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ABSTRACT—What is the sequence of processing steps in-

volved in visual object recognition? We varied the expo-

sure duration of natural images and measured subjects’

performance on three different tasks, each designed to tap

a different candidate component process of object recog-

nition. For each exposure duration, accuracy was lower

and reaction time longer on a within-category identifica-

tion task (e.g., distinguishing pigeons from other birds)

than on a perceptual categorization task (e.g., birds vs.

cars). However, strikingly, at each exposure duration,

subjects performed just as quickly and accurately on the

categorization task as they did on a task requiring only

object detection: By the time subjects knew an image

contained an object at all, they already knew its category.

These findings place powerful constraints on theories of

object recognition.

Humans recognize objects with astonishing ease and speed

(Thorpe, Fize, &Marlot, 1996). In the studies we report here, we

used behavioral methods to investigate the sequence of proc-

esses involved in visual object recognition in natural scenes. We

tested two (non-mutually exclusive) hypotheses: (a) that visual

object recognition entails first detecting the presence of the

object, before perceptually categorizing it (e.g., as bird, car, or

flower), and (b) that objects are perceptually categorized (e.g.

bird, car) before they are identified at a finer grain (e.g., pigeon,

jeep).

Consistent with the first hypothesis, traditional models of

object recognition posit an intermediate stage between low-

level visual processing and high-level object recognition at

which the object is first segmented from the rest of the image

before it is recognized (Bregman, 1981; Driver & Baylis, 1996;

Nakayama, He, & Shimojo, 1995; Rubin, 1958). Underlying

this idea is the intuition that an efficient recognition system

should not operate indiscriminately on any region of an image,

because most regions will not correspond to distinct objects.

Instead, researchers have argued that stored object represen-

tations should be accessed only for candidate regions selected

by a prior image-segmentation process. However, other evi-

dence suggests that object recognition may influence, and

perhaps even precede, segmentation (Peterson & Gibson, 1993,

1994; Peterson & Kim, 2001). Thus, the first hypothesis, which

suggests that segmentation occurs prior to recognition, is cur-

rently subject to vigorous debate (Peterson, 1999; Vecera &

Farah, 1997; Vecera & O’Reilly, 1998).

Consistent with the second hypothesis, some behavioral ev-

idence suggests that familiar objects are named faster at the

basic level (e.g., car; Rosch, 1978; Rosch, Mervis, Gray,

Johnson, & Boyes-Braem, 1976) than the superordinate (e.g.,

vehicle) or subordinate (e.g., Volkswagen Beetle) level. How-

ever, this is apparently not true for visually atypical members of

a category (Jolicoeur, Gluck, & Kosslyn, 1984). Further, it has

been suggested that visual expertise may lead experts to rec-

ognize stimuli from their expert category as fast at the subor-

dinate level as the basic level (Rosch et al., 1976; Tanaka,

2001). Thus, the generality of the second hypothesis is also

subject to debate.

To test whether object detection precedes perceptual cate-

gorization and whether perceptual categorization precedes

identification, we measured behavioral performance on three

different recognition tasks: object detection, object categori-

zation, and within-category identification. We used displays in

which each photograph was presented briefly at one of several

exposure durations and then immediately masked (Fig. 1). We

reasoned that if one task (Task A) requires additional processing

not required by another task (Task B), this extra processing

could be detected in two different ways. Insofar as masking

truncates visual processing (Breitmeyer & Ogmen, 2000), per-

formance should be lower for a given stimulus duration on Task

A than on Task B, because the mask will cut off processing

before the longer process is completed. However, because the
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masking stimulus is unlikely to cut off processing at all stages,

we also compared reaction times across tasks. If Task A requires

additional processing not required by Task B for the same stim-

ulus and exposure duration, then reaction times (RTs) should be

longer for Task A than for Task B (Sternberg, 1998a, 1998b).

In the object detection task, participants were asked to decide

whether or not a gray-scale photograph contained an object.

Catch trials consisted of scrambled versions of the images

(Grill-Spector, Kushnir, Hendler, & Malach, 2000) containing

textures or random dot patterns (Fig. 1b). Participants were told

that they did not have to recognize the object to report its

presence. (This is a liberal test of object detection, as per-

formance could in principle be based on lower-level information

such as spatial-frequency composition.) In the object categori-

zation task, subjects were asked to categorize the object in the

picture at the basic level (e.g., car, house, flower). In the within-

category identification task, subjects were asked to discriminate

exemplars of a particular subordinate-level category (e.g.,

German shepherd) from other members of the category (e.g.,

other dogs). In each trial in each of our experiments, subjects

viewed an image they had never seen before, so performance

could not be affected by prior knowledge of particular images.

Further, objects from each category and subordinate class were

depicted in various viewing conditions and in different back-

grounds to reduce the probability that subjects would use a

small set of low-level features to perform these tasks.

METHOD

Sixty-six subjects (31 male and 35 female, ages 19–41) par-

ticipated in these experiments. All subjects had normal or

corrected-to-normal vision and gave written informed consent to

participate in the study.

Experimental Design

Each image was presented for 17, 33, 50, 68, or 167 ms and was

immediately followed by a mask that stayed on for the remainder

of the trial (Fig. 1a). Images were presented centrally using

Psychophysics Toolbox (Brainard, 1997) and subtended a visual

angle of 8o. The same subjects participated in all three tasks of a

given experiment: detection, categorization, and identification.

Stimulus order was counterbalanced for exposure duration and

content. Task order was counterbalanced across subjects.

Stimuli

The image database contained more than 4,500 gray-level im-

ages from 15 basic categories. Each category included at least

200 images of different exemplars (e.g., different birds) along

with at least 100 images from one subordinate-level category

(e.g., pigeon). Images from each category and subordinate cat-

egory appeared in many viewing conditions and backgrounds.

Nonobject textures (Fig. 1b) were created by scrambling object

pictures into 225 random squares with a size of 8 � 8 pixels

(Experiments 1 and 3) or 14,400 squares with a size of 1 � 1

pixels (Experiments 2 and 4).

Behavioral Performance

Accuracy scores were corrected for guessing (Green & Swets,

1966): accuracy (corrected for guessing)5 100 * (hits � false

alarms)/(1� false alarms).

EXPERIMENT 1: NAMING OBJECTS AT DIFFERENT
LEVELS OF SPECIFICITY

In Experiment 1, we measured accuracy on the object detection,

categorization, and identification tasks performed on the same

natural images (Fig. 1). Fifteen subjects viewed 600 images

from 10 object categories and 600 random masks across the

three tasks. In each of the tasks, the frequency of each object

category was 10%, and for each category, half of the images

were from a single subordinate class. In each 2-s trial, an image

was presented for one of five different exposure durations and

was immediately followed by a masking stimulus for the re-

mainder of the trial. For each task, subjects were presented with

Fig. 1. Example of two trial sequences (a) and the images used in this
study (b). Images were presented briefly (for 17, 33, 50, 68, or 167ms) and
were immediately followed by a mask that stayed on for the remainder of
the trial, as indicated by the gray bar. During this period, subjects were
required to respond according to the task instructions. Trial duration was
1 s in Experiments 2 through 4 (as shown here) and 2 s in Experiment 1.

Volume 16—Number 2 153

Kalanit Grill-Spector and Nancy Kanwisher



200 images (40 per exposure duration) and 200 random masks.

Before each task, subjects were told the level of specificity of

the required answers and the response alternatives for that task.

For the detection task, subjects pressed one key if the picture

contained an object (50% of trials), and another key if it con-

tained a texture with no object (50% of trials). For the catego-

rization task, subjects viewed the same object images and

named them at the basic level using the following 10 alterna-

tives: face, bird, dog, fish, flower, house, car, boat, guitar, or

trumpet. For the within-category identification task, subjects

viewed the same object stimuli and named the following pre-

specified targets at the subordinate level: Harrison Ford, pi-

geon, German shepherd, shark, rose, barn, VW beetle, sailboat,

and electric guitar; for other exemplars of the categories (e.g., if

a picture contained a dog other than a German shepherd), they

were instructed to respond ‘‘other.’’

Results

Figure 2 shows accuracy as a function of stimulus duration for

all three tasks. Note that the performance curve for the identi-

fication task is shifted to the right of the performance curves for

the other two tasks. Accuracy in both the detection and cate-

gorization tasks was statistically significantly higher than ac-

curacy in identification for the 33-, 50-, and 68-ms exposure

durations, t(15) > 4.1, p < .001, d > 2. Accuracy was lower

for identification than for categorization for each of the object

categories tested.

Surprisingly, the curves relating accuracy to stimulus dura-

tion were nearly identical and not significantly different for the

categorization and detection tasks, despite the greater com-

plexity of the 10-alternative forced-choice categorization task

compared with the two-alternative forced-choice object detec-

tion task. Performance in the categorization task was similar

to categorization performance in previous experiments (Grill-

Spector et al., 2000) in which subjects were not told in advance

the object categories, so prior knowledge of the possible cate-

gories is unlikely to have been critical for producing these re-

sults. Hence, object detection accuracy was not higher than

object categorization accuracy at any exposure duration.

Discussion

Our data show strikingly similar performance on object detec-

tion and object categorization. Two alternatives may account for

this surprising result. One is that detection and categorization

require the same amount of processing time. Another is that the

same amount of stimulus information is necessary for detection

and categorization, but categorization requires additional

processing. According to the latter hypothesis, RTs should be

longer in the categorization task than in the detection task even

when accuracy is similar. Our first experiment is not useful in

testing this hypothesis because the different tasks had different

numbers of response alternatives, a factor that is known to affect

RT (Sternberg, 2001). We therefore conducted a second ex-

periment using the same design except that only two response

alternatives were used in each task and the proportions of

targets and nontargets were equated across tasks.

EXPERIMENT 2: COMPARISON OF DETECTION,
CATEGORIZATION, AND IDENTIFICATION

PERFORMANCE WITH ATWO-ALTERNATIVE
FORCED-CHOICE DESIGN

In Experiment 2, we measured both accuracy and RT for the

three tasks. To examine the specificity of categorization that

occurs together with detection, we compared subjects’ per-

formance when they were asked to categorize objects within the

same superordinate category (e.g., cars vs. boats and planes)

with their categorization performance when the objects were

Fig. 2. Naming performance for the three recognition tasks in Experiment 1. The data are
averaged across 15 subjects (5 male, 10 female). The y-axis denotes accuracy corrected for
guessing. Error bars indicate standard errors of the means.
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from different superordinate categories (e.g., cars vs. objects

excluding vehicles).

Experimental Design

Methods were the same as for Experiment 1 except as follows:

(a) We collected both accuracy and RT data, (b) each task was a

two-alternative forced-choice task in which 50% of trials con-

tained targets and 50% contained nontargets, (c) three catego-

ries were tested (cars, dogs, and guitars) in separate blocks, and

(d) trial duration was 1 s instead of 2 s.

In the object detection task, on half of the trials with objects

the object belonged to the target category that was used in the

categorization and identification tasks, and on the other half the

objects were from nine other familiar object categories. Because

we wanted to compare performance on the same stimuli across

tasks, we report detection performance only for the target cat-

egory that was tested in the other two tasks in the same block.

In the categorization task, subjects were asked whether each

image was from the target category or not (e.g., ‘‘car’’ or ‘‘not a

car’’). For each of the three target categories (cars, guitars, and

dogs), subjects participated in two blocks, one in which non-

targets were objects from nine other familiar categories, but not

from the same superordinate category as the targets, and one in

which nontarget objects were from the same superordinate

category as the targets. In the latter case, subjects had to dis-

tinguish (a) cars versus boats and planes, (b) guitars versus

pianos and trumpets, and (c) dogs versus birds and fish.

In the identification task, subjects were asked to determine

whether or not each image was an exemplar of the within-cat-

egory target (e.g., jeep). Distractors were other exemplars from

the same basic-level category (e.g., different car models). Half

of the images were targets, and half were distractors. Note that

subjects had to identify a within-category target, not a particular

image. We tested three categories: (a) jeep versus other cars, (b)

electric guitar versus other guitars, and (c) German shepherd

versus other dogs.

Results

This experiment replicated Experiment 1 in that accuracy on

the detection task (i.e., object vs. texture) and accuracy on the

categorization task (e.g., car vs. other vehicles and car vs. ob-

jects from other superordinate categories) were similar (Fig. 3),

whereas accuracy in the identification task (e.g., jeep vs. other

cars) was lower. However, crucially, the new experiment found

further that not only accuracy but also RTs were virtually

identical for the detection and categorization tasks (Fig. 3), all

ts(15) < 1, ps > .07, ds < 0.25. In contrast, RTs were longer

for the identification task, even when accuracy in categorization

and identification were matched (33–68 ms), ts(15) > 2.95,

ps < .01, ds > 1.8.

Our results also demonstrate that categorization performance

was virtually identical to detection performance even when

nontargets were restricted to the same superordinate category

(Fig. 3). For all categories, there was no difference in accuracy

for detection and categorization when distractor objects were

Fig. 3. Recognition performance within and across superordinate categories in Experiment 2. Subjects performed three tasks: detection (e.g., object
vs. texture), categorization (e.g., car vs. other vehicle, car vs. other object), and identification (e.g., jeep vs. other car). The graphs present accuracy
data (corrected for guessing) and reaction time (RT) data on correct trials for three kinds of categories: (a) vehicles, (b) musical instruments (‘‘mu-
sic.inst.’’), and (c) animals. The data are averaged across 15 subjects (9 male, 6 female). Error bars indicate standard errors of the means. RTs are not
meaningful when accuracy is at chance. Therefore, RTs are not plotted for the identification task at the 17-ms exposure duration for the guitar and dog
blocks. Data for the detection task (object vs. texture) are plotted only for the corresponding basic-level category in each panel; for example, (a)
presents the data for cars, which accounted for half the object trials in the detection task.
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restricted to the superordinate category. The only exception was

higher detection accuracy than accuracy in categorization of

dogs versus animals at the 50-ms exposure duration, t(15) >

2.9, p < .02. There was also no difference in RTs between

detection and categorization within the same superordinate

category, with two exceptions: guitars versus musical instru-

ments for the 17-, 50-, and 68-ms durations, ts(15) > 2.9,

ps < .01, and dogs versus other animals at the 17- and 33-ms

exposure durations, ts(15) > 2.6, ps < .03. Thus, subjects

extracted object categories quite accurately.

Discussion

This experiment demonstrates that object detection and object

categorization take the same amount of processing time. The

category information extracted during detection is slightly

coarser than basic-level information, but considerably finer

than superordinate-level information.

EXPERIMENT 3: WAS DETECTION PERFORMANCE
BASED ON OBJECT CATEGORY INFORMATION?

Our results consistently show that categorization and detection

performance are similar. A straightforward interpretation of

these results is that these two processes are linked. However, an

alternative account is that detection and categorization are

distinct and the observed linkage arose because subjects used

object category information in the detection task. One possi-

bility is that the masking stimulus obliterated low-level visual

representations, forcing subjects to rely on high-level repre-

sentations to perform the detection task. If this account is cor-

rect, then detection performance should be superior to

categorization performance for unmasked stimuli.

We tested this prediction in Experiment 3, in which stimuli

were followed by an equiluminant blank screen instead of a

masking pattern. Methods were otherwise identical to those of

Experiment 2.

Results

Because stimuli were not masked, accuracy for detection and

categorization was at ceiling and did not vary significantly with

exposure duration (Fig. 4). There were no statistically signifi-

cant differences between detection and categorization in RT or

accuracy for any of the image exposures at all durations, ts(24)

< 1.4, ps > .1, ds < 0.3. In contrast, RTs were significantly

slower, by approximately 100 ms, for identification than for both

detection and categorization at all durations, ts(24) > 4.5,

ps < .001, ds > 1.2. Accuracy in both the detection and the

categorization tasks was also higher than accuracy in identifi-

cation at all durations, ts(24) > 2.8, ps < .01 ds > 1. There-

fore, detection performance and categorization performance

were similar in both accuracy and RTs even when stimuli were

not masked, indicating that the apparent similarity of process-

ing time required for detection and categorization in the pre-

vious experiments was not an artifact of masking.

Discussion

Experiments 1 through 3 provide evidence that detection and

categorization performance require the same amount of informa-

tion and processing time. Two possible mechanismsmight account

for this result: (a) Detection and categorization may be mediated

by the same mechanism, or (b) detection and categorization may

be computed by distinct mechanisms but require similar total

amounts of processing. We tested these hypotheses in the next

experiment by investigating whether detection and categorization

are correlated on a trial-by-trial basis, or whether either task can

be successfully performed without the other on a given trial.

EXPERIMENT 4: COMPARING PERFORMANCE IN TWO
TASKS ON ATRIAL-BY-TRIAL BASIS

If detection and categorization are directly linked, then success

(or failure) at detection will predict success (or failure) at cat-

egorization on a trial-by-trial basis, and vice versa. However, if

detection and categorization are computed independently, then

detection and categorization performance might not show trial-

by-trial correlations. To test these predictions, we modified the

Fig. 4. Detection (object vs. texture), categorization (car vs. object), and
identification (jeep vs. car) performance on unmasked stimuli in Exper-
iment 3. Data were measured for 24 subjects (10 male, 14 female). Error
bars indicate standard errors of the means. The data plotted here are
from the experimental block in which we examined performance on car
stimuli. Performance was measured by both accuracy corrected for
guessing (a) and reaction time on correct trials (b).
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experimental paradigm so that subjects made two independent

responses on each trial.

Experimental Design

The trial sequence consisted of an image that appeared for 17

(or 33) ms, a masking stimulus (which consisted of a texture

pattern created by dividing object images into 225 squares and

then scrambling the squares) that was shown for 500 ms, a

second image that appeared for 17 (or 33) ms, and another

masking stimulus that was shown for 2,966 (or 2,934) ms. In

each trial, only one of the pictures contained an object, and the

other was a random dot pattern. The 17- and 33-ms exposures

were run in separate blocks. Each block contained 128 trials.

In the detection and categorization version of the experiment,

subjects were asked in which interval (first or second) the object

appeared (detection task) and whether the object was a car or a

face (categorization task). The objects were cars in half of the

trials and faces in the other half. Objects occurred with equal

probability in the first and second intervals.

In the detection and identification version of the experiment,

subjects decided on each trial in which interval (first or second)

a face appeared (detection task) and whether the face was

Harrison Ford or a different man (identification task). Half the

trials contained different pictures of the target individual, and

the other half contained pictures of other male faces (some were

the faces of famous actors). Male faces appeared with equal

probability in the first and second intervals.

The order of the responses within a trial, the order of the two

versions of the experiment, and the order of 33-ms and 17-ms

blocks were counterbalanced across subjects.

Results

Categorization performance was significantly better for objects

that were detection hits than for those that were detection

misses (see Figs. 5a and 5b), t(12)5 4.5, p < .001, d5 1.2,

for the 17-ms exposure duration and t(12)5 3.6, p < .003,

d5 1.3, for the 33-ms exposure duration. Categorization per-

formance on detection misses was not different from chance,

t(12)5 0.5, p > .1, for the 17-ms exposure duration. Crucially,

the converse was also true: Detection performance was signifi-

cantly better for categorization hits (on objects) than for cate-

gorization misses (on objects), t(12)5 4.6, p < .001, d5 1.7,

for the 17-ms exposure duration and t(12)5 4.45, p < .001,

d5 1.6, for the 33-ms exposure duration; also, detection per-

formance was at chance for categorization misses. A two-way

analysis of variance of performance as a function of task (de-

tection or categorization) and success (hit or miss in the second

task) showed a main effect of success, F(1, 1) > 12, p < .003,

for the 17-ms exposure duration and F(1, 1) > 17, p < .001,

for the 33-ms exposure duration, but there was no significant

difference between tasks or interaction between task and

success at the other task. Thus, success on each task predicted

success on the other task.

Comparison between face detection and identification within

the same trial revealed completely different results (Figs. 5c

and 5d). First, detection performance was significantly higher

than identification performance, t(12)5 3.9, p < .01, d5 1.5,

for the 17-ms exposure duration and t(12)5 4.5, p < .001,

d5 2, for the 33-ms exposure duration. Second, identification

performance depended on detection performance, but detection

did not depend on identification. Thus, identification perform-

ance was better for detection hits than for detection misses,

t(12)5 2.9, p < .02, d5 1.3, for the 33-ms exposure duration

(at 17 ms, identification performance was at chance), but de-

tection performance was not different for identification hit or

miss trials, both ts(12) < 1.5, ps > .1. A two-way analysis of

variance of performance on one task as a function of hit or miss

at the other task revealed an interaction at the exposure of 33

ms, F(1, 1) > 5.6, p < .03.

Overall, these findings indicate that detection and categoriza-

tion are linked, whereas detection occurs prior to identification.

GENERAL DISCUSSION

The same two phenomena occurred with striking consistency in

these experiments: (a) Subjects did not require more processing

time for object categorization than for object detection, whereas

(b) comparable performance on the identification task required

Fig. 5. Experiment 4 results: raw hit rate in one task both overall and as
a function of success (hit) or failure (miss) at the second task. The data are
averaged across 12 subjects (7male, 5 female). Chance level is 50%.Results
for detection and categorization (a, b) and for detection and identification
(c, d) are shown separately for 17-ms and 33-ms exposure durations.
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substantially more processing time than was required for either

detection or categorization.

Our data provide evidence against the hypothesis that objects

are detected before they are recognized. First, in none of our

experiments did object categorization require either longer

stimulus durations or longer processing time than object de-

tection. Instead, as soon as subjects could detect an object at

all, they already knew its category. The level of categorization

that occurred with object detection was slightly more crude than

the traditional basic level (Rosch et al., 1976), but considerably

finer than the superordinate level (Rosch et al., 1976). Second,

if object detection is prior to categorization, on some trials

objects should be correctly detected but not categorized,

whereas the opposite should not occur. This prediction was not

upheld: On trials when categorization performance failed, de-

tection performance was no better than chance (the opposite

was also true). These data suggest that detection does not occur

prior to and independently of categorization. Instead, detection

and categorization are apparently linked: When either process

fails on a given trial, so does the other.1

Because figure-ground segregation should be sufficient for

accurate performance on our object detection task, our findings

challenge the traditional view that figure-ground segregation

precedes object recognition (Bregman, 1981; Driver & Baylis,

1996; Nakayama et al., 1995; Rubin, 1958) and suggest instead

that categorization and segmentation are closely linked. This

conclusion is consistent with the findings of Peterson and her

colleagues (Peterson, 2003; Peterson & Gibson, 1993, 1994;

Peterson & Kim, 2001; Peterson & Lampignano, 2003), al-

though our conclusions differ slightly from theirs: Whereas

Peterson and her colleagues concluded that categorization

influences segmentation, we suggest that conscious object

segmentation and categorization are based on the same

mechanism. A recent computational model (Borenstein & Ull-

man, 2002) suggests one way such a linkage between segmen-

tation and categorization may arise. If incoming images are

matched to templatelike image fragments (learned from real-

world experience with objects) in which each subregion of each

fragment is labeled as either figure or ground, the resulting

fragment-based representation of an object would contain in-

formation about both the object category and the figure-ground

segmentation of the image.

An alternative account of our finding of similar performance

for object detection and categorization invokes constraints on

perceptual awareness (Hochstein & Ahissar, 2002). According

to this account, object detection may occur prior to categori-

zation, but the conscious decision stage may have access only to

the output of the categorization stage. Neural measurements

may ultimately provide the best test between an account of our

data in terms of constraints on awareness and an account in

terms of the sequence of processing in object recognition.

Preliminary evidence from magnetoencephalography (MEG)

and event-related potentials favors the idea that object seg-

mentation and categorization occur at the same time (Halgren,

Mendola, Chong, & Dale, 2003; Liu, Harris, & Kanwisher,

2002).

Performance in the detection task and performance in the

categorization task were similar, but comparable performance

in the identification task always required longer exposures and

more processing time. On average, 65 more milliseconds were

necessary for identification than for categorization even when

accuracy in the categorization and identification tasks was

matched. Further, success at identification depended on suc-

cess at detection, but success at detection did not depend on

success at identification. These results indicate that identifi-

cation occurs after the category has been determined. This

finding was obtained not only for objects but also for faces, and

is consistent with prior findings fromMEG (Liu et al., 2002), but

not with claims that expertise leads to a change in the initial

level of perceptual categorization of stimuli, such as faces, on

which subjects have gained expertise (Rosch et al., 1976;

Tanaka, 2001).

From these behavioral data, we cannot determine whether the

extra time needed for identification compared with categoriza-

tion reflects the engagement of a different mechanism or simply

a longer engagement of the same mechanism. Some evidence for

the latter view comes from neural measures. First, functional

magnetic resonance imaging (fMRI) studies in humans have

shown that the same cortical regions are engaged in the de-

tection and the identification of stimuli of a given category

(Grill-Spector, 2003, Grill-Spector, Knouf, & Kanwisher, 2004).

Second, electrophysiological studies in monkeys have shown

that stimulus selectivity of neurons in higher-order visual

areas increases as exposure duration increases (Keysers, Xiao,

Foldiak, & Perrett, 2001; Kovacs, Vogels, & Orban, 1995;

Sugase, Yamane, Ueno, & Kawano, 1999; Tamura & Tanaka,

2001). It is possible that the initial neuronal responses are

sufficient for detection and categorization, and later neural re-

sponses are necessary for identification.

From a computational point of view, capturing an object’s

category rapidly may expedite identification by restricting

processes that match the input with an internal representation

to the relevant category (instead of requiring a search across all

internal object representations). Traditional psychophysical

analyses, usually applied to simpler stimuli, offer a useful

perspective here. Graham (1989) has shown that if detection

and discrimination (categorization) performance are based on

the outputs of the same perceptual analyzers, then categoriza-

tion performance can be equivalent to or even better than de-

tection performance whenever the two discriminanda engage

independent analyzers. This analysis suggests that the present

data can be explained in terms of a system in which (a) object

1There are probably some extreme conditions in which detection can occur
without categorization, but these may be a special case of data-limited condi-
tions (e.g., blurry images), rather than resource-limited conditions (Norman &
Bobrow, 1975).
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detection and object categorization performance are based on

the same perceptual analyzers, which would be consistent with

evidence from fMRI (Grill-Spector, 2003; Grill-Spector et al.,

2004), and (b) categorization of different basic-level categories

engages largely independent and nonoverlapping perceptual

analyzers (in contrast to recent claims by Haxby et al., 2001),

but (c) identification of different stimuli within a category en-

gages overlapping perceptual analyzers.

In sum, we have shown that although substantially more

processing is required to precisely identify an object than to

determine its general category, it takes no longer to determine

an object’s category than to simply detect its presence. Overall,

these findings provide important constraints for any future

theory of object recognition.
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