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Outline of the talk

Based on “Beckmann’s approach to multi-item multi-bidder auctions”

1. Overview: auction design problem with I ≥ 2 items and B ≥ 2 bidders
▶ I = 1 item and B ≥ 1 bidders
▶ I ≥ 2 items and B = 1 bidders

2. Show dual problem formulation
3. Connection with transport problems:

▶ the mass transshipment problem
▶ Beckmann’s problem – the dynamic version of the transshipment problem

4. Numerical techniques and results
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Auction design problem for the case of multiple items
Given:
▶ the auctioneer has I items
▶ a set B = {1, 2, . . . ,B} of B ≥ 1 bidders
▶ each bidder b has a type xb = (xb1, . . . , xbI ) private values

Assumptions:
▶ the bidders are drawn from this population independently, i.e. the value estimates

xb are sampled independently from the distribution ρ supported on X = [0, 1]I

▶ each bidder with type x = (x1, . . . , xI ) has an additive utility quasi-linear in money

u = p · x − t

for receiving p = (p1, . . . , pI ) amount of each item paying t; (·) is a scalar product
▶ the auctioneer and bidders know ρ and each bidder observes their own type.
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Direct revelation mechanisms

▶ By the revelation principle, we can work with direct mechanisms
▶ Each bidder b simultaneously and confidentially announces (and may misreport) its

value estimate xb to the auctioneer.
▶ Using the vector x = (x1, . . . , xb), the auctioneer determines how much of each

item each bidder receive and how much each bidder must transfer:
▶ Pb(x) = (Pb1(x), . . . ,PbI (x)) is the amount of good that the bidder b receive,
▶ Tb(x) is the price that the bidder b must pay to the auctioneer for the bundle.

▶ The bidders know allocation functions Pb and transfers functions Tb before the
auction game. The collection of functions allocation and transfer function is called
a mechanism.

▶ The revenue of the auctioneer is R =
∑B

b=1 Tb(x1, . . . , xB). The goal of the auc-
tioneer is to maximize the expected revenue.
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Restrictions on feasible mechanisms

▶ Feasibility:
∑B

b=1 Pb(x1, . . . , xB) ≤ 1 for every set of bidders (x1, . . . , xB).
▶ Reduced mechanism:

Pb(xb) = E[Pb(y) | yb = xb], T b(xb) = E[Tb(y) | yb = xb].

▶ Symmetry: P = Pb, T = T b

▶ Expected utility:

u(xb) = E[xb · Pb(y)− Tb(y) | yb = xb] = xb · P(xb)− T (xb).

▶ Individual rationality: no bidder of the type x wants to abstain from participation,
i.e., nobody gets a negative expected utility, u(x) ≥ 0.

▶ Incentive compatibility: no bidder x has an incentive to misreport their values if
others report truthfully:

x · P(x)− T (x) ≥ x · P(x̂)− T (x̂) for all x̂ ∈ [0, 1].
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Auction design problem formulation
Auctioneer’s revenue: R = B ·

∫
T (x) ρ(x)dx .

Problem (Rochet-Chone, Econometrica 1998)
Find allocation functions (P1, . . . ,PB) and a utility function u(x) maximizing the auc-
tioneer’s expected revenue

R = B ·
∫

[x · ∇u(x)− u(x)] ρ(x)dx

subject to the following constraints:
▶ feasibility:

∑B
b=1 Pb,i (x1, . . . , xB) ≤ 1 for each item i and every collection of types.

▶ individual rationality: u(0) = 0,
▶ incentive compatibility: u(x) is convex and ∇u = P , where P is the reduced

allocation function.
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The case of I ≥ 2 items and B = 1 bidder.

▶ I = 1 case: Myerson (2007 Nobel Memorial Prize in Economic Sciences)
▶ I ≥ 2 and B = 1: solution is already complicated even in a simple case

(Manelli and Vincent, Econometrica 2006)
▶ B = 1 bidder
▶ I = 2 independent uniformly distributed items on [0, 1]

▶ Properties:
▶ Is selling each item separately always optimal? No.
▶ Is bundling all items together always optimal? No.

▶ Duality:
▶ Daskalakis, Deckelbaum, Tzamos (Econometrica 2017) established that duality is a

Monge-Kantorovich problem with the stochastic dominance constraint.
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What we had: feasibility

Problem (Auction design problem for I ≥ 1 goods)
Find allocation functions (P1, . . . ,PB) and a utility function u(x) maximizing the auc-
tioneer’s expected revenue

R := B ·
∫

T (x) ρ(x)dx = B ·
∫

[x · ∇u(x)− u(x)] ρ(x)dx

subject to the following constraints:
▶ feasibility:

∑B
b=1 Pb,i (x1, . . . , xB) ≤ 1 for each item i and every collection of types.

▶ individual rationality: u(0) = 0,
▶ incentive compatibility: u(x) is convex and ∇u = P , where P is the reduced

allocation function.
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The feasibility condition

The expected revenue R = B ·
∫
[x · ∇u(x)− u(x)] ρ(x)dx depends only on u(x) and

P(x) = ∇u(x).

Question
Given a reduced allocation function P = ∇u, under which conditions is it possible to
find the full feasible mechanism (P1, . . . ,PB)?
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Stochastic dominance condition

Definition
The random variable ξ majorizes random variable η (ξ ⪰ η) if E[φ(ξ)] ≥ E[φ(η)] for any
convex increasing function φ.

Theorem (Hart and Reny)
The reduced allocation function P i (x) is feasible if and only if P i (ζ) ⪯ ξB−1, where ζ is
distributed with the density ρ and ξ is uniformly distributed on [0, 1].
Equivalently, for all convex increasing φ.∫

φ(P i (x)) ρ(x)dx ≤
∫ 1

0
φ(zB−1) dz
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What we have now: feasibility → stochastic dominance

Problem (Auction design problem for I ≥ 1 goods)
Find reduced allocation function P and a utility function u(x) maximizing the auctioneer’s
expected revenue

R := B ·
∫

T (x) ρ(x)dx = B ·
∫

[x · ∇u(x)− u(x)] ρ(x)dx

subject to the following constraints:
▶ stochastic dominance: P i ≥ 0 and

∫
φi (P i (x)) ρ(x)dx ≤

∫ 1
0 φi (z

B−1) dz for
every convex non-decreasing φi ,

▶ individual rationality: u(0) = 0,
▶ incentive compatibility: u(x) is convex and ∇u = P , where P is the reduced

allocation function.
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Lagrangian: monopolist problem with production costs

Problem
Fix the convex non-decreasing cost functions (φ1, . . . , φI ). Find the maximum of the
expected revenue over all convex non-decreasing non-negative functions u(x):

M(u;φi ) = B

(∫ [
x · ∇u(x)− u(x)︸ ︷︷ ︸

transfer

−
I∑

i=1

φi

(
∂u

∂xi

)
︸ ︷︷ ︸
production cost

]
ρ(x)dx +

I∑
i=1

∫
φi (z

B−1) dz︸ ︷︷ ︸
constant for fixed φi

)

Interpretation
The monopolist problem:
▶ B = 1 bidder, I ≥ 2 items
▶ φi (t) is a cost of producing t units of the ith item

Intuition
φi (t) is a nonlinear Lagrange multiplier function for the stochastic dominance constraint
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Minimax principle for the monopolist problem

Theorem
For every collection of convex non-decreasing functions (φ1, . . . , φI ), the optimal value
in the corresponding monopolist problem with the nonlinear production cost dominates
the maximal revenue of the auctioneer (weak minimax):

R ≤ max
u

M(u;φi ).

Moreover, there exists a collection of functions (φopt
1 , . . . , φopt

I ) such that the optimal
values in the monopolist problem and in the auction design problem coincide (strong
minimax):

R = max
u

M(u;φopt
i ).
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Where are we now

▶ Derived a minimax problem
▶ the monopolist’s is a nonlinear Lagrangian for the auctioneer’s problem
▶ but the problem is endogenous and complicated

▶ Next:

▶ linearize the nonlinear Lagrangian:
▶ using Legendre transform

▶ derive a dual formulation
▶ show that the dual is Beckmann’s problem
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Legendre transform of the production cost
Strong minimax relation between the auctioneer and the monopolist problem:

R

B
= min

φ
max
u

{∫ [
x · ∇u(x)− u(x)−

I∑
i=1

φi

(
∂u

∂xi

)]
ρ(x)dx +

I∑
i=1

∫ 1

0
φi (z

B−1) dz

}
.

▶ Legendre transform: φi

(
∂u

∂xi

)
= max

ci

{
ci ·

∂u

∂xi
− φ∗

i (ci )

}
▶ Introduce c(x) = (c1(x), . . . , cI (x)):

R

B
= min

φ
max
u

min
c

{∫ [
x · ∇u(x)− u(x)−

I∑
i=1

ci (x) ·
∂u(x)

∂xi

]
ρ(x)dx

+

∫ I∑
i=1

φ∗
i (ci (x)) ρ(x)dx +

I∑
i=1

∫ 1

0
φi (z

B−1) dz

}
.

▶ Minimax principle: maximize over uuu:

max
u

∫ [
x · ∇u(x)− u(x)−

I∑
i=1

ci (x) ·
∂u(x)

∂xi

]
ρ(x)dx =

{
0 (take u ≡ 0u ≡ 0u ≡ 0),
+∞ (can multiply by λ > 0λ > 0λ > 0)
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Duality theorem for the auctioneer’s problem

Theorem
In the auctioneer’s problem with B ≥ 1 bidders, I ≥ 1 items, and bidders’ types dis-
tributed on X = [0, 1]I with positive density ρ, the optimal revenue coincides with

R = B · inf
(φ1,...,φI )

inf
c=(c1,...,cI )

{∑
i=1

∫
φ∗
i (ci (x)) ρ(x)dx +

I∑
i=1

∫ 1

0
φi (z

B−1) dz

}
,

where infimum is taken over all convex non-decreasing cost functions φi and over all
vector fields c(x) = (c1(x), . . . , cI (x)) satisfying the constraint

max
u

∫ [
x · ∇u(x)− u(x)− c(x) · ∇u(x)︸ ︷︷ ︸∑

ci · ∂u∂xi

]
ρ(x)dx = 0.

Remark: McCann and Zhang (2023) discovered the related duality result in parallel for
the general monopolist problem.
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From inequality constraint to stochastic dominance
The constraint in the dual problem: for every convex increasing u(x):∫ [

x · ∇u(x)− u(x)
]
ρ(x)dx ≤

∫
∇u(x) · c(x) ρ(x)dx .

▶ Integrate by parts the auctioneer’s revenue x · ∇u(x)− u(x):∫
[x · ∇u(x)− u(x)] ρ(x)dx =

∫
u(x) dm(x);

▶ Integrate the right-hand side by parts using the divergence formula:∫
∇u(x) · c(x) ρ(x)dx =

∫
u(x) dπ(x);

▶ where π + div[ρ · c] = 0
▶ in 1D case, π + (c · ρ)′ = 0 + boundary terms

▶ The inequality
∫
u(x) dm(x) ≤

∫
u(x) dπ(x) is equivalent to the stochastic domi-

nance constraint m ⪯ π.
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Dual problem formulation with stochastic dominance
We had:

R

B
= inf

φ
inf
c

I∑
i=1

{
I∑

i=1

∫
φ∗
i (ci (x)) ρ(x)dx +

I∑
i=1

∫ 1

0
φi (z

B−1) dz

}
through all convex non-decreasing (φ1, . . . , φI ) and vector fields c subject to

max
u

∫ [
x · ∇u(x)− u(x)− c(x) · ∇u(x)

]
ρ(x)dx = 0.

We proved:

R

B
= inf

φ
inf
π⪰m

inf
c: div[ρ·c]+π=0

{∑
i=1

∫
φ∗
i (ci (x)) ρ(x)dx +

I∑
i=1

∫ 1

0
φi (z

B−1) dz

}

through all convex non-decreasing (φ1, . . . , φI ) and vector fields c
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︸ ︷︷ ︸

Next: Beckmann = dynamic Kantorovich-Rubinstein problem

through all convex non-decreasing (φ1, . . . , φI ) and vector fields c
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Plan: duality between the auction problem and Beckρ(π,Φ)-problem

▶ Recall the classical transportation problems
▶ Monge-Kantorovich problem
▶ Kantorovich-Rubinstein problem – an alternative (less known) formulation

▶ Introduce Beckρ(π,Φ)-problem
▶ Beckmann’s is a dynamic version of Kantorovich-Rubinstein problem

▶ The dual to the auction problem is equivalent to Beckρ(π,Φ)-problem.
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Reminder: Monge-Kantorovich and Kantorovich-Rubinstein problems

The classical Monge-Kantorovich problem
Given marginal distributions µ and ν and a cost function α(x , y) = ||x − y ||, find

min
γ

∫
α(x , y) γ(x , y) dxdy

subject to the constraints pr1γ = µ and pr2γ = ν︸ ︷︷ ︸
fixed marginals

.

The mass transshipment problem (Kantorovich and Rubinstein, 1958)
Given a marginal difference µ− ν and a cost function α(x , y) = ||x − y ||, find

min
π

∫
α(x , y) γ(x , y) dxdy

subject to the balancing condition pr1γ − pr2γ = µ− ν︸ ︷︷ ︸
fixed difference

.
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Beckmann’s problem
Idea: replace the immediate transfer x → y with the dynamical one using all the inter-
mediate points on (x , y) as transshipment nodes.

The continuous transportation problem (Beckmann, 1952)
Given a marginal difference µ− ν, find the optimal value

min
c

∫
|c(x)| dx

subject to the balancing condition div[c] + µ− ν = 0.

Intuition
▶ |c(x)| is the traffic through the point x
▶ the direction of c(x) is the direction of the transport flow through x

Theorem
The mass transportation and Beckmann’s problems are equivalent: optimal values are
identical and the solution to one problem can be constructed by another one.
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Generalization: Beckρ(π,Φ)-problem

Non-linear cost in Beckmann’s problem:
∫

Φ(c(x)) ρ(x)dx

▶ the cost Φ(c) depends on both the direction and the traffic;
▶ ρ(x) is the weight of the node x ;

The balancing condition: divρ[c] + µ− ν = 0.
▶ divρ[c] := div[ρ · c] is a weighted divergence;

Beckρ(π,Φ)-problem
For a given cost function Φ(c), minimize the total weighted cost over all transport
flows c satisfying the balancing condition for π = µ− ν:

Beckρ(π,Φ) = inf
c : divρ[c]+π=0

∫
Φ(c) ρ(x)dx
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Strong duality theorem in Beckρ(π,Φ)-form

Recall:
R

B
= inf

φ
inf
π⪰m

inf
c: div[ρ·c]+π=0

{∑
i=1

∫
φ∗
i (ci (x)) ρ(x)dx +

I∑
i=1

∫ 1

0
φi (z

B−1) dz

}
Definition

For given convex functions (φ1, . . . , φI ), define the cost Φ(c) =
I∑

i=1

φ∗
i (ci )

Theorem (Duality between auction design problem and Beckρ(π,Φ)-problem)
In the auctioneer’s problem with B ≥ 1 bidders, I ≥ 1 items, and bidders’ types dis-
tributed on X = [0, 1]I with positive density ρ, the optimal revenue coincides with

B · inf
(φi )i∈I ,
π ⪰ m

[
Beckρ

(
π, Φ

)
+
∑
i∈I

∫ 1

0
φi

(
zB−1

)
dz

]
.
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Numerical results: I = 2 items, multiple bidders

We solve the auction design problem with unprecedented numerical precision:
▶ 200 × 200 types, 1.6 billion incentive constraints

Outline of the methods we use:
▶ finite element method to approximate the continuous problem
▶ Oberman’s approach to reduce the number of incentive constraints
▶ the Strassen theorem to reformulate the stochastic dominance constraint
▶ state of the art linear programming solvers
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Example of B = 2 bidders and I = 2 independent items.

Figure: The allocation P = ∂u
∂x1

Figure: The 3D surface graph
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The algorithm could be scaled to multiple bidders

Figure: Revenue as a function of the number of bidders B for two items with i.i.d. values uniform
on [0, 1]. Graphs from bottom to top: selling separately (light-green), selling optimally (blue),
full surplus extraction (red), limit for B → ∞ (the dashed line).
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Bunching regions of the solution to the auction problem

Figure: Partition of the square [0, 1]2

w.r.t. the rank of the hessian H(u).

Consider the optimal utility function u for the case
of B = 2 bidders and I = 2 items with the value
estimates independently uniformly distributed on
[0, 1].

The square [0, 1]2 can be divided into the following
regions:
▶ white region: u = 0;

▶ yellow regions:
∂u

∂xi
= 0 for some i ;

▶ red regions: detH(u) = 0;
▶ blue region: u is strictly convex
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Conclusion

▶ Optimal auction design problem with multiple bidders and multiple items
▶ problem at the frontier of the economics reseach
▶ the methods are of the broad interest to mathematicians across fields

▶ Beckρ(π,Φ) – generalization of the Beckmann problem
▶ simple Beckmann’s problem – dual to the Kantorovich-Rubinstein problem

▶ Main mathematical result – duality between Beckρ(π,Φ) and auction problems.
▶ Foundation for the development of effective numerical methods
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Duality result for B = 1 bidder

We minimize the functional B ·

(
I∑

i=1

∫
φ∗
i (ci ) ρ(x)dx +

∫ 1

0
φi (z

B−1) dz

)
.

▶ In the case of one bidder,
∫ 1
0 φ(z

B−1) dz = φ(1).
▶ Fix the vector field ci . The minimum is reached if φi ≡ 0 and φ∗

i (z) = z

▶ The value of the functional for φi ≡ 0 is equal to∫ I∑
i=1

ci (x) ρ(x)dx =

∫
||c ||l1 ρ(x)dx

Proposition (Duality for B = 1 bidder)

R = min
π⪰m

min
divρ[c]+π=0

∫
||c ||l1 ρ(x)dx
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Connection with the Daskalakis & Deckelbaum & Tzamos duality
We decompose π as a difference of positive and negative parts: π = πc − πp.

Theorem (Beckmann, 1952)
For any measure π = πc − πp,

min
divρ[c]+π=0

∫
||c ||l1 ρ(x)dx = min

γ∈Π(πc ,πp)

∫
|x − y | γ(dx , dy),

where Π(πc , πp) is the set of transport plans with given marginals.

Theorem (Daskalakis & Deckelbaum & Tzamos)
Consider the auction design problem with B = 1 bidder. Then,

R = min
πc−πp⪰m

min
γ∈Π(πc ,πp)

∫
|x − y | γ(dx , dy).
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Nonlinear production function for the case of I = 2 uniform items

Figure: The nonlinear cost φ computed for the case of I = 2 independent uniformly distributed
items and B = 2 bidders
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Connection with the Daskalakis & Deckelbaum & Tzamos duality

▶ Recall the Daskalakis & Deckelbaum & Tzamos duality theorem:

max
u∈U∩L1

R(u) = min
γ∈M+(T×T )
γ1−γ2⪰cvxµf

∫
T×T

||x − y ||1 γ(dx , dy).

▶ Fix the projections γ∗1 and γ∗2 of the optimal γ∗.

max
u∈U∩L1

R(u) = min
γ∈Π(γ∗

1 ,γ
∗
2 )

∫
T×T

||x − y ||1 γ(dx , dy) = W1(γ
∗
1 , γ

∗
2).

▶ Beckmann’s minimal flow problem:

W1(γ
∗
1 , γ

∗
2) = min

{∫
|w(x)| dx : w : T → Rm,∇ · w = γ∗1 − γ∗2

}
.

▶ The solution w to the Beckmann’s problem is an optimal vector field.
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The case of I ≥ 2 items and B = 1 bidder. The monopolist problem.

Figure: The mechanism for two i.i.d.
uniform [0,1] items.

The case of B = 1 bidder and I = 2 items: the
value estimates are i.i.d. uniformly distributed on
[0, 1].
Description of the mechanism:
▶ Z: receive no goods and pay 0;
▶ A: receive the 1st good and pay 2

3 ;
▶ B: receive the 2nd good and pay 2

3 ;

▶ W: receive both goods and pay 4−
√

2
3 .

Consequences:
▶ Is selling each good separately always opti-

mal? No.
▶ Is bundling all goods together always opti-

mal? No.
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The Border’s condition

Theorem (Border, Econometrica 1991)
The reduced allocation function P = (P1, . . . ,P I ) is feasible if and only if each of its
component satisfies the Border condition:
▶ P i (x) ≥ 0 for all x ;

▶ for any set S of bidder types, B ·
∫
S
P i (x) ρ(x)dx︸ ︷︷ ︸
bidder from S

receives an item

≤ 1 −

(∫
X\S

ρ(x) dx

)B

︸ ︷︷ ︸
none of the bidders

belongs to S

.

Intuition:
▶ for simplicity, assume that the item is indivisible;
▶ left-hand side is probability of an intersection of 2 events:

▶ at least one bidder with the type from the set S participates in the auction;
▶ this bidder receives the item;

▶ right-hand side is probability of the event that at least one bidder with the type from
the set S participates in the auction.
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Second-order stochastic dominance

Definition
A random variable ξ stochastically dominates random variable η if

Tailα(ξ) ≥ Tailα(η)

for each 0 ≤ α ≤ 1, where Tailα(ξ) is the unconditional expectation of the most
α× 100% of the outcomes of ξ.

Equivalent definitions:
▶ E[φ(ξ)] ≥ E[φ(η)] for any convex increasing φ;
▶ E[(ξ − t)+] ≥ E[(η − t)+] for each t

Intuition: ξ ⪰ η if (1 − ξ) is less risky than (1 − η).
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Stochastic dominance condition

▶ Let S be the set of α× 100% bidder types with the highest probability of receiving
an item. The Border condition

B ·
∫
S
P i (x) ρ(x)dx︸ ︷︷ ︸

Tailα

≤ 1 −
(∫

X\S
ρ(x) dx︸ ︷︷ ︸

1−α

)B

is equivalent to the tail bound

Tailα(P i (χ)) ≤
1
B
(1 − (1 − α)B) =

∫ 1

α
zB−1 dz

▶ the right-hand side is the tail size of ξB−1, where ξ is uniform on [0, 1]:

Tailα(P i (χ)) ≤
∫ 1

α
zB−1 dz = Tailα[ξB−1].
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Classical Lagrange multipliers
▶ every convex non-decreasing function φ is a positive combination of “elementary”

convex functions φt(x) = max(x − t, 0): φ(x) =
∫
λ(t)φt(x) dt.

▶ stochastic dominance constraint is a union of continuum “elementary constraints”:∫
φt(P i (x)) ρ(x)dx ≤

∫ 1

0
φt(z

B−1) dz for all t ∈ [0, 1];

▶ add these constraints to the revenue objective, using Lagrange multipliers λ(t) ≥ 0:

M =

∫
[x · ∇u − u]︸ ︷︷ ︸

revenue

ρdx −
I∑

i=1

∫
λ(t)dt

(∫
φt,i (P i ) ρdx −

∫ 1

0
φt,i (z

B−1) dz

)
︸ ︷︷ ︸

Lagrange multiplier

▶ substitute φi =
∫
φt,i λ(t)dt – convex and non-decreasing:

M =

∫ [
x · ∇u(x)− u(x)−

I∑
i=1

φi

(
∂u

∂xi

)]
ρ(x)dx +

I∑
i=1

∫
φi (z

B−1) dz
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Plan: introduce Beckmann’s problem

▶ Introduce the transshipment problem:
▶ discrete case: the minimum-cost flow problem
▶ continuous case:

▶ a transshipment problem
▶ an alternative (less known) version of the Monge-Kantorovich problem

▶ Beckmann = continuous version of the transshipment problem
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Dual solution to the auction problem

Figure: Distribution of the first component c1
of the optimal vector field c

Figure: Distribution of ∇ · c :∫
u d∇ · c = −

∫
⟨∇u, c⟩dx .

white region: ∇ · c = 0;
blue region: ∇ · c = 3;
red intervals: singular parts of ∇ · c equal to
(−1)· uniform measures on [0, 1].
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Minimum-cost flow problem
We are given the set of nodes G and the set of directed edges E .
▶ for each node u, the supply-demand imbalance i(u) is given

▶ i(u) > 0 means that a positive amount — the supply — is added to the flow: could
represent production at that node

▶ i(u) < 0 a negative amount — the demand — is taken away from the flow: could
represent consumption at that node

▶ for each directed edge (u, v), find the flow level f (u, v):
▶ non-negativity: f (u, v) ≥ 0
▶ flow conservation:

∑
(u,v)∈E

f (u, v)

︸ ︷︷ ︸
output flow

−
∑

(w ,u)∈E

f (w , u)

︸ ︷︷ ︸
input flow

= i(u)︸︷︷︸
imbalance

▶ the cost of the flow:
▶ d(u, v) · |f (u, v)| is the cost of of pushing f (u, v) units of flow through one edge
▶
∑

d(u, v) · |f (u, v)| is the total cost.
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Example of the minimum-cost flow problem

Figure: The graph consisting of 4 nodes A,B,C ,D and 4 edges. The node A is a source, the
nodes C and D are sinks, and B is a transshipment node
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Example of the minimum-cost flow problem

Figure: An example of the flow compensating supply-demand imbalance
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Example of the minimum-cost flow problem

Figure: By the triangle inequality, any non-zero flow through the path A → B → D or through
the path A → C → D could be replaced with the flow through the edge A → D reducing the
total cost.
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The Kantorovich–Rubinstein (mass transshipment) problem

Continuous network flow problem
▶ nodes are all the points x from Rn;
▶ the imbalance level i(x) is given by the signed measure µ− ν;
▶ flow is given by the transport plan γ(dx , dy):

▶ flow conservation:
∫
γ(x , y) dy︸ ︷︷ ︸

pr1γ

−
∫
γ(z , x) dz︸ ︷︷ ︸

pr2γ

= µ(x)− ν(x)︸ ︷︷ ︸
imbalance

▶ the cost of the flow:
∫

d(x , y) γ(dx , dy)

The mass transshipment problem (Kantorovich and Rubinstein, 1958)
Given a marginal difference µ− ν and a cost function d(x , y) = ||x − y ||, find the

optimal value min
π

∫
d(x , y)π(dx , dy) subject to the constraint pr1π − pr2π = µ− ν.
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From Kantorovich-Rubinstein to Beckmann
▶ Only local transfers are possible:

▶ replace the immediate transfer x → y with the sequence of infinitesimal transfers
x → (x + dc) → (x + 2 · dc) → · · · → y ;

▶ can be considered as a dynamic flow from x to y

▶ For each point x , define the transport flow c(x):
▶ the direction of c(x) coincides with the local direction of the flow
▶ the length of c(x) is the local congestion of the flow

▶ the total cost of the flow is
∫

|c(x)|︸ ︷︷ ︸
congestion

dx︸︷︷︸
distance

.

▶ the imbalance of the flow:
▶ an amount of flow entering or leaving the infinitesimal sphere around x ;
▶ can be described using the divergence operator div[c] =

∑ ∂ci
∂xi

+ boundary terms

▶ the flow conservation condition: div[c] + µ− ν︸ ︷︷ ︸
imbalance

= 0.
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Beckmann’s problem
The mass transshipment problem (Kantorovich and Rubinstein, 1958)
Given a marginal difference µ− ν and a cost function d(x , y) = ||x − y ||, find the
optimal value

min
π

∫
d(x , y)π(dx , dy)

subject to the constraint pr1π − pr2π = µ− ν.

The continuous transportation problem (Beckmann, 1952)
Given a marginal difference µ− ν, find the optimal value

min
c

∫
|c(x)| dx

subject to the constraint div[c] + µ− ν = 0.

Theorem
The mass transportation and Beckmann’s problems are equivalent: the optimal values
are identical and the solution to one problem can be constructed by another one.
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Equivalence of dual to Kantorovich-Rubinstein and Beckmann problems

▶ The weak form of the constraint div[c] + µ− ν = 0: for all φ,∫
∇φ(x) · c(x) dx =

∫
φ(x) · (µ(dx)− ν(dx))

▶ Introduce a Lagrangian:

min
c : div[c]+µ−ν=0

∫
|c | dx = min

c
max
φ

{∫
|c | dx −

∫
∇φ · c dx +

∫
φ · (µ(dx)− ν(dx))

}
▶ Apply the minimax principle:

min
c : div[c]+µ−ν=0

∫
|c | dx = max

φ

{∫
φ · (µ(dx)− ν(dx)) + min

c

∫
|c | dx −

∫
∇φ · c dx

}
▶ minc

∫
|c | dx −

∫
∇φ · c dx is bounded iff |∇φ(x)| ≤ 1 for all x

▶ |∇φ| ≤ 1 is 1-Lipschitz condition: φ(x)− φ(y) ≤ |x − y |

▶ The problem max
φ

∫
φ(x) · (µ(dx)−ν(dx)) subject to φ(x)−φ(y) ≤ |x−y | is dual

to the transshipment problem
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Beckmann’s problem with nonlinear transfer cost
▶ the cost of pushing f (u, v) units of flow depends on f non-linearly:

▶ cost =
∑

Φuv (f (u, v))
▶ Φuv are edge-specific convex functions;

▶ in the continuous case: cost =
∫

Φ(c(x)) ρ(x)dx

▶ the cost Φ(c) depends on both the direction and the congestion of the flow;
▶ ρ(x) is the weight of the node x ;

▶ the flow conservation condition: divρ[c] + µ− ν = 0
▶ divρ[c] := div[ρ · c] is a weighted divergence;

Problem (Beckmann’s problem with non-linear transfer cost)
For a given cost function Φ(c), minimize the total weighted cost over all transport flows
c compensating the supply-demand imbalance π = µ− ν:

Beckρ(π,Φ) = inf
c : div[ρ·c]+π=0

∫
Φ(c) ρ(x)dx
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Example of B = 2 bidders and I = 2 independent items.

Figure: Graph of the first component of the conditional allocation function P = ∂u
∂x1

for the
uniformly distributed value estimate vector x = (x1, x2).
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Example of the monopolist problem with production cost

Figure: The level set of detH(u)
(Mirebeau 2014)

Problem example: X = [1, 2]2, ρ(x)dx –
uniform on X , φ1(x) = φ2(x) =

1
2x

2

∫ [
⟨x , u(x)⟩ − u(x)− 1

2
||∇u||2

]
dx → max

over all u ∈ U .
▶ Ω0: u(x) = 0;
▶ Ω1: detH(u) = 0;
▶ Ω2: detH(u) > 0, the function u satisfies

the Heat equation ∆u = 3.
The exact solution is unknown even in this
simplest case!
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Solution: can solve with unprecedented numerical precision

Rochet & Chone, 1998
Mirebeau

Figure: Previously, it was expected that the image of ∇u is a union of the interval [(0, 0), (1, 1)]
and of the square [1, 2]2. Result of the modern computation is on the right picture.
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Equivalence of dual to Kantorovich-Rubinstein and Beckmann problems

▶ The weak form of the constraint div[c] + µ− ν = 0: for all φ,∫
∇φ(x) · c(x) dx =

∫
φ(x) · (µ(dx)− ν(dx))

▶ Introduce a Lagrangian:

min
c : div[c]+µ−ν=0

∫
|c | dx = min

c
max
φ

{∫
|c | dx −

∫
∇φ · c dx +

∫
φ · (µ(dx)− ν(dx))

}
▶ Apply the minimax principle:

min
c : div[c]+µ−ν=0

∫
|c | dx = max

φ

{∫
φ · (µ(dx)− ν(dx)) + min

c

∫
|c | dx −

∫
∇φ · c dx

}
▶ minc

∫
|c | dx −

∫
∇φ · c dx is bounded iff |∇φ(x)| ≤ 1 for all x

▶ |∇φ| ≤ 1 is 1-Lipschitz condition: φ(x)− φ(y) ≤ |x − y |

▶ The problem max
φ

∫
φ(x) · (µ(dx)−ν(dx)) subject to φ(x)−φ(y) ≤ |x−y | is dual

to the transshipment problem
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The algorithm could be scaled to multiple bidders

Figure: Revenue as a function of the number of bidders B for two items with i.i.d. values uniform
on [0, 1]. Graphs from bottom to top: selling separately (light-green), selling optimally (blue),
full surplus extraction (red), limit for B → ∞ (the dashed line).
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The Border’s condition

Question
Given a reduced allocation function P , under which conditions is it possible to find the
full feasible mechanism (P1, . . . ,PB)?
Consider any set S of bidder types.

B∑
b=1

∫
S
Pb(xb) ρ(xb)dxb

=
B∑

b=1

∫
xb∈S

Pb(x1, . . . , xB) ρ(x)dx

≤
∣∣∣ ∪b {xb ∈ S}

∣∣∣ = 1 − (1 − |S |)B .
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The Border’s condition

Theorem (Border)
The reduced allocation function P(x) is feasible if and only if for any set S of bidder
types, ∫

S
P(x) ρ(x)dx ≤ 1

B

(
1 − (1 − |S |)B

)
.

Example
Consider the case of B uniformly distributed bidders.
▶ P(x) = xB−1 for x ≥ 1

2 ;
▶ take S = [t, 1]: ∫

S
P(x) dx =

∫ 1

t
xB−1 dx =

1
B
(1 − tB).
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The case of I = 1 item. A Vickrey auction
For B ≥ 1 bidders, the auctioneer’s revenue is equal to

R =

∫ (
V (x1)P1 + · · ·+ V (xB)PB

)
ρ(x1, . . . , xB) dx1 . . . dxB

subject to the constraint P1(x1, . . . , xB) + · · · + PB(x1, . . . , xB) ≤ 1. The maximum of
the integrand is reached if Pb = 1 for the maximal V (xb).

Theorem (Myerson 1981)
The Vickrey auction or a second-price sealed-bid auction is an optimal one: the
highest bidder wins but the price paid is the second-highest bid. More precisely, denote
x0 = min{x : V (x) ≥ 0}. Then

Pb(x1, . . . , xB) = 1 and Tb(x1, . . . , xB) = max
d ̸=b

xd if xb = max
0≤d≤B

xd ,

Pb(x1, . . . , xB) = Tb(x1, . . . , xB) = 0 otherwise.
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Time permitting: multidimensional taxation problem
▶ The distribution of workers α ∼ Φ

▶ α = (αc , αm) is a bundle of cognitive and manual skills

▶ Preferences: U(c , l) = c − lρc − lρm

▶ Task technology: xc = αc lc and xm = αmlm

Problem
Maximize the total budget

max
c,x

∫ (
1
2
xc(α)

2 +
1
2
xc(α)

2 − c(α)

)
dΦ(α)

subject to:
▶ the participation constraint: U(c(α), xc(α)/αc , xm(α)/αm) ≥ U

▶ the promise-keeping constraint:
∫

U(c(α), xc(α)/αc , xm(α)/αm) dΦ(α) ≥ U
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Utility allocation

▶ Use

ps := α−ρ
s xs(p) := xs(α)

ρ

to transform preferences

u(c(α))−
(
xc(α)

αc

)ρ

−
(
xm(α)

αm

)ρ

into a linear function

c(p)− pcxc(p)− pmxm(p)
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Transformed planning problem

min
{c,xs}

∫ (
c(p)− 1

2
xc(p)

2/ρ − 1
2
xm(p)

2/ρ
)
π(p)dp

subject to:

c(p)− pcxc(p)− pmxm(p) ≥ c(q)− pcxc(q)− pmxm(q) (IC)

c(p)− pcxc(p)− pmxm(p) ≥ U (OO)

∫
(c(p)− pcxc(p)− pmxm(p))π(p)dp ≥ U (PK)
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Task solution
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Optimal bunching
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Tax wedges

.
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Tax wedges

.
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What is next

Maximize R = B ·
∫

[x · ∇u(x)− u(x)] ρ(x)dx subject to

▶ stochastic dominance: P i ≥ 0 and
∫
φ(P i (x)) ρ(x)dx ≤

∫ 1

0
φ(zB−1) dz for

every convex non-decreasing φ
▶ (IR) and (IC)

Plan: writing a Lagrangian
▶ Put stochastic dominance constraint into the objective
▶ resulting problem consists of 2 steps:

▶ choosing u;
▶ choosing φi ,

▶ problem with fixed φi , choosing u

▶ duality: then choose φi

58 / 28



Legendre transform

Definition
For a convex function f , define f ∗(y) = supx{xy − f (x)}.

Example
▶ f (x) = 1

2x
2. Then f ∗(y) = 1

2y
2 and 1

2x
2 + 1

2y
2 ≥ xy is Cauchy’s inequality

▶ f (x) = xα

α . Then f ∗(y) = yβ

β , where 1
α + 1

β = 1. The inequality xα

α + yβ

β ≥ xy is
Young’s inequality

Theorem (Fenchel inequality)
For any convex function f (x),
▶ f (x) + f ∗(y) ≥ xy ,
▶ f (x) = supy{xy − f ∗(y)}.

Intuition: convex function f is a maximum of its tangent lines.
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Use minimax principle
▶ minimax principle: maxu minc = minc maxu:

R

B
= min

φ
min
c

max
u

{∫ [
x · ∇u(x)− u(x)−

I∑
i=1

ci (x) ·
∂u(x)

∂xi

]
ρ(x)dx

+
I∑

i=1

∫
φ∗
i (ci (x)) ρ(x)dx +

I∑
i=1

∫ 1

0
φi (z

B−1) dz︸ ︷︷ ︸
independent of u

}
.

▶ maximize over uuu: if the functional can take a positive value, then by replacing
u → λ · u with λ > 0 we can obtain any positive values:

max
u

∫ [
x · ∇u(x)− u(x)−

I∑
i=1

ci (x) ·
∂u(x)

∂xi

]
ρ(x)dx =

{
0 (take u ≡ 0u ≡ 0u ≡ 0),
+∞ (can multiply by λ > 0λ > 0λ > 0)
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Can treat maxu as a constraint
▶ minimax principle: maxu minc = minc maxu:

R

B
= min

φ
min
c

{
max
u

∫ [
x · ∇u(x)− u(x)−

I∑
i=1

ci (x) ·
∂u(x)

∂xi

]
ρ(x)dx︸ ︷︷ ︸

replace with 0

+
I∑

i=1

∫
φ∗
i (ci (x)) ρ(x)dx +

I∑
i=1

∫ 1

0
φi (z

B−1) dz︸ ︷︷ ︸
independent of u

}
.

▶ maximize over uuu: if the functional can take a positive value, then by replacing
u → λ · u with λ > 0 we can obtain any positive values:

max
u

∫ [
x · ∇u(x)− u(x)−

I∑
i=1

ci (x) ·
∂u(x)

∂xi

]
ρ(x)dx =

{
0 (take u ≡ 0u ≡ 0u ≡ 0),
+∞ (can multiply by λ > 0λ > 0λ > 0)
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The Kantorovich-Rubinstein problem (Dokl. Akad. Nauk SSSR, 1958)
Intuition
▶ In the classical problem, production and consumption nodes are separate.
▶ The transshipment problem: nodes can transfer and receive goods simultaneously.

The discrete mass transshipment problem
We are given:
▶ m points k = 1, . . . ,m and a vector ψ = (ψ1, . . . , ψm);
▶ ψk represents the volume of production (if ψk ≤ 0) of consumption (if φk > 0)

Find a transport plan γ = (γij): for each k ,
▶ export k → j is γkj ; total export:

∑
j γkj ;

▶ import i → k is γik ; total import:
∑

i γik ;
▶ the balancing condition:

∑
γik −

∑
γkj = ψk

▶ the total transportation cost
∑
αijγij is minimal.
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Analysis of the problem. IC-constraint
Recall the incentive compatibility constraint:

u(x) = x · P(x)− T (x) ≥ x · P(x̂)− T (x̂)

▶ The right hand-side is equal to

x · P(x̂)− T (x̂) = (x − x̂) · P(x̂) + u(x̂).

▶ The inequality
u(x)− u(x̂) ≥ (x − x̂)P(x̂)

holds for all x , x̂ ∈ [0, 1]I if and only if u(x) is convex and P(x) ∈ ∂u(x) for all x .
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