® U
=1
A=l—e TV

» This time x~'A~" |1) |¢) has Q(1) overlap with successful
computations (i.e. |t) @ Ur...U; |¢) for T <t < 2T) and there
is no extra error from wrap-around.
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Related work

» [L. Sheridan, D. Maslov and M. Mosca. Approximating
Fractional Time Quantum Evolution. 0810.3843] show how
access to U can be used to simulate U! for non-integer t.

» [S.K. Leyton and T.J. Osborne. A quantum algorithm to solve
nonlinear differential equations. 0812.4423] requires time
poly log(number of variables) - exp(integration time).

» [Szkopek et al., Eigenvalue Estimation of Differential Operators
with a Quantum Algorithm, quant-ph/0408137] has similar
scaling, and also resembles our application to finite-element
methods.

» [S. P. Jordan and P. Wocjan. Efficient quantum circuits for
arbitrary sparse unitaries. 0904.2211] is also based on
Hamiltonian simulation.

» [D. Janzing and P. Wocjan. Estimating diagonal entries of
powers of sparse symmetric matrices is BQP-complete.
quant-ph/0606229] is similar to our BQP-hardness result.
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Extensions: known and unknown

(Mostly unknown)

» If Ais ill-conditioned, we can choose « arbitrarily, invert the part
with eigenvalues > 1/x and flag the bad part with eigenvalues
< 1/k (with some gray area around the 1/« threshold).

» If |A|| > 1, then we should be able to rescale A and disregard
large eigenvalues of A that contribute very little to A=".
This raises a Hamiltonian simulation problem of independent
interest: how costly is it to simulate a high-energy theory on
low-energy states?

» Bis a preconditioner if k(AB) < x(A). If Bis sparse, then BA is
as well, and we can apply (BA)~' to B|b). Preconditioners are
crucial to practical (classical) iterative methods and we would
like to make use of them with our algorithm.

» More applications, please! Candidates are deconvolution,
solving elliptical PDE’s and speeding up linear programming.
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