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Highlights
Understanding the mind and brain re-
quires determining not only how they
work, but why they work the way
they do.

We argue that artificial neural networks
(ANNs) provide a new method for ad-
dressing ‘why’questions about the brain.

If an ANN optimized for a given task
Neuroscientists have long characterized the properties and functions of the ner-
vous system, and are increasingly succeeding in answering how brains perform
the tasks they do. But the question ‘why’ brains work the way they do is asked
less often. The new ability to optimize artificial neural networks (ANNs) for perfor-
mance on human-like tasks now enables us to approach these ‘why’ questions
by asking when the properties of networks optimized for a given task mirror the
behavioral and neural characteristics of humans performing the same task.
Here we highlight the recent success of this strategy in explaining why the visual
and auditory systems work the way they do, at both behavioral and neural levels.
spontaneously produces a particular
phenomenon previously observed in
humans, but optimization for other
tasks does not, that suggests that the
phenomenon may result from optimiza-
tion of the brain for that same task.

We review phenomena in vision and au-
dition (e.g., specific illusions), and of corti-
cal organization (e.g., specializations for
face recognition) that arise spontaneously
in ANNs optimized for specific tasks, pro-
viding possible explanations for why
these phenomena occur in humans.

Among the next goals for research in this
area would be to discover the underlying
principles that explain why each opti-
mized ANN produces the particular
human-like phenomenon it generates
(the ‘why of the why’).
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Optimization as an answer to why questions about the living world
At the dawn of the 19th century the naturalist Alexander von Humboldt explored the Americas,
describing in rich detail the characteristics of each plant and animal species he encountered.
Thirty years later, his travelogue inspired the young Charles Darwin [1] to undertake his famous
voyage on the Beagle, leading to a theory of why each species had the particular characteristics
it did. Here we show how ANNs are helping to usher in a similar transformation in cognitive sci-
ence and neuroscience, from a focus on describing phenomena of the mind and brain and
their underlying mechanisms, to a deeply theoretical enterprise of asking (and sometimes even
answering) why they work the way they do.

ANNs are simulated networks of neuron-like units that are optimized by extensive training on a
particular task through gradual adjustment of the connection strengths between units
(Figure 1). These networks thus enable us to test the hypothesis that a particular mental or neural
phenomenon observed in humans results from optimization for a specific task, by asking first
whether that phenomenon arises spontaneously in a network trained on that task, and then, cru-
cially, whether it does not arise when the network is optimized for other tasks. Thus, much as evo-
lutionary theory explains the shape of a beak or length of a neck as not simply arbitrary species
characteristics, but solutions to specific biological problems optimized by natural selection, we
can explain specific characteristics of mind and brain as optimized solutions for specific compu-
tational problems faced by organisms. In the case of minds and brains, though, the optimization
can occur either through evolution or through learning during development, or (more often) a
complex combination of the two. Both forms of optimization offer possible answers to why
minds and brains work the particular ways they do.

The idea that the particular problems the brain must solve strongly influence the computations it
conducts is not new. For instance, David Marr noted long ago that ‘the nature of the computa-
tions that underlie perception depends more upon the computational problems that have to be
solved than on the particular hardware in which their solutions are implemented’ [2]. This idea
is reflected in the concept of an ideal observer that performs optimally on a perceptual task
given the available information [3], providing explanations for many observed visual phenomena
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Figure 1. Dimensions of artificial neural networks (ANNs) that can be varied. Modern ANN models differ in four
primary dimensions that can be manipulated independently. Answering why humans exhibit a particular behavioral or
neural phenomenon entails determining which of these factors (or their combination) cause the ANN to exhibit that
phenomenon. (i) The objective function is the task the ANN is optimized for. We focus primarily on the ability of task
constraints to provide normative explanations for phenomena observed in humans. However, such findings are always
within specifications of the other three dimensions that may also play an important role. (ii) Training data can be
systematically varied to understand the role of input statistics in shaping a neural or perceptual phenomenon. For
example, input statistics that mimic infant experience can inform what is learnable (and what properties result
spontaneously) from sensory data alone without domain-specific inductive biases [73]. Varying degrees of realism [21] or
ecological validity of category distributions [74] in training data can reveal how different perceptual/neural phenomena
might be adapted to the constraints of the naturalistic, real-world environment. (iii) Architecture variations include the
number and size of layers in the network, whether the network is purely feedforward or contains skip connections or
recurrence [75,76], cell-type variability [77], and wiring costs [39]. Such variations can, for example, explain why the
function of the retina differs between species [57]. (iv) Learning algorithms – the methods by which ANNs learn their
tasks – can be pitted against each other in their ability to produce rich brain-like representations. More brain-like learning
constraints include the use of unsupervised proxies as labels for training [55,56], biologically plausible plasticity rules for
weight updates [78–80], or limited supervised training to better mimic the experience-dependent learning in primates [81].
Note that the learning approach and the objective function can be interdependent, as in the case of unsupervised learning.
Photograph courtesy of Nancy Kanwisher.
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in real brains. However, the ideal observer approach has proved less tractable for higher-level
perceptual and cognitive processes. Here ANNs can help by discovering optimized (if not optimal)
solutions to complex real-world computational problems [4]. When ANNs optimized for human-
like tasks produce human-like phenomena, provides a possible explanation of why brains exhibit
those phenomena, as well as an illustration of the very hardware independence Marr proposed.

One critical test of a causal explanation, the answer to a ‘why?’ question, is an intervention that
removes the putative cause and asks if the effect still occurs [5]. A classic problemwith evolution-
ary explanations of current species characteristics is that scientists cannot perform interventions
that alter past objective functions and/or environmental constraints and rerun evolution (except in
organisms with a very short generation time, like bacteria [6]). ANNs offer a solution to this prob-
lem for the case of optimization of minds and brains [7].

In this review we illustrate this general approach with examples of ANNs optimized for particular
tasks that spontaneously produce known properties of minds and brains, thus explaining those
properties as the possible results of optimizations for those tasks. We consider a broad definition
of ANNs where an ANN is any network composed of simple computation units that loosely mimic
real neurons, and where the connections weights between units are optimized according to an
objective. The objective is again broadly construed, for example, the objective could be defined
with reference to explicit supervision signals such as human-defined labels (as in supervised
learning) or proxy tasks (as in self-supervised learning), or the objective could be to approximate
the data distribution and capture the underlying structure of the data (as in generative modeling or
2 Trends in Neurosciences, Month 2023, Vol. xx, No. xx
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unsupervised learning). Although we focus on the role of task optimization, we note that ANNs
also differ in other respects, including architecture, training data, and learning algorithms
(Figure 1). These factors may interact with task constraints or may independently explain why
or how a particular observed characteristic can arise.

Deep convolutional neural networks (CNN) as models for visual object
recognition
In the field of computational vision, hand-engineered models of visual object recognition have
been proposed for decades, but their performance lagged behind human abilities [8–10]. Then,
in 2012, a deep CNN trained end-to-end on millions of labeled images burst on the scene with
a performance close to that of humans on classification of real-world images [11]. CNNs thus of-
fered the first plausible and image-computable models of how object recognition might work in
the brain. Further, comparisons between such CNNs and primates showed a remarkable (though
imperfect) match in their fine-grained behavioral performance [12] and in their internal activations
[13–15]. Importantly, these networks were not trained to model primate object recognition, but
only to classify images, making their fit to brains non-obvious and important. The (partial) fit tells
us that these CNNs capture something about how vision works in the brain. It further suggests
that merely optimizing for the same task can lead to similar solutions in brains and machines, de-
spite the radical differences in their hardware and learning rules, supportingMarr’s conjecture that
the brain’s visual algorithms are fundamentally shaped by the problems they are optimized to
solve. This match between CNNs and brains thus also tells us something about why primate vi-
sion works the way it does: this is simply what an optimized solution to visual classification looks
like! The success of CNN models of vision has inspired similar efforts in other domains, such as
auditory perception [16,17] and language. Transformer-based large language models optimized
for predicting the next word fit behavioral and neural data in humans, and the better the model
performs on next word prediction the more closely it matches human data, suggesting that pre-
diction may be part of what the human language system has been optimized for [18,19]. We next
illustrate the power of ANNs to answer specific ‘why’ questions in cognitive science and neuro-
science, with recent examples, starting with psychophysics.

Answering why questions about behavior
For over 150 years, psychophysicists have labored to characterize in detail the behavioral char-
acteristics of human perceptual performance, documenting perceptual illusions and measuring
precisely how visual acuity declines with stimulus eccentricity, how pitch discrimination is affected
by the particular harmonics present in a tone, and how face recognition is affected by stimulus
inversion. Testing whether ANNs optimized for certain tasks show similar phenomena (Figure 2)
enables us to ask why humans exhibit these particular properties.

Audition
A pioneering study illustrating this strategy asked why human pitch perception exhibits the many
well-established psychophysical characteristics it does [20]. To answer this question, the authors
trained ANNs to estimate the fundamental frequency (F0), which is the perceptual correlate of
pitch, from natural sound stimuli. The key finding was that ANNs that performed best at the
task showed many of the classical characteristics of human pitch perception, such as changes
in perceived F0 when stimuli were bandpass-filtered to control which harmonics were audible.
Importantly, though, if the networks were instead trained on sounds without background noise,
or sounds with unnatural spectra, these human-like behavioral signatures did not emerge. Simi-
larly, if the input representation was altered so that it differed from that present in the auditory
nerve, the model performed less well at pitch discrimination than humans. These and other find-
ings thus explain many characteristics of human pitch perception as the result of optimization for
Trends in Neurosciences, Month 2023, Vol. xx, No. xx 3
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Figure 2. Comparing artificial neural networks (ANNs) with psychophysical data. (A) ANNs can be used to ask ‘why’ questions about human behavior by testing
whether optimizing a network for a given task leads it to produce a known psychophysical phenomenon. (A) Behavioral phenomena can be measured in specific test
conditions (e.g., A–D in red, green, yellow, and blue). By comparing the output of humans and ANNs to the same conditions, researchers can test which network properties
lead to a particular phenomenon. (B) For example, ANNs can be used to askwhy humans showa face-inversion effect [24], which is the lower accuracy for recognition of inverted
compared to upright faces. When presenting ANNs that were either untrained (random convolutional neural network, CNN), trained on objects (object CNN) or trained on faces
(face CNN), with the same conditions and stimuli, only the face-trained CNN showed lower accuracy for inverted faces. This finding suggests that the face inversion effect in
humans results from an optimization for upright face recognition, not from a general optimization to categorize objects. Face image from https://commons.wikimedia.org.
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the specific problem of extraction of the fundamental frequency of real-world sounds given
human cochlear input.

Another study in the same genre [21] asked why human sound localization exhibits the many spe-
cific psychophysical characteristics it does, such as frequency-dependent use of interaural time and
level differences, localization dominance of sound onsets, and limitations on the ability to localize
multiple concurrent sources. To find out, the authors built an ANN simulating the outer ears and
head/torso with impulse responses recorded from a physical model of head and ears, and simulat-
ing a cochlea with a set of human-like bandpass filters. They then trained this model end-to-end to
localize sounds generated in a virtual world with realistic background noise and reverberation. After
training, they tested the model on a wide range of classic psychophysical tasks, and found that the
model duplicated many previously established phenomena of human auditory localization, including
thosementioned above. These findings suggest that many psychophysical properties of human au-
ditory localization reflect optimizations for the specific problem of sound localization in natural envi-
ronments given the fixed properties of the peripheral human auditory system.

Vision
Classic visual psychophysical phenomena are also starting to be explained as the result of opti-
mizations for particular tasks. For example, many visual illusions arise spontaneously in networks
optimized for visual tasks (Figure 3), and which illusions the CNNs replicate depends on the task
each CNN is optimized to solve. Other psychophysical phenomena found in CNNs trained on ob-
ject recognition (but not CNNs with random weights) include set size effects in visual search [22],
a hallmark of human visual search performance, and human-like mirror confusion and scene in-
congruence effects (i.e., improved performance when an axe is embedded in a forest compared
to a supermarket) [23], suggesting that these phenomena result from an optimization for object
4 Trends in Neurosciences, Month 2023, Vol. xx, No. xx
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Figure 3. Why do humans experience visual illusions? Artificial neural networks (ANNs) are starting to reveal some of the specific network properties that
lead to particular illusions. (A) The illusory motion apparent in the static ‘rotating snake’ image was mirrored in PredNet [82], a network trained to predict the next frame in
thousands of video sequences [83], suggesting an account of this illusion in terms of predictive coding [84]. (B) The classic Thatcher illusion was present only weakly in
convolutional neural networks (CNNs) trained on object recognition, but strongly in a CNN trained to recognize faces [23], suggesting that face-specific experience, and
presumably optimization for face identification, is required to produce this effect. (C) Even very simple CNNs with only one hidden layer trained for basic low-level vision
tasks – such as denoising, color constancy, and deblurring – replicate several classic illusions, such as the Dungeon illusion or the Hong–Shevell rings, in which the color
of the central square or ring is biased toward the color of adjacent image regions [60]. (D) A generative ANN model trained to efficiently compress and spatially predict
images of surfaces closely mimics illusions of gloss perception in humans, including the misperception that gloss increases with bumpiness (all seven images are from the
identical material), suggesting a possible role of unsupervised learning objectives based on data compression in material perception in humans [85].
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recognition in natural scenes. Importantly, however, object-trained CNNs did not show several
properties of the human visual system related to 3D processing, occlusions or invariance to
surfaces, and part-based processing [23], suggesting that these phenomena might result from
other tasks beyond object classification. While these results support the role of specific tasks
for properties of human object perception, a few phenomena of human object perception,
such as relative size encoding, emerge in randomly initialized CNNs even before any training
[23]. This finding emphasizes the role of network architecture (Figure 1) – in addition to the training
task – and shows how random feedforward connections can already give rise to useful features.

Human face recognition exhibits a number of distinctive and well-documented behavioral
‘signatures’ such as overall high accuracy that drops significantly when faces are unfamiliar, or
presented upside down, or originate from an ethnicity/race the observer is less familiar with.
Why does face perception exhibit these properties? A recent study from our group used CNNs
to test the hypothesis that these signatures result from an optimization for the task of fine-
grained face discrimination [24]. We found that many of these face-processing signatures are
Trends in Neurosciences, Month 2023, Vol. xx, No. xx 5
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found in CNNs trained on face recognition, but not in CNNs trained on object recognition,
suggesting that these phenomena may arise from optimization specifically for face recognition
[23,25]. Alternatively, however, these properties could simply emerge from face-specific experi-
ence (without the need to discriminate the faces individually). To disentangle these two hypotheses,
we manipulated the task and the amount of face-specific experience by training CNNs on face
detection (categorizing all faces into one category) in addition to object recognition [24]. We
found that when including the same amount of face experience, but without training the CNNs
to perform fine-grained face discrimination, the classic human signatures of face perception
were absent or weak, implicating optimization for face discrimination, rather than simply face
experience, in these phenomena (Figure 2B).

Taken together, these findings demonstrate how varying the experience and task in CNNs en-
ables us to go beyond documenting and reporting behavioral phenomena of the visual system,
to asking why it exhibits these phenomena in the first place. Of course, simply saying that phe-
nomenon X results from optimization for task Y begs the further question of why optimization
for Y produces X, the ‘why of the why’, which can be further pursued in a variety of ways (Box 1).

Answering why questions about brains
Deep neural network models can inform ‘why’ questions not only about human behavior but also
about the organization and function of the brain. Comparing ANNs optimized for certain tasks to
minds and brains enables us to ask why the brain exhibits particular properties (Figure 4). We start
with the earliest stage of the visual system and follow it downstream.

The organization of early stages of visual processing
Why do primates have much lower spatial resolution in the visual periphery than in the center of
vision? This fact is usually explained in terms of the high metabolic and wiring cost of photorecep-
tors and their connections. But one study tested a different hypothesis by training a neural net-
work on a visual search task entailing saccade-like translations of the input image over a
receptor lattice [26]. The position and spatial resolution of each receptor was optimized over
Box 1. The why of the why

Comparing brains to ANNs can reveal the design constraints that may have shaped brains, answering ‘why’ questions
about observed neural or behavioral phenomena. However, simply invoking specific objective functions and constraints
as explanatory primitives begs another question.

What specific aspects of a particular task are critical for an optimized ANN to reproduce a neural/behavioral phenomenon
of interest? Two examples illustrate initial strategies for delving deeper into the ‘why of the why’.

Evidence that specialization for face and object recognition in the brain results from optimization for both tasks comes from
the finding that a similar segregation arises spontaneously in ANNs jointly trained on both tasks [44]. But this result begs
the question of why face-processing segregates in both brains and networks (the ‘why of the why’). That is, what is it about
the task of face recognition that requires separate machinery? One hypothesis is that functional segregation will arise only
for categories in which the exemplars to be discriminated all share the same basic shape. Initial evidence for this hypothesis
was found when car discrimination segregated from object classification in networks trained on both, but no segregation
was found for discrimination of faces from two data sets with different low-level image properties. However, segregation of
the highly heterogeneous visual category of food in both networks [44] and brains [72] suggests that this account is incom-
plete at best.

In answer to why human sound localization is dominated by the first part of a sound (the ‘precedence effect’), a recent
study found that ANNs trained to localize naturalistic sounds show the same effect [21]. But why should this effect arise
in both networks and brains? To test the hypothesis that the precedence effect represents a solution to the problem
caused by echoes, which can reflect off surfaces far from the original sounds source, the authors trained a new ANN
on sound localization using sounds generated in an anechoic environment. Consistent with their hypothesis, no prece-
dence was observed in this network, suggesting that the effect represents a solution to the ambiguity caused by echoes.

6 Trends in Neurosciences, Month 2023, Vol. xx, No. xx
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Figure 4. Methods for comparing artificial neural networks (ANNs) to minds and brains. Lesion experiments (illustrated in the top row) test the causal role of
specific network units in ANN task performance, analogous to lesion studies in humans. Single unit analyses (not illustrated) in networks and brains reveals the tuning
properties of individual units, whether they are selective for meaningful perceptual attributes, forming disentangled representations [86], or exhibit mixed selectivity and
distributed representations [87]. Analyses in this vein have revealed the spontaneous emergence of face-selective [88,89] and number-selective units [90,91] in ANNs.
Visualizing (illustrated in middle row) stimuli that maximally activate convolutional neural network (CNN) units provides an intuitive understanding of their selectivity [92],
allowing comparison to neurons. Dimensionality reduction techniques (illustrated in bottom row) like principal component analysis (PCA) reveal the low-dimensional
structure of representations in ANNs and brains [93]. Comparing task performance of ANNs (not illustrated) varying in architecture can reveal which architecture
provides a better foundation upon which to learn specific tasks. For example, the number of shared layers can be varied in branched ANNs trained on two tasks (dual-
task network) to test whether those tasks are best performed together or separately [16]. Representational distance comparisons (not illustrated): the distance between
the vector of response across a set of ANN units to two different stimuli can be used as a measure of the representational dissimilarity of those two stimuli in a network,
which can then be compared to representational dissimilarity in minds and brains (e.g., in the Thatcher effect where scrambled and unscrambled faces are more dissimilar
when upright than inverted) [23].
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training, and produced a higher-resolution ‘fovea’ at the center and a lower-resolution periphery.
Importantly, when the model was allowed to make non-biological image transformations like
zooming, the fovea-like organization did not arise, suggesting that the organization of the primate
fovea may have evolved in part to enable efficient sampling of visual information over saccades.
Another study showed that CNNs trained on object recognition with a human blur profile at the
input stage outperformed networks trained on input images with steeper or shallower blur pro-
files, or full resolution images [27]. Both findings suggest that a blurred visual periphery may be
a feature, not a bug, reflecting evolutionary optimization for object recognition and/or efficient
sampling of visual information across eye movements.

Moving along the visual pathway, another recent study asked why V1 has the functional charac-
teristics it does, by building these properties into the front of a CNN (VOneNet) and training it on
Imagenet [28]. The resulting network was more robust to adversarial attacks and common image
corruptions than state-of-the-art networks. Further, each of the properties of V1 built into the
Trends in Neurosciences, Month 2023, Vol. xx, No. xx 7
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model contributed to the network’s robust performance, as removal of any one of them de-
creased robustness. These results suggest that many properties of V1 reflect evolutionary opti-
mizations for robust image classification. Another study tested whether processing of color and
luminance would spontaneously segregate in CNNs trained on object recognition, as they do in
early visual cortex [29]. The authors trained multiple instances of Alexnet and found a high degree
of segregation of chromatic and achromatic information across CNN instances. Moreover, the
degree of segregation in a network was correlated with its performance. This finding suggests
that the segregation of color and luminance processing in the human visual cortex may also result
from optimization for real-world object recognition.

Another study attempted to understand the systematic spatial organization of early visual cortex
using computational models built on self-organizing principles [30]. Specifically, by transforming
the visual input space into a tuned 2D map, with each unit tuned to some aspect of the visual
space and nearby units having similar tuning, a repeating map topography emerged, similar to
the primate visual system. This suggests a role for biologically plausible self-organizing principles
(which in turn reflect approximate solutions to wiring cost minimization) in shaping the organiza-
tion of the early visual cortex (Figure 5A).

Higher-level stages of visual cortex
From retinotopic cortex, visual processing diverges into a ventral object recognition (or ‘what’)
stream and a dorsal (‘where’) stream processing object location and visually guided action. One
of the first studies of the genre highlighted in this review asked why the visual cortex is organized
into these two streams [31]. To find out, the authors trained two versions of a simple three-layer
connectionist network: one in which the nodes in the hidden layer were split between those con-
nected only to the shape output nodes and others connected only to the location output nodes,
and another version in which all hidden units were connected to all output nodes. The authors
found that the split networks outperformed the unsplit network, but only when more hidden units
were allocated to the (more difficult) ‘what’ task. A related connectionist study used a modular ar-
chitecture in which the different modules compete to learn the task, resulting a partitioning of the
task into multiple functionally distinct subtasks, with a distinct module allocated to each [32]. This
problem was later revisited with modern deep neural networks by training CNNs for two visual
tasks simultaneously [33]. Specifically, the authors manipulated the relatedness of the two tasks
to test the hypothesis that the need to perform two unrelated tasks (like the ‘what’ and ‘where’
task during object processing) results in the emergence of segregated processing streams dedi-
cated to each task. In the CNN trained on related tasks, the majority of units contributed to both
tasks, whereas in the CNNoptimized for unrelated tasks, units often contributed disproportionately
to a specific task, and the degree of specialization increased with progressive layers. Taken
together, these and other findings [34] suggest that segregation of function in the visual system
results from the optimization for multiple tasks with different computational goals (Figure 5A).

Other recent studies have asked why the ventral visual pathway is organized the way it is, with
small regions selective for the specific categories of faces [e.g., occipital face area (OFA), fusiform
face area (FFA)] [35], places [parahippocampal place area (PPA)] [36], bodies [extrastriate body
area (EBA)] [37], and words [visual word form area (VWFA)] [38] embedded in larger cortical regions
exhibiting gradients of weak preferences for mid-level features (e.g., [39–41]) (Figure 5B–D). One
such study [42] trained a CNN on object and scene categorization and found that the network
organized itself into units with a central image bias and units more selective for the background
of images. This finding suggests that the dissociation between fovea-biased and periphery-
biased regions of the ventral pathway [43], and the functional properties of each, may reflect an
optimization for the classification of images from different visual categories (Figure 5A).
8 Trends in Neurosciences, Month 2023, Vol. xx, No. xx
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Figure 5. Aspects of cortical organization that have been informed by artificial neural network (ANN) models. (A) ANN models trained on basic perceptual
tasks provide computational explanations for multiple aspects of observed cortical organization. ANNs mirror the functional organization of the early visual cortex [30]
and hierarchical organization of auditory cortex [16,17], show layer-wise correspondences between neural responses in primary versus higher-level regions of visual
cortex [13–15], and brain-like functional differences between fovea-biased and periphery-biased cortex in the ventral pathway [42]. Functional dissociations emerge in
ANNs for faces versus objects and food versus objects [44], for the processing of visual words [45], for ‘what’ versus ‘where’ pathways in vision [31,33,34], and
speech versus music in auditory cortex [16]. Several ANN models with connectivity constraints and topographic representations have further been used to account for
the systematic spatial organization of the high-level visual cortex. These models primarily differ in what connectivity constraints are assumed and how the ANN
representational space is mapped to the two-dimensional topographic space. (B) Localized face selectivity emerged in a topographic ANN model trained for

(Figure legend continued at the bottom of the next page.)
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In another recent study, we asked why the visual cortex exhibits such a high degree of speciali-
zation, and why it does so for some categories but apparently not for others [44]. Using network
lesioning methods (Figure 4), we found that a CNN jointly trained on both face and object recog-
nition spontaneously segregated itself into separate systems for faces and objects, suggesting
that human brains show this organization as a result of joint optimization for both tasks
(Figure 5A and Box 1). In a related line of work, ANNs were harnessed to account for the emer-
gence of visual word selectivity in the ventral visual cortex [45]. The authors simulated the late ac-
quisition of reading abilities in humans by training an ANN model in two phases, first on general
image recognition, and subsequently on both image and word recognition. A subset of single
units exhibited strong word-selectivity following training, thereby capturing known properties of
the VWFA (Figure 5A). This model provides a further demonstration of the computational utility
of functional segregation, as well as supporting the cortical-recycling theory of development by
demonstrating how a network optimized for generic object recognition may be repurposed to
additionally perform visual word recognition by co-opting a small subset of units for this task.

Within the domain of face perception, a classic view [46] holds that while face identity is proc-
essed by the ventral pathway (e.g., including OFA and FFA), facial expressions are processed
in a lateral temporal pathway including the posterior superior temporal sulcus (STS). However,
this view has been challenged by reports that facial expressions can also be decoded from ven-
tral areas, and identity information can be decoded from lateral regions [47,48]. Recently,
CNNs were used to inform this debate. If segregation of facial identity and expression process-
ing is required from a computational point of view, then CNNs trained to recognize identities
should outperform CNNs trained to recognize facial expressions on face identification and
vice versa. Interestingly though, expression-selective units spontaneously emerge in CNNs
trained for facial identity (and vice versa) [49,50], and these expression-selective units show
human-like characteristics [51]. These results suggest that face identity and expression are
processed interdependently, and that functional segregation of these two processes is not
necessarily expected on computational grounds. Moreover, this finding shows how CNNs
can be used not only to ask why some processes are functionally segregated, but also to
explain why other processes are integrated.

Functional organization of auditory cortex
Can the functional organization of auditory cortex also be understood as resulting from task op-
timization? Recent studies have trained CNNs on auditory tasks and found correspondences be-
tween the trained models and human auditory cortex, with earlier stages predicting primary
auditory regions and deep stages predicting nonprimary regions [16,17,52,53]. Further, models
trained on multiple auditory tasks had the best overall predictivity for neural responses [17]. Train-
ing CNNs that branched at different layers on speech recognition andmusical genre classification
further revealed that the networks that performed best shared early processing stages across
tasks, but engaged separate pathways for speech and music at later stages [16]. This branched
network matched human task performance, exhibited a similar pattern of errors, and predicted
voxel responses in human auditory cortex, despite being optimized only for task performance.
This work suggests that the functional organization of human auditory cortex reflects optimiza-
tions for the human auditory tasks including speech and music recognition (Figure 5A).
supervised image categorization under approximate wiring constraints that cause nearby units to exhibit correlated activity [39]. (C) A recurrent ANN model trained on
object, scene, and face categorization with an explicit wiring cost function developed brain-like cortical organization with selective patches for faces, scenes, and
objects [40]. (D) Localized category-selective organization for faces, places, and bodies can emerge even with unsupervised learning instantiated in the form of a
topographic variational autoencoder [41]. Dog photograph courtesy of Nancy Kanwisher.
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Unsupervised training to ask ‘why’ questions about development
An important new direction in the use of ANNs to inform human behavioral and neural organiza-
tion is the recent advent of unsupervised models trained not on labeled data but on suitable un-
supervised proxies for labels that are obtained via simple image manipulations. The
representations learned via these ‘semi-supervised’ learning models now compete with super-
vised models in their object recognition behavior [54]. Recent papers showed that ANNs trained
with deep contrastive unsupervisedmethods can predict neural responses to images in the mon-
key [55] and human [56] ventral visual pathway as well as supervised models, and also exhibit
more human-like error patterns [55] than supervised models. This finding suggests that the bio-
logically unrealistic form of label-based feedback received by supervised models is not necessary
to achieve human-like neural or perceptual phenomena, filling in the explanatory gap created by
supervisedmodels which rely on millions of semantic labels and are thus implausible as models of
biological learning. All these unsupervised models sample different views (augmentations) of the
same image and are trained to maximize agreement between their representations; unlike super-
vised models, the labels for semi-supervised ANN models (i.e., the views) are accessible in
humans, for example, through retinal distortions or saccades [56]. While unsupervised learning
algorithms are thus clearly more biologically plausible than their supervised counterparts, both
techniques still align in an overarching goal, for example by providing proxy labels to achieve ob-
ject recognition. Importantly, these models can help us get closer to answering ‘why’ questions
from the lens of postnatal development during which labels are rarely provided.

Strengthening evidence for optimization arguments
The research strategy described here entails inferring that when an ANN optimized for a given
task spontaneously produces behavioral or neural characteristics previously described in
humans, but optimization for other tasks does not produce the same characteristics, that sug-
gests that these human characteristics reflect optimization for that task. It is important to note
that no claims about mechanistic similarity between ANNs and brains are made in this framework
since it is the optimization, and not the precisemechanism, that is driving the explanations. Different
models could have the same input–output function but vary in their mechanistic plausibility; yet if
they all exhibit the neural/behavioral phenomenon of interest, then this suggests an important
link between optimization for the function and the emergent phenomenon.

As in any scientific domain, we can never definitively prove that an optimization hypothesis is true,
and future evidence could always overturn it. However, the strength of the evidence that phenom-
enon X resulted from task optimization Y will increase with (i) the breadth of networks varying in
hyperparameters but sharing the same task optimization Y that all produce phenomenon X,
and crucially, (ii) the range of networks optimized for different tasks that do not produce X. We
can further attempt to find the ‘minimal’ sufficient condition for phenomenon X to emerge in
ANNs, that is, the smallest possible difference between ANNs that produce a cognitive/neural
phenomenon and ANNs that do not. Moreover, it is important to determine whether the effect
in the network is of similar magnitude to that observed in humans, such that its emergence in net-
works provides a compelling explanation of the human phenomenon. Finally, we can increase the
rigor of the overall scientific program outlined here by reducing experimenter degrees of freedom
with preregistrations of our specific optimization hypotheses and the ANNs we will use to test
them.

Further, there may be a few cases in which we can experimentally test a proposed answer to a
‘why’ hypothesis. When the answer refers to optimization over development, it is sometimes pos-
sible to create in animals, or find in humans, conditions in which the relevant experience differs. In
these cases, we can test whether developmental optimization that hinges on the availability of
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Outstanding questions
Most of the research sketched here
focuses on phenomena that emerge
from optimization for task performance.
To what extent does incorporating
detailed biological constraints like wiring
costs, energy efficiency, and cell-type
variability improve the ability to reproduce
the emergence of various phenomena?

Much of the past work in the area has
asked whether and when human-like
functional organization, or human-like
representational geometry, emerges
from ANNs. To what extent will ANNs
spontaneously produce phenomena
at the level of individual neurons
based on the current abstractions of
biological neurons in ANNs? If unsuc-
cessful in that regard, what additional
principles will be needed to capture
the response properties of individual
neurons? For example, would more
neuron-like properties such as spiking
be required?

What inductive biases – such as priors
on architectures and training frame-
works – need to be built into an ANN
for human-like phenomena to emerge
from training? For example, given typi-
cal human visual input, will human-like
behavioral signatures of face recogni-
tion automatically result, or will this
happen only given a mechanism to di-
rect attention to faces?

Recent progress in unsupervised
learning has achieved performance
and neural predictivity comparable to
supervised methods. To what extent
will such generic learning strategies
lead to human-like behavioral and neu-
ral phenomena? Will unsupervised
learning dynamics spontaneously re-
capitulate developmental trajectories
characteristic of humans?

How much of the functional organization
of the brain can be explained by the
principle of optimization for multiple
human tasks? How far can end-to-end
deep learning lead in explaining high-
level cognitive phenomena? Would
these approaches be able to fully recapit-
ulate high-level cognitive phenomena, or
might other approaches – such as em-
bodied artificial intelligence models that
instead learn through interactions from
their environment – be needed?
particular experience can explain the emergence of a given phenomenon. For the case of optimi-
zation over evolution one can sometimes test hypothesized answers to ‘why’ questions that
appeal to optimization by comparing across species with different niches [57].

Limitations of optimization arguments
While the research strategy described here is potentially powerful, it is subject to several impor-
tant caveats. For one, if the characteristic in question emerges only for certain sets of network
hyperparameters, the argument loses force, showing merely that the characteristic can emerge
from the objective function in question, rather than that it is either likely or sure to. It is therefore
essential that researchers do not cherry-pick among the large space of possible hyperparameters
if they are trying to use ANNs to answer ‘why’ questions. Better yet, researchers should kick the
tires on network hyperparameters (e.g., using different random initializations [58]) to test the ro-
bustness of the emergence of the particular phenomenon in question. Second, even when the
characteristic in question does not emerge in control models (e.g., an ANN with random initializa-
tion or a different training objective), a thorough optimization of all relevant parameters for the con-
trol models is essential to make general statements about the failure of control conditions to yield
the phenomenon in question [59].

Further, because multiple objective functions can in principle share a common solution, a model
that replicates observed neural responses is not guaranteed to have the same objective function
as the brain. By contrast, in some cases where multiple task optimizations produce the same
characteristic [60], researchers can attempt to understand what those tasks have in common
such that they produce that characteristic or what other emergent phenomena are consistently
shared across these diverse ANNs [61], and researchers can then test those hypotheses by train-
ing networks with new objective functions. Indeed, this approach will ultimately enable us to ex-
plore the ‘why of the why’ by not just testing which task optimizations lead to a given solution, but
what exactly it is about that task or training set that leads to that solution (Box 1). The converse
challenge is that a given objective functionmay havemultiple solutions (i.e., multiple local minima),
so there is no guarantee that even the correct objective function will lead to a match to the brain.
One proposal for addressing this problem is the ‘contravariance principle’ according to which the
space of possible solutions is smaller for more complex tasks, suggesting that the approach
advocated here may be most effective when applied to higher-level perceptual and cognitive
processes [62]. In any case, the upshot of these critiques is that while ANNs are powerful tools
that are opening up new avenues for addressing long-standing why questions in cognitive
science and neuroscience (see Outstanding questions), they cannot do the job on their own,
and we still need to think hard about the computational principles underlying the emergence of
phenomena from network optimization.

Concluding remarks
Wehave argued here that much as evolution offers a framework for explaining why organisms have
the characteristics they do, ANNs give us a method for asking why the human brain has the char-
acteristics it does. Importantly, though, the solutions found in both evolution and ANNs are opti-
mized but not optimal: evolution depends on prior conditions and a dynamically changing
environment, and optimization in ANNs is always tested within a particular set of hyperparameters.
Nonetheless, these two frameworks enable scientists to move beyond the mere collection of facts,
and the exploration of underlying mechanisms, to approach some of the deepest theoretical ques-
tions about why organisms and minds work the way they do. And whereas evolutionary theories
are sometimes criticized as ‘just so’ stories because of the difficulty of testing those theoretical
accounts, with ANNs researchers can test their explanations by altering the objective function,
learning rules, training data, or architecture. We have described here some exciting first steps
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where this strategy has been successfully applied to a wide array of behavioral phenomena such as
auditory pitch perception and sound localization, visual illusions, and higher-level visual processing
of objects and faces. It has also illuminated multiple aspects of the functional organization of visual
and auditory processing in the cortex. Opportunities abound for extending this work into new
domains, including language [18,19,63], navigation [64–67], motor control [68,69], and higher-
level cognition [70,71]. There is grandeur in this lens on cognition, which enables us to query the
characteristics of our very own minds and brains with the quintessentially human question: why?
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