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The inferior temporal (IT) cortex in monkeys plays a central role in
visual object recognition and learning. Previous studies have
observed patches in IT cortex with strong selectivity for highly
familiar object classes (e.g., faces), but the principles behind this
functional organization are largely unknown due to the many
properties that distinguish different object classes. To unconfound
shape from meaning and memory, we scanned monkeys with
functional magnetic resonance imaging while they viewed classes
of initially novel objects. Our data revealed a topography of
selectivity for these novel object classes across IT cortex. We
found that this selectivity topography was highly reproducible and
remarkably stable across a 3-month interval during which monkeys
were extensively trained to discriminate among exemplars within
one of the object classes. Furthermore, this selectivity topography
was largely unaffected by changes in behavioral task and object
retinal position, both of which preserve shape. In contrast, it was
strongly influenced by changes in object shape. The topography
was partially related to, but not explained by, the previously
described pattern of face selectivity. Together, these results
suggest that IT cortex contains a large-scale map of shape that
is largely independent of meaning, familiarity, and behavioral task.
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Introduction

The ventral visual pathway in primates plays a central role in

visual object recognition. This pathway culminates in inferior

temporal (IT) cortex, a region whose functional organization is

largely unknown (Tanigawa et al. 2005). Here we measured

functional magnetic resonance imaging (fMRI) responses in

monkey IT cortex to unfamiliar object classes to investigate the

large-scale functional organization of this region.

fMRI studies in humans and monkeys have reported

millimeter- to centimeter-scale patches of cortex in the ventral

visual pathway that are selectively responsive to ethologically

important classes of objects, such as faces, places, and body parts

(Kanwisher et al. 1997; Epstein and Kanwisher 1998; Downing

et al. 2001; Tsao et al. 2003; Pinsk et al. 2005). Furthermore,

information about familiar object categories (e.g., chairs,

scissors) is contained in the pattern of response across the

ventral visual pathway (Haxby et al. 2001). These results suggest

that IT cortex may be organized in terms of object category.

However, most prior studies havemeasured fMRI responses only

to familiar object categories. Thus, it is impossible to determine

if the resulting functional organization reflects object shape,

evolutionary significance, familiarity, meaning, type of process-

ing, or associated eccentricity biases. Each of these properties

has been proposed as an explanation for the specificity for

object category found in the ventral visual pathway (Chao et al.

1999; Haxby et al. 2000; Kanwisher 2000; Tarr and Gauthier

2000; Beauchamp et al. 2002; Malach et al. 2002).

Given the ambiguity of cortical responses to familiar objects,

our first goal was to determine if regions in monkey IT cortex

respond differentially to novel object classes. Because novel

objects do not obviously differ in evolutionary significance,

meaning, and the type of processing they elicit, such objects

might reveal little or no functional organization. Studies using

techniques with higher spatial resolution, like optical imaging

and extracellular recordings, have revealed a columnar organi-

zation in IT cortex (Fujita et al. 1992; Tsunoda et al. 2001;

Tanigawa et al. 2005). However, with the exception of faces

(Wang et al. 1998; Tsao et al. 2006), this organization is at

a relatively small spatial scale. Thus, it is not clear whether any

functional organization for unfamiliar object classes would be

detectable with fMRI.

Our second goal was to understand how experience might

alter the functional organization of IT cortex. For example, even

if little functional organization was found for novel objects, then

some organization might appear after large amounts of

experience with one or more object classes. This hypothesis

would be consistent with the finding from optical imaging work

that only faces are associated with a functional organization that

spans a larger area than the typical diameter of a column (around

0.5 mm) in IT cortex (Wang et al. 1998). Alternatively, if a clear

functional organization was found, even for novel object classes,

then this organization might be changed as some object classes

became more familiar or behaviorally significant.

Thus, in considering what one might find using fMRI to

examine the spatial organization of object selectivity in IT and

the effect of object familiarity, there are 4 broad possibilities

(Fig. 1): no topography of selectivity for novel or for familiar

objects (Fig. 1a), no topography of selectivity for novel objects

but clear selectivity for familiar objects (Fig. 1b), topography of

selectivity for novel objects that does not change as objects

become more familiar (Fig. 1c), and topography of selectivity

for novel objects that changes as objects become more familiar

(Fig. 1d).

To answer these questions, we carried out a series of

contrast-enhanced fMRI studies in awake monkeys using

initially novel object classes in which we set out to focus on

monkey IT cortex. We found a clear topography of object-class

selectivity for these novel objects across IT cortex. This

selectivity topography was stable across months and across

extensive training with one of the object classes. In a series of

follow-up studies, we found that the selectivity topography was

also stable across changes in behavioral task and across changes
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in object position, but it was sensitive to changes in shape

properties. The most parsimonious interpretation of these

results is that adult IT cortex contains a large-scale (mm+)
‘‘map’’ of shape that is largely stable in adult animals.

Materials and Methods

Animals and Surgery
Experiments were performed on 2 rhesus monkeys (Macaca mulatta),

1 male, monkey J, and 1 female, monkey M (weights at start of

experiments ~3.7 and ~3.2 kg, respectively). Before behavioral training,

aseptic surgery was performed to attach an MR-compatible plastic head

post to the skull of each monkey according to previously published

methods (Vanduffel et al. 2001). During training,monkeyswere seated in

the so-called ‘‘sphinx’’ position in a plastic monkey chair. The experi-

ments spanned 20 months for monkey J and 18 months for monkey M

from this initial surgery to the last data acquisition. The monkeys were

housed and trained in the behavioral tasks at the Massachusetts Institute

of Technology and were transported to Massachusetts General Hospital

for MRI. All animal procedures were performed in accordance with

National Institutes of Health guidelines and were approved by the

Massachusetts Institute of TechnologyCommittee onAnimal Care and the

MassachusettsGeneralHospital’s SubcommitteeonResearchAnimalCare.

Eye Position Monitoring
All behavioral tasks and MR scanning involved control of eye position.

Horizontal and vertical eye position was determined based on the pupil

location using camera-based systems (mock scanner during training:

EyeLink II with 250 Hz camera, SR Research, Osgoode, Ontario, Canada;

MR scanner, Iscan Inc. with 120 Hz camera, Cambridge, MA). All further

procedures for processing the eye data were similar to previous single-

unit physiology experiments (DiCarlo and Maunsell 2000).

Visual Stimuli
Stimuli were presented on a video monitor (43 3 30 cm; 75 Hz frame

rate; 1920 3 1200 pixels) positioned at 81 cm from the monkeys (mock

scanner) or back projected from an LCD projector onto a screen (29 3

22 cm; 60 Hz frame rate; 1024 3 768 pixels) positioned at ~50 cm from

the monkeys (MR scanner). Stimuli had approximately the same size

(stimulus outline of 6 by 6 visual degrees) in the mock scanner and in

the MR scanner.

Initial behavioral training of the monkeys in the behavioral tasks

involved a broad range of stimuli (including natural scenes; pictures of

animals, cars, and other everyday objects; human faces; and Fourier-

scrambled images). The main set of experiments involved 3 parameter-

ized classes of novel objects (‘‘smoothies,’’ ‘‘spikies,’’ and ‘‘cubies,’’ see

Fig. 2). These classes were chosen to differ on ‘‘global’’ shape features

such as aspect ratio and object structure (e.g., a horizontal base with

vertical parts for the cubies), as well as on ‘‘local’’ shape features such as

the presence of curved versus straight contours (smoothies vs. cubies)

and the proportion of acute and obtuse angles (spikies vs. smoothies).

The division and naming of these 2 sets of properties are somewhat

arbitrary, but it reflects a clear distinction. For example, themanipulation

of what we refer to as local shape features does not induce large changes

of the global aspect ratio of the objects.

These stimuli were created with custom algorithms written in

Matlab. Exemplars in each object class differ on 4 complex shape

dimensions. Most dimensions were a composite of several simple shape

parameters (e.g., size/thickness of several shape protrusions), and

different dimensions changed aspects in different locations on the

stimuli. Thus, objects could not be discriminated by looking at only

a small part of each object, and the whole stimulus shape had to be

taken into account to attain good discrimination performance. Each

class contained 1296 exemplars.

One additional experiment included versions of these original 3

object classes in which the aforementioned global and local shape

features were mixed (‘‘spiky smoothies,’’ cuby spikies, and smoothy

cubies, see Fig. 9). The manipulation of global and local shape was

a relative one, that is, the manipulation of one property automatically

induced changes (albeit to a lesser extent) in the other property.

Localizer scans included a stimulus set composed of pictures of 20

rhesus monkey faces, pictures of 20 objects that were familiar to the

monkeys (e.g., fruits and toys), and 20 Fourier-scrambled square images

(with a Fourier spectrum that corresponded to the power spectrum of

the 20 object pictures).

Behavioral Tasks
Each monkey was trained in 3 behavioral tasks that were learned

successively using standard operant conditioning techniques (positive

reinforcement with fluid while monkeys were under fluid restriction).

Each monkey initially learned all tasks with a wide range of stimuli that

did not include the 3 novel object classes used in the experiments.

During the behavioral training, the monkeys were also acclimated to

Figure 1. Four qualitative hypotheses about how much selectivity for initially novel
object classes might be found with fMRI and how this selectivity might change as
a consequence of training to gain expertise with those object classes. (a) No
topography of selectivity before or after training; (b) no topography of selectivity
before training but clear selectivity after training; (c) topography of selectivity before
training that is unaffected by training; (d) topography of selectivity that changes as
a consequence of training.

Figure 2. Four example objects from each of the 3 parameterized object classes
used throughout most experiments (smoothies, spikes, cubies). In each panel, the 2
example objects in the top row are maximally distinct from each other (100%) within
the space of possible objects in the class. For comparison, the 2 example objects in
the bottom row are only 60% as distinct from each other.
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factors associated with fMRI scanning, most importantly high acoustic

background noise and intravenous (i.v.) injections prior to the session

as necessary for the administration of the MRI contrast agent.

Passive Fixation

In this task, the monkey was intermittently rewarded for maintaining

fixation within a square-shaped central fixation window (on average less

than 2.5 visual degrees square). The interval between rewards was

systematically decreased (never less than 1200 ms) as the monkey

maintained its fixation within the window. The monkey learned to do

this task with only a fixation spot (small square of 0.3 visual degrees on

a side) and with stimuli appearing together with the fixation spot. The

stimulus presentation was independent of the monkey’s fixation

behavior (i.e., stimuli were also presented when the monkey was not

fixating).

Color Task

In this task, the monkey was also intermittently rewarded according to

the passive fixation task requirements (above), but on top of that the

monkey received additional rewards for correctly detecting changes in

the color of successively presented object stimuli. Most objects had the

same color (weakly saturated red, green, or blue) as the preceding

object, but the color changed for a small proportion of the objects (not

correlated with stimulus shape). After such a color change, the new

color would be the same for several successive objects. At the end of

the learning phase for this ‘‘color task’’ and during scanning with this

task, there was 1 color change per 20 object stimuli presented. The

monkey was trained to signal a detected color change by saccading to

a small white square 8 degrees above the central fixation spot. The

monkey was rewarded more for signaling a color change than for

keeping fixation (up to 100% more). This proportion of reward for

fixation and color change detection was important because we wanted

high overall fixation percentage, high hit rate for stimuli with a changed

color, and a low false alarm rate for stimuli with no change in color. The

reward for correct responses was adapted to keep the false alarm rate

below 5%. The monkey never had to switch abruptly from the passive

fixation task to the color task, although the 2 tasks were sometimes

performed on successive days. Each monkey accomplished this switch

without apparent cost, and there are several task differences that could

serve as a cue (the presence of the response corner, a white square, in

the color task; colored vs. gray stimuli).

Shape Discrimination Task

In this task, the monkey had to compare 2 object stimuli and indicate

whether these were the same or different. Each trial contained 2 object

stimuli presented successively. Two white squares were presented after

the second stimulus at 10-degree eccentricity left and right on the

display. The monkey was rewarded for making an eye movement to only

1 of these squares (left if the 2 stimuli were the same, right if the 2

stimuli were different). Themonkeys learned the task procedure initially

with stimuli presented at the same screen location (center of gaze) with

no interstimulus interval (ISI), and gradually, monkeys learned to

perform the task with a random position jitter of as much as 2 visual

degrees andwith an ISI of at least 420ms (stimulus duration of 300ms for

each object). Before we started scanning, the monkeys were able to

perform the task ~90% correct even on the first block of 240 trials with

sets of easily discriminable stimuli that they had never seen before. In

this task, stimulus presentation was dependent on the monkey’s

behavior—stimulus presentation was not started unless the monkey

was fixating and was aborted if fixation was broken during the trial.

Shape Discrimination Task: Training to Learn Within-Object--Class

Discriminations

Scanning was interrupted in each monkey for several months (J: 95 days;

M: 81 days). During this period, each monkey was trained intensively to

discriminate among exemplars within 1 of the 3 object classes

(J: spikies; M: smoothies). Although each monkey was able to perform

the ‘‘shapediscrimination task’’ at 90%withnewsetsofeasily discriminable

objects, they initially performed at chance for discriminating among

exemplars within the novel object class (J: 50% correct; M: 53% correct),

even though we used the largest possible stimulus differences

(maximum difference on each of the shape dimensions within the

object class). We tested this initially with ISI 420 ms and a stimulus

position jitter of 2 visual degrees. We made the task easier with an ISI of

0--10 ms and no position jitter, and after a few daily sessions, each

monkey had above-chance performance (on session 3, J: 63% correct; M:

66% correct). After a few months of training with slowly increasing ISI

and position jitter, each monkey attained good performance for the

largest stimulus differences with ISI 420 ms and a position jitter of 2

visual degrees (J on session 40: 75% correct; M on session 36: 73%

correct). We continued training each monkey for smaller stimulus

differences (either no difference on some shape dimensions or smaller-

than-maximal differences on several shape dimensions). When scanning

started again with the (initially) novel object classes, each monkey

attained good performance for stimulus differences of only 60% of the

maximal differences (J on session 46: 71% correct; M on session 43: 72%

correct). By this time, each monkey had seen more than 130 000

presentations of exemplars from (only) the trained object class in the

context of this shape discrimination task. For comparison, the scanning

period before this behavioral training period involved less than 6000

presentations of exemplars from each object class. For the fMRI

experiments following this behavioral training period, we trained each

monkey regularly on days in between scan sessions. We performed all

behavioral training in the mock scanner, but we confirmed in the last

stage of the training phase that shape discrimination performance after

training was very similar in the scanner (tested with 75% of the maximal

stimulus differences: performance in themock scanner and in the scanner

was 75% and 73%, respectively, for monkey J, and 81% and, 77%

respectively, for monkey M).

Shape Discrimination Task: Scanning

For one experiment (Experiment 3, see further), we adapted the shape

discrimination task for use in the scanner by making the stimulus

presentation independent of the monkey’s behavior. This adaptation

also involved a reduction of the intertrial interval to increase the

number of stimuli presented per unit of time (to 24 trials and 48 stimuli

per 45 s). As shown in the previous section, the monkeys were able to

perform this task very well with exemplars of the trained object class.

However, prior to Experiment 3, monkeys did not perform the shape

discrimination task for exemplars from the 2 other object categories.

Not surprisingly, each monkey performed much better (P < 0.001,

t-test across time series) for the trained objects (J: 74% correct; M: 71%)

than for the untrained objects (J: 51% correct; M: 50% correct). To

counter the possibility of motivational problems as a consequence of

the lower reward levels in the blocks with untrained objects, monkeys

were also rewarded on some error trials in these blocks (38% of error

trials) in blocks with untrained objects in order to keep the overall level

of reward the same in the different stimulus conditions. The overall

level of reward was still higher on correct trials than on error trials, so

the monkeys would still benefit from doing the task as well as possible.

To exclude the possibility that monkeys might be attending less during

blocks with untrained stimuli, we inserted random ‘‘catch trials’’ in 1

behavioral session of monkey J. This monkey was trained with spikies,

and 1 out of 8 trials (never the first) in blocks with smoothies and

cubies was a catch trial with spikies. Performance for the spikies was

82% on these catch trials (n = 96), similar (P = 0.22) to the performance

of 76% in blocks with trained objects and significantly higher (P <

0.0001) than the performance with untrained objects (51%).

fMRI Scanning and Experimental Manipulations
Scanning was carried out at the Martinos Center for Biomedical

Imaging at Massachusetts General Hospital in a 3T Siemens Allegra

magnet (Siemens, Erlangen, Germany) with a radial surface coil that

was positioned immediately over the head (Tsao et al. 2003). Functional

images were acquired with an echo planar imaging (EPI) sequence

(135 time points per time series; repetition time [TR], 3 s; echo time

[TE], 26 ms; 64 3 64 matrix; voxel size 1.25 mm isotropic; 45 slices).

Slices were approximately coronal and covered the entire ventral visual

pathway from the occipital pole to the temporal pole. We also

performed 1 anatomical scan session in each monkey under general

anesthesia (combination of ketamine and xylazine). The anatomical

resolution of these anatomical volumes (3-dimensional magnetization
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prepared rapid acquisition gradient echo volume) was 0.50 mm

isotropic, and we acquired at least 5 volumes in each animal to

increase signal-to-noise ratio by averaging.

All fMRI data were collected using a block design in which each

block (45 s, see below) contained exemplars from only 1 object class.

Each monkey was initially scanned for just a few sessions without

contrast agent (blood oxygen level--dependent [BOLD] scan sessions)

to solve any remaining technical and behavioral problems. These BOLD

scans always involved the localizer stimulus conditions (monkey faces,

objects, and Fourier-scrambled images). All subsequent scan sessions

were preceded by an i.v. injection of a monocrystalline iron oxide

nanoparticle (MION) contrast agent (around 7 mg/kg) (Vanduffel et al.

2001; Leite et al. 2002). For each experiment, we performed multiple

scan sessions (i.e., multiple days) that each included multiple time

series consisting of 3 stimulus conditions (2 blocks of each stimulus

condition per time series) and a fixation condition (3 blocks per time

series). Thus, a total of 9 blocks were performed in each time series, and

each block lasted for 45 s (15 time points), for a total time of ~7 min

in each scan run (time series). Unless noted, visual object stimuli were

always presented at the fovea with a horizontal and vertical position

jitter of ±1 visual degree (from stimulus to stimulus), for 300-ms

duration, and with a 420-ms ISI. In total, 6 experiments were carried out

during MION scan sessions.

Experiment 0

Localizer experiment (27 and 31 time series in monkey J and M,

respectively). The 3 stimulus conditions in this experiment were

monkey faces, objects, and Fourier-scrambled images. Monkeys always

performed the color task. Some of these data were collected before

Experiment 1 and some were collected after Experiment 1 and after

the shape discrimination training phase.

Experiment 1

Novel object experiment ‘‘before’’ shape discrimination training (27

and 26 time series in monkey J and M, respectively). The 3 stimulus

conditions in this experiment were smoothies, spikies, and cubies. Sixty

fixed exemplars of each class were presented in a random order in

a stimulus block of 45 s. These 60 exemplars were chosen to span the

total space of exemplars in each class, and they were the same in each

block. Monkeys always performed the color task. The primary

experimental goal was to uncover any spatial patterns of selectivity

for the 3 initially novel object classes within IT. The data from this

experiment are referred to as ‘‘original’’ in the figures.

Experiment 2

Novel object experiment ‘‘after’’ a 3-month time interval with shape

discrimination training (28 and 33 time series in monkey J and M,

respectively). Same procedures as for Experiment 1. This experiment

was identical to Experiment 1 except that it followed 3 months of

extensive shape discrimination training (see Behavioral Tasks, above).

The experimental goal was to test the across-time and across-training

stability of the object-class--selective responses found in Experiment 1.

Experiment 3

Shape discrimination task experiment (35 and 26 time series in monkey

J and M, respectively). The 3 stimulus conditions in this experiment

were smoothies, spikies, and cubies. The monkeys performed the shape

discrimination task adapted for use in the scanner (see above in section

Shape Discrimination Task: Scanning). The experimental goal was to

test the across-task stability of object-class--selective responses.

Experiment 4

Position experiment (43 and 27 time series in monkey J and M,

respectively). The 3 stimulus conditions in this experiment were

smoothies, spikies, and cubies. In all other experiments, the stimuli

were positioned at the fovea with some jitter (see above)—here we

further varied the retinotopic position of the stimuli. In monkey J, we

centered the position of the stimuli to very eccentric positions (8.4

visual degrees) so that the stimulated visual field area was not

overlapping at all with the visual field area stimulated by the foveal

stimuli. The eccentric stimuli were restricted to 1 quadrant, and

different quadrants were tested in different time series. The monkey

performed the passive fixation task (to limit potential eye movements

toward the stimuli). In monkey M, we tested the same question by

compensating any differences in retinotopic envelope of the different

object classes by an object-class--specific jitter in position (e.g., the

spikies were jittered much less in the vertical direction than the cubies;

see Supplementary Fig. 1). The monkey performed the color task. The

experimental goal was to test the stability of object-class--selective

responses to changes in stimulus position.

Experiment 5

Global versus local shape features experiment (33 and 37 time series in

monkey J and M, respectively). The 3 stimulus conditions in this

experimentwere spiky smoothies, cuby spikies, and smoothy cubies (see

Fig. 9a). Monkeys always performed the color task. The experimental

goal was to test effects of changes in stimulus shape on the object-class--

selective responses.

Importantly, some of the experimental data were acquired in a specific

order: Experiment 1 was performed before the 3-month shape dis-

crimination training phase, Experiments 2--5 were acquired after this

trainingphase.All dataofExperiment2werecollected immediately after the

training phase; Experiments 3--5 were tested after Experiment 2. We have

taken the data of Experiment 1 as the baseline, pretrained, original data

set, and thedata fromall other experiments arecomparedwith this baseline.

Fixation Condition
All experiments included a fixation condition that was used as

a baseline. The characteristics of this fixation condition were slightly

different in the different experiments in order to match the stimulus

conditions as closely as possible (i.e., other than the objects shown).

During passive fixation, the display in the fixation condition only

showed the fixation target (a small white square) at the center of the

screen. During the color task (used in most experiments), the display in

the fixation condition showed this fixation target and, in addition,

a response target at the top of the screen. Finally, during the shape

discrimination (Experiment 3), the fixation target disappeared for

regular intervals during which 2 response targets were presented left

and right. The timing and the frequency of these events were matched

to that used in the shape discrimination condition. In addition, as in the

object-class conditions, the monkey was rewarded for making a saccade

to 1 of the 2 response targets in the fixation condition (in the fixation

condition, the rewarded target was determined randomly for each

trial). In all experiments, reward schedules were arranged so that the

total amount of reward was similar across conditions.

Statistical Preprocessing
Data were analyzed with Freesurfer (http://surfer.nmr.mgh.harvard.

edu/) (Dale et al. 1999; Fischl et al. 1999), froi (http://froi.sourceforge.

net), as well as custom Matlab code. All volumes of each time series

were aligned to a reference functional volume from one particular

scan session (the reference volume was from Experiment 2 in monkey

J and from Experiment 1 in monkey M) (Cox and Jesmanowicz 1999).

This step combines motion correction and between-session alignment.

The reference functional volume was coregistered with the high-

resolution anatomy.

Inclusion of Data for Analysis

A time series was retained for analysis if the monkey did not move too

much (in general, time series with movement spikes of over 1 mm of

total translation did not provide useful data) and if task performance

was good (overall percentage fixation in the fixation task and the color

task >84%). Even though the animals were head restrained via head

post (see Animals and Surgery, above) during scanning, and were

trained to remain still, moderate motion of the body and very small

motion of the head was still possible. Because the amount of motion

and task performance are both likely to depend on animal motivation

level, it is not surprising that time series with poor task performance

typically showed extensive motion. We retained 193 and 180 time

series from 21 and 19 sessions in monkey J and M, respectively (~87%
of the time series obtained in these sessions). In each monkey, data
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from at least 26 time series were included in each experiment

(acquired in 3--4 scan sessions per experiment per monkey).

Analysis of Eye Movements

Following previously described methods (Vanduffel et al. 2002), we

added 3 measures of the monkeys’ eye movements to the analyses as

covariates (in addition to the 6 motion correction parameters, 3

translations and 3 rotations). These 3 measures were the x and y

coordinates of the foveated visual field position and the total deviation

of the center of gaze relative to the center of the fixation point. Each of

these measures was subsampled to 1 TR (3 s) and convolved with the

hemodynamic response. In Supplementary Material, we describe

additional analyses to rule out effects in our results due to differences

between stimulus conditions in either the monkeys’ eye movement

patterns or other behavioral indices.

Smoothing, Normalization, and Gamma Fitting

fMRI data were spatially smoothed with a Gaussian kernel of 2.5-mm full

width at half of maximum. Preliminary analyses suggested that this

degree of smoothing was needed to obtain sufficient signal-to-noise to

detect significantly activated voxels and to look at the spatial distribution

of activity. Thus, our methods allow us to look at organization with

a grain of 2--3 mm. In Supplementary Material, we show that this amount

of smoothing maximizes the reliability of the spatial distribution of

activity. In addition, the data were scaled to have the same global signal

intensity for each time series. The predictor for each stimulus condition

(0 or 1 at each time point) was convolved with a gamma function, and

the general linear model was used to compute the response of each

voxel in each condition. The gamma function was given by the formula:

f ðt Þ = ðg 3 e2Þ
.
43 ððt –dÞ=g Þ2 3 e

– ððt –dÞ=gÞ with g = 8s andd = 0s:

These parameters were chosen to approximate the impulse response

function for MION signal (Vanduffel et al. 2001; Leite et al. 2002). The

response for each condition in each voxel is expressed in units of

percent signal change (PSC), which is the response in each condition

minus the response in the fixation condition (see above), normalized by

the mean signal value at each voxel. We reversed the responses in all

analyses because with MION higher blood volume is associated with

lower signal (Vanduffel et al. 2001).

Selection of Regions of Interest
Significance maps of the brain were computed by performing t-tests for

pairwise comparisons of conditions and thresholded at P = 0.0001

(uncorrected for multiple comparisons). We used this same statistical

threshold throughout all analyses to define the following regions of

interest (ROIs):

(i) Novel-object--selective ROI: All significantly activated voxels in IT

cortex from all pairwise comparisons of novel object classes in

Experiment 1. All these (often discontinuous) voxels were taken

together as 1 novel-object--selective ROI with a corresponding list

that indicated the preferred and unpreferred object class for each

voxel. If a voxel showed significant selectivity in more than

1 contrast, then it appeared more than 1 time in this list (with a

different preferred or unpreferred class; so as different voxel by

class combination). A novel-object--selective ROI was created for

each scan session in Experiment 1 (average of 291 voxel by class

combinations per session and average of 223 individual voxels per

session). For each time series, we calculated the response to the

preferred and to the unpreferred object class averaged across all

voxels in each of the 3 session-specific ROIs. For one of the sessions,

the time series was part of the data used to select the ROI, so this

may lead to an overestimation of the true selectivity in this voxel.

The responses in a time series averaged across the 2 other sessions

provide an independent estimate of how well object-class selectivity

is replicated across scan sessions (see Fig. 4). The amount of

selectivity reported in themain text corresponds to this independent

estimate of selectivity, and it is also the selectivity measure that is

compared with the selectivity found in the other experiments (see

further section Statistical Analyses I: Comparing Selectivity in the

Voxels with Strongest Selectivity).

(ii) Standard-object--selective ROI: All voxels in IT cortex with sig-

nificant activation in the contrast (objects—scrambled) in Exper-

iment 0 (average of 1264 voxels per monkey). The definition of

this ROI is comparable to previous work in monkeys and humans

(Malach et al. 1995; Tsao et al. 2003; Denys et al. 2004). This ROI

includes voxels that are activated by a variety of familiar objects

more than by unstructured scrambled images and is thus unbiased

with respect to selectivity among the 3 novel object classes. This

ROI was used to calculate the correlations in the spatial

distribution of activity across IT cortex evoked by novel objects.

(iii) Visually responsive ROI: All voxels ventral to the dorsal bank of the

superior temporal sulcus (STS) along the ventral visual pathway

(occipital pole to temporal pole) with significant activation in the

contrast of all stimulus categories (faces, objects, and scrambled

images) versus the fixation baseline in Experiment 0 (average of

8271 voxels permonkey). This large ROIwasmainly used for display

purposes, more specifically, to select the voxels to which the

combined color scale (see further) would be applied in Figures 5, 6,

8, and 10.

(iv) Parafoveal V1 ROI: All voxels from the visually responsive ROI that

were located around the anatomical location of the parafoveal

visual field (up to ~7 visual degrees) in V1 (average of 1076 voxels

per monkey). We did not perform retinotopic mapping in these 2

monkeys because our study deals with high-level visual cortex and

because defining part of V1 based on anatomical landmarks is

straightforward given the consistent anatomical location of this

area as found in previous studies (Brewer et al. 2002; Fize et al.

2003). This ROI was used to compare the sensitivity to stimulus

position manipulations in early visual cortex with that observed in

IT cortex. Similar results were found with more inclusive ROIs of

early visual cortex, for example, all voxels in the visually

responsive ROI with an anterior/posterior position more than 7

mm posterior to the external auditory meatus.

The novel-object--selective ROI and standard-object--selective ROI

were both restricted to IT cortex so that any significantly activated

voxels outside this region were not selected. IT cortex was defined as

the temporal lobe region lateral and inferior to the fundus of the STS

(including the lower but not the upper bank of the STS). The most

posterior point was ~2 mm anterior to the external auditory meatus

(including area TE but not area occipitotemporal area [TEO]), and the

most anterior point was ~22 mm anterior. The medial boundary on the

ventral surface was ~10 mm lateral of the midline. The estimated border

between area TEO, an area with a crude retinotopic organization

(Boussaoud et al. 1991), and area TE, an area without any known

retinotopic organization, is shown in Figure 3. The as such defined IT

region encompassed about 2600 functional voxels across both hemi-

spheres. Almost all these (average of 2569 voxels) were also part of the

visually responsive ROI. Almost all the voxels in the novel-object--selective

ROI (94%) and standard-object--selective ROI (94%) were included in the

visually responsive ROI. Therewas less overlap between the novel-object--

selective ROI and the standard-object--selective ROI: of the voxels

included in the novel-object--selective ROI, 54% (monkey J) and 83%

(monkey M) were included in the standard-object--selective ROI.

Statistical Analyses I: Comparing Selectivity in the Voxels with
Strongest Selectivity
We defined the novel-object--selective ROI as the population of voxels

that showed significant selectivity for novel object classes in a single

scan session of Experiment 1. For these voxels, we quantified selectivity

for the novel object classes using the independent data from the other

sessions of Experiment 1. For each time series, we calculated the

response (PSC) to the preferred object class and to the nonpreferred

object class for each voxel; we then averaged the responses across

voxels (each of which can have a different preferred and nonpreferred

object class). This gives 2 values for each time series, the response to

the preferred category and the response to the nonpreferred category

in that time series. To compare selectivity across experiments, we first

divided these data of each time series by the average response

(averaged across all voxels) to the preferred category in the

experiment to which the time series belonged. Thus, the response to
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the preferred category was normalized to 1.0 for each experiment (this

is the ‘‘normalized fMRI response’’ shown in Fig. 4). This normalization

factor was very reliable and significantly above 0 in each case where it

was used. We expressed selectivity as: (preferred -- nonpreferred) 3

100%. Due to the normalization, this ‘‘selectivity index’’ reflects the

strength of the response to the nonpreferred object class relative to the

response to the preferred object class. The normalization insures that

the selectivity index reflects true selectivity, independent from overall

responsiveness. The latter might be affected by various technical

details, such as the batch/concentration of MION used and the exact

distance between the surface coil and IT cortex. Note that this

normalization was only done for the ROI analyses (Figs 4 and 7) and not

for other analyses.

We used a 2-tailed t-test to determine whether the selectivity was

significantly different from 0 given the variability of the selectivity

across time series. A significant selectivity means that the preference of

voxels selected for a particular object-class pairwise preference (based

on data from 1 scan session of Experiment 1, see above) was replicated

in independent data obtained from other scan sessions. In addition, we

used an unpaired 2-tailed t-test to determine whether the selectivity in

any of the other experiments was significantly different from the

selectivity in Experiment 1. In general, we performed these statistical

tests for each monkey separately. When we refer to t-tests that combine

the data of the 2 monkeys, then this was done by considering all time

series together (‘‘fixed-effect’’ analyses).

Statistical Analyses II: Correlational Analysis of Spatial
Distribution of Activity
We used correlational analyses to determine the stability of the spatial

distribution of category-selective activity across experiments. For each

voxel in the ROI and each experiment, we calculated 3 pairwise

selectivity indices: [smoothies – spikies], [smoothies – cubies], and

[spikies – cubies]. For each of these indices, we calculated the across-

voxel correlation between the original condition (Experiment 1) and

the other experiments. The higher these correlations, the better the

correspondence between experiments in the spatial distribution of

object preferences. The correlation values presented in the main text

refer to these across-voxel correlations when all relevant data from

each experiment are first averaged together (within experiment)

Figure 3. Significance maps of selectivity for novel object classes across anterior IT cortex (data from Experiment 1). (a) Anatomical location of anterior IT cortex (area TE). The
border between area TEO, an area with a coarse retinotopic organization (Boussaoud et al. 1991), and area TE, an area without any known retinotopic organization, is indicated
with a green dotted line and was estimated based on data in the literature (Boussaoud et al. 1991). Abbreviations of anatomical landmarks: pmts, posterior middle temporal
sulcus; amts, anterior middle temporal sulcus. (b) Significance maps in IT cortex for each of 3 pairwise contrasts ([spikies � smoothies], [cubies � smoothies], [cubies �
spikies]) in each hemisphere of each monkey. The maps are thresholded at P\ 0.001 (uncorrected for multiple comparisons).
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before computing the spatial correlations across experiments. For each

comparison (e.g., Experiment 1 with Experiment 2), we assessed the

variability of these correlations that is due to intrinsic variability in the

data by computing the correlation of the averaged data of Experiment 1

with the data from each individual time series of the other experiment

(e.g., Experiment 2). We determined whether these correlations were

significantly higher than 0 with a 1-tailed t-test (degrees of freedom =
number of time series -- 1). The error bars in Figures 6b and 9b

show the standard error of this correlation obtained with individual

time series, multiplied by the ratio of the correlation when all time

series are averaged to the mean correlation obtained with the

individual time series (of course, correlations are lower for single time

series than after averaging). Thus, the correlation values shown in

Figures 6b and 9b divided by the shown error bars reveal the t value

(the test statistic).

These statistical tests assess whether correlations are significantly

positive. A related question is how much of the explainable variance is

captured by a positive correlation. Because the data are intrinsically

noisy, only an infinite amount of data (averaged in each condition)

would produce a correlation value of 1.0, even when an experimental

manipulation has no effect on the spatial pattern of selectivity. In

a statistical sense, some fraction of the variation in the observed

selectivity topography is due to reproducible differences in voxel

preferences across the object classes (i.e., signal), and the remaining

fraction is due to noise intrinsic to the methods (i.e., noise—variation

that does not reproduce from time series to time series). The former

fraction of the variation—the, so-called, explainable variance—provides

a measure of the maximum correlation that one can expect to see when

comparing across 2 experiments (i.e., the maximum observed correla-

tion to be expected if there is no underlying difference in the selectivity

topography evoked in the 2 experiments). The formulae to compute the

explainable variance have been developed in basic measurement theory

(Cronbach 1949; Lewis-Beck 1994) and are explained in more detail in

Supplementary Material. In short, we divided the data of each

experiment in half, and we computed the spatial correlation between

those 2 halves for each pairwise selectivity index. This correlation

provides a measure of the maximum correlation that can be expected

(after correcting for the fact that it is based on only half the data), thus

giving an estimate of the reliability of the full data set. The reliability of

each of the 2 full data sets (e.g., Experiment 1 and Experiment 2) can

then be used to determine the maximal expected correlation between

the spatial distribution of selectivity observed in each experiment. The

statistical test of the difference between observed correlations (across

Experiments) and the maximal expected correlation was again based on

the variability of correlations across time series of each experiment by

correlating the averaged data of Experiment 1 with the data of individual

time series from the other experiments. We determined whether the

single time series correlations were significantly lower than the

reliability of the involved data sets with a 1-tailed t-test (degrees of

freedom = number of time series -- 1).

Color Maps of the Spatial Distribution of Activity
To display the spatial distribution of activity on inflated brain images,

we used Freesurfer functional analysis stream to compute 3 pairwise t

values for all visually responsive voxels ventral to the STS. A t value is

a measure of selectivity that takes into account both the difference in

response between 2 conditions as well as the variability of this

difference across time points. We used standard Freesurfer commands

(paint-sess and surf-sess) to display this t-map on a lateral view of the

inflated brain for each pairwise contrast with the standard blue to red/

yellow 1-dimensional color scale. In Figure 3, significance maps are

shown for each pairwise comparison with a threshold of P < 0.001,

uncorrected for multiple comparisons. In later figures that illustrate the

correlation analyses, we used a combined color scale to plot selectivity

for all pairwise comparisons at once. These color maps (Figs 5, 6, 8) are

not intended to show individually significant voxels (e.g., as in Fig. 3)

but to illustrate the pattern of object-class preference across IT cortex.

For the pairwise t-maps that were used as the basis for this combined

map (illustrated in Fig. 5a), the parameters for the standard blue to red/

yellow color scale were selected so that the threshold was 0 and so that

the colors related to maximal selectivity corresponded to t values --5

(blue) and 5 (yellow). All absolute t values higher than 5 are shown

with the same ‘‘maximal selectivity’’ colors. The t-map images obtained

for the 3 pairwise t-maps were then combined into 1 image with

a multidimensional color scale so that hue represents which object class

is preferred and saturation the amount of selectivity as represented by

the t values (no saturation = gray = t value near 0 in each contrast). To do

this, the preference for each object class was associated with the value

of 1 of the RGB color channels, and the values ranged from 128 to 256.

For example, preference for smoothies was associated with the red

channel. If a voxel showed no preference for smoothies in any contrast

involving smoothies, then the value of the R channel was set to 128. If

a voxel showed a preference for smoothies with a t value equal or

greater than 5 in 1 contrast and not in the other contrast involving

smoothies, then the value of the R channel was set to 192 (=128 + 64 3

5/5). If a voxel showed a preference for smoothies with a t value equal

or greater than 5 in each contrast involving smoothies, then the value of

the R channel was set to it maximum value of 256 (=128 + 2 3 64 3 5/5).

If a voxel showed a preference for smoothies with a t value equal

to 1.5 in each contrast involving smoothies, then the value of the R

channel was set to 166 (=128 + 2 3 64 3 1.5/5). If all 3 channels

were set to 128, the resultant color would be gray—indicating no

preference among the 3 object classes.

The significance of a t value is related to the number of time points per

voxel, which was different for different experiments. In the experiment

with the lowest number of time series, a t value of 5 corresponded to an

uncorrected P value of P < 10–6 (t value of 5 in 1 of the contrasts results

in a color from the outer border in the color scale of Fig. 5). A t value of

2.5 (color is average of gray and maximal saturation) corresponds to an

uncorrected P value of P < 0.02. Supplementary Figure 3 shows color

maps thresholded at P < 10
–3 (uncorrected).

Figure 4. Reproducible, stable selectivity in monkey IT cortex for novel object classes. (a) The mean response to the preferred and nonpreferred object classes over voxels
showing significant pairwise object class selectivity in Experiment 1(normalized to the mean response to the preferred object class, see Materials and Methods). The difference
between the light and dark bar indicates the average pairwise class selectivity. Responses are shown for the scan session used to select the voxels with a significant preference
for one object class above another (selection) and for the same voxels but using data from other scan sessions (independent). (b) The category selectivity in these voxels, defined
as normalized preferred response minus normalized nonpreferred response. This selectivity measure was computed for the selected voxels using independent data from
Experiment 1 (i.e., the independent data from a; original), data obtained several months later (time), data obtained while the monkeys performed a different visual task (task), and
data obtained with objects presented at different visual field positions (position). Error bars show the standard error of the mean across time series (see Materials and Methods).
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Results

Here we present results regarding the spatial pattern of the

fMRI selectivity for 3 initially novel object classes (smoothies,

spikies, and cubies, see Fig. 2) across IT cortex. First, we used

data collected from the very first day the subjects saw the

object classes and standard methods to reveal that IT cortex

contains a subset of voxels that ‘‘individually’’ show reproduc-

ible, highly significant selectivity among the 3 novel object

classes. However, we found that these voxels are just the tip of

the iceberg, and we proceed to show that, using correlation

methods on the same data, IT cortex contains distributed and

reproducible spatial patterns of selectivity. Second, we per-

formed a series of experimental manipulations to test the

stability of this selectivity pattern across time and training,

across behavioral task, and across changes in object position.

Third, we tested manipulations of stimulus shape by changing

the global and local shape properties of the object classes.

Finally, we describe the relationship between this selectivity

pattern and the previously described face patches in IT cortex.

All experiments were designed, a priori, to target IT cortex,

while using the earlier visual areas as controls. Nevertheless, as

described in Supplementary Material, we found no stable

patterns of selectivity for these novel object classes in other

brain regions that have previously been shown to prefer intact

object images over scrambled images.

Reproducible Topography of Selectivity for Novel Object
Classes across IT Cortex

In each of 2 monkeys that were naive to the object classes

before the first fMRI scans, fMRI scanning revealed a reliable

spatial distribution of object-class selectivity spanning IT

cortex (Experiment 1). That is, different IT voxels preferred

different object classes, a finding that we refer to as

a ‘‘topography of selectivity’’ throughout this text.

We began our analyses by using standard methods to

determine if any IT voxels were individually statistically

selective among the 3 novel object classes. Figure 3 shows

the significance maps across IT in each pairwise comparison of

novel object classes. These maps illustrate that some voxels in

IT are selective when considered individually (an average of

19% of IT voxels per pairwise comparison when thresholded at

P < 0.001, uncorrected). We obtained an unbiased measure of

the replicability and strength of this object-class selectivity

across scan sessions (separated by 8 days on average) by

performing test--retest analyses for voxels with strong object-

class selectivity (see Materials and Methods). In particular, we

selected IT voxels with a significant preference for one object

class over another in 1 scan session (novel-object--selective ROI

described in the Materials and Methods). We found that these

same voxels showed a similar preference in other, non-

overlapping scan sessions (Fig. 4a), and this between-session

Figure 5. Large-scale selectivity maps for novel objects across the ventral visual pathway in monkeys. (a) Nonthresholded pairwise t-maps of the 3 object classes in monkey M
(right hemisphere). (b) Multidimensional color map that represents the selectivity across all 3 object classes (right hemisphere of each monkey). The procedure followed to derive
these color maps from pairwise t-maps (as shown in panel a) is explained in the Materials and Methods. Saturation represents amount of selectivity (no saturation 5 gray 5
same response to each object class) and hue represents which object class is preferred (spikies 5 green, smoothies 5 red, cubies 5 blue) or which combination. Scale bar
shows an approximate distance of 7 mm. (c) Mean response to each object class at points indicated in the selectivity maps in b. Responses are expressed in units of PSC relative
to the fixation condition, and error bars represent the standard error of the mean of these responses across time series (see Materials and Methods).
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replication was significant across independent time series in

each monkey (J: P = 0.02; M: P < 0.001, see Materials and

Methods). The response of each voxel to its nonpreferred

object class was, on average, only 62% of its response to its

preferred object class. Throughout this paper, we quantify

this selectivity by the object-class selectivity index—the

difference in the response to the preferred and nonpreferred

object classes times 100 (after normalizing the response to

the preferred object class to 1). In Figure 4a, the mean

object-class selectivity index was 38% (the expected value if

no selectivity existed is 0%).

In sum, we found reproducible selectivity in IT among

initially novel object classes, at least when we focus on the

voxels with the strongest selectivity (above). However, these

Figure 6. Stability of the selectivity topography in IT cortex across time, training, task, and object retinal position. (a) Selectivity topography represented by the same continuous
color scale introduced in Figure 5. The maps are shown for the original experiment and across time/training, task, and changes in the position of the stimuli. (b) The correlation
between the original selectivity topography and the selectivity topography measured from each of the other data sets in each monkey (including data from both the left and right
hemispheres; see Results for details). The left panel shows the correlations for each monkey separately, the right panel shows the correlations for each pairwise object class
comparison. The horizontal lines represent the maximal correlation that is expected if the selectivity topography was identical in each case (i.e., given the reliability of the 2 data
sets being correlated; see Materials and Methods). The ratio of the observed correlation to the error bar represents the test statistic to determine the significance of the
correlation across time series (see Materials and Methods).
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regions might only be the ‘‘tip of the iceberg.’’ IT cortex might

contain a reproducible pattern of selectivity that spans a larger

region of IT than that revealed when voxels are only considered

individually (Haxby et al. 2001). To investigate this, we used

correlation methods to analyze the pattern of selectivity across

all voxels in IT cortex with a preference for objects over

scrambled images (the standard-object--selective ROI; average

of 1264 voxels per monkey; see Materials and Methods).

Specifically, in each monkey, we first computed 3 pairwise

response difference maps for these voxels (i.e., 1 map for each

comparison: [smoothies – spikies], [smoothies – cubies], and

[cubies – spikies]) and then computed the reliability of each

pairwise map by computing the correlation of these maps

across nonoverlapping halves of the data from Experiment 1

(see Materials and Methods). The reliability was 0.57 (standard

deviation [SD]: 0.12) in monkey J and 0.73 (SD: 0.08) in monkey

M (SD computed across different divisions of the data in halves).

This significant reliability (P < 0.01 in each monkey) shows that

IT cortex contains a highly reproducible pattern of selectivity

among the novel object classes. This reliable pattern of

selectivity did not depend solely on the aforementioned voxels

with significant selectivity when considered individually (the

voxels used for the test--retest analyses in Fig. 4). In particular,

when we removed these voxels from the correlation analysis,

then the reliability of the selectivity map in the nonselective

voxels was nearly as high (0.55, SD: 0.13 in monkey J, and 0.69,

SD: 0.11 in monkey M; P < 0.01 in each monkey). Thus, even

across all these ‘‘nonselective’’ voxels, we found a statistically

reliable pattern of selectivity at the voxel ‘‘population’’ level.

Because our correlation analysis revealed that the fMRI data

contain more selectivity than was uncovered in Figure 3, we

used a color map method applied to unthresholded maps to

illustrate the topography of selectivity across IT cortex. Each

potential pattern of class selectivity is captured with a unique

color, and Figure 5 illustrates how the color map was

constructed from pairwise t-maps (also see Materials and

Methods). Given that these maps are not thresholded, the goal

of these color maps is not to show the significance of individual

voxels but to visually illustrate the pattern of object-class

preferences across IT cortex and its reproducibility across

experiments (see further); in this sense, they resemble the

color maps generated with optical imaging techniques. Thresh-

olded maps that only reveal the ‘‘tip of the iceberg’’ of

voxelwise reproducible selectivity are shown for each exper-

iment in Supplementary Figure 3.

Figure 5b,c shows the color maps for 1 hemisphere in each

monkey together with the response to each object class for

a few locations in the color map. These responses illustrate that

the color maps represent relative preferences for specific

object classes rather than a complete segregation of the voxels

responding to different object classes. This observation is

consistent with the test--retest analyses (see above) that showed

that even the most selective voxels did not respond only to

a single object class—voxels that preferred one object class also

responded to other object classes (relative to a no-object

fixation condition), albeit less strongly.

The Topography of Selectivity Is Stable across Time and
Training

We scanned both monkeys again after a 3-month interval, using

the same methods and behavioral task. During the 3-month

interval, each monkey received extensive behavioral training in

discriminating among exemplars within just 1 of the 3 object

classes (monkey J trained with only spikies, monkey M trained

with only smoothies; see Materials and Methods). The other 2

object classes were not seen during this interval. The goal of

this training was to do our best to impart special meaning to

just 1 of the object classes and to improve the monkey’s

expertise within that class. We did not aim to distinguish

among these and other potential effects of this behavioral

training but first aimed to see if such training might alter each

monkey’s IT pattern of object-class selectivity described above.

Stability across Time

We found that our fMRI measurements of object-class selectiv-

ity were remarkably stable across the 3-month training interval.

The same voxels selected above for the test--retest analyses

(selected using data before the training interval) had a mean

selectivity index for the same object class that was nearly

identical after the 3-month interval (34%) as computed before

the interval (38%, see above; Fig. 4b). This selectivity index was

highly significant in each monkey (J: P < 0.001; M: P < 0.001,

t-test across time series), and in neither of the monkeys was it

significantly different from the originally obtained selectivity

index (J: P > 0.5; M: P > 0.15, t-test across time series). These

numbers are averaged across all 3 object classes, trained and

untrained, but similar results were found if the analyses (both

for the selection of voxels with significant selectivity and for the

computation of selectivity) were restricted to pairwise stimulus

comparisons that involved the trained object class either as

a preferred or a nonpreferred class (object-class selectivity

index of 35% before training and 33% after training).

Although this analysis of selectivity indicates that the

‘‘macro’’ magnitude of selectivity for the novel object classes

in the most selective voxels is roughly the same following the

3-month training interval, it does not provide direct insight into

the stability of the spatial pattern of selectivity across IT cortex.

To examine this, we plotted the selectivity topography that we

measured following the 3-month interval (using the same color

scheme as in Fig. 5), and we found that the color maps were

strikingly similar to those obtained 3 months earlier (Fig. 6). To

quantitatively compare the spatial pattern of selectivity across

the training interval, we computed the spatial correlation of the

selectivity topography maps. Specifically, in each monkey, we

again computed 3 pairwise response difference maps for all

voxels in the standard-object--selective ROI and then computed

the correlation of each pairwise map across the 3-month

interval. The correlation (averaged across the 3 pairwise maps)

was 0.51 in monkey J and 0.53 in monkey M (see Fig. 6b), and it

was strongly significant in each monkey (J: P < 0.001; M: P <

0.001, t-test across time series, see Materials and Methods). The

correlation across the training interval was also significant for

each object pair map in each monkey (monkey J—[smoothies –

spikies]: r = 0.72, P < 0.0001; [smoothies – cubies]: r = 0.44, P <

0.0001; [cubies – spikies]: r = 0.38, P < 0.0001; monkey

M—[smoothies – spikies]: r = 0.56, P < 0.001; [smoothies –

cubies]: r = 0.57, P < 0.01; [cubies – spikies]: r = 0.45, P < 0.001).

Thus, we found a reliable pattern of selectivity for each of the 3

possible pairwise contrast maps. Furthermore, the average

correlation (0.51) was not significantly smaller than the

maximum correlation of 0.55 that is expected if the spatial

distribution of selectivity was not changed at all during the

interval of 3 months (J: P > 0.4; M: P > 0.4; the expected

correlation takes into account the variability in each data set,
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see Materials and Methods and bar plots in Fig. 6b). In sum,

within the limits of our data, we found that the spatial

distribution of activity across IT cortex was remarkably stable

across the 3-month training interval.

A drawback of both the analysis of the macro magnitude of

selectivity (selectivity index) and the spatial correlation

analysis described above is that multiple scan sessions (days)

were needed to provide reliable results (the analyses rely on

across-session replication of selectivity). Thus, such analyses do

not necessarily rule out changes in selectivity that might have

happened very rapidly (e.g., over a period of a few days), and

for most of our results, the denotation of the 3 object classes as

‘‘novel’’ should thus be taken as a relative concept with this

time scale in mind. Furthermore, only the performance of

monkey M was good enough in the first scan session with the

novel objects to include the data in the analyses (monkey J did

not fixate well enough in this first session; see Supplementary

Material). Thus, it is possible that these analyses missed

relatively rapid changes in the topography of selectivity for

novel objects. However, more specific analyses suggest that is

unlikely. In particular, the selectivity topography computed

from only the first scan session with these novel objects in each

monkey (i.e., in monkey J using data with relatively poor

fixation performance—around 80%) was already highly corre-

lated to that obtained after the 3-month interval (r = 0.58 on

average; cf., r = 0.52 for all data from Experiment 1, see above).

This suggests that the selectivity topography shown in

Figures 5 and 6 was already present on the first day that the

monkeys saw the novel objects.

Stability across Training

To further investigate possible effects of shape discrimination

training, we also focused on the spatial distribution of activity

for the trained object class, independently from the spatial

distribution of activity for nontrained objects. We used the

responses to the object-class cubies as a baseline because this

class was not trained in either monkey. This provided us with 2

measures of selectivity per voxel, 1 for trained objects (the

response to the trained class minus the response to the cubies

class) and 1 for nontrained objects (the response to the other

class minus the response to the cubies class; for monkey J:

smoothies [nontrained] – cubies [nontrained]; for monkey M:

spikies [nontrained] – cubies [nontrained]). With this pro-

cedure, the trained and nontrained object classes were

perfectly counterbalanced across monkeys. There was no

consistent difference in the replicability of the spatial

distribution of selectivity for the trained class compared with

the nontrained class—monkey J: trained r = 0.38 and non-

trained r = 0.44; monkey M: trained r = 0.57 and nontrained r =
0.45. Thus, the spatial distribution of activity associated with

initially novel objects was as stable across months for an object

category that was not seen during this time interval as it was for

an object class that was shown more than 130 000 times in

a task in which the within-class shape differences were learned.

This far, all analyses focused on the pattern of responses

across IT cortex but have ignored potential differences in the

‘‘grand mean’’ of the response to trained and nontrained objects.

We tested for training-related changes in overall response in the

standard-object--selective ROI with a 2-tailed unpaired t-test

across time series that compared the posttrained difference in

response between trained and nontrained objects with the

pretrained difference in response between trained and

nontrained objects (to control for possible preexisting differ-

ences in responsiveness not due to training). This analysis

revealed no significant effect of training on the response to the

trained object class in IT cortex (standard-object--selective

ROI)—J: P = 0.28; M: P = 0.27; t-test taking the data of the 2

monkeys together: P = 0.10 (Fig. 7). Nevertheless, there was

a small trend toward stronger responses for trained than for

nontrained objects that was also seen in other brain regions

(primary visual cortex and prefrontal cortex; see Supplementary

Fig. 4). These analyses focus on relative differences between

trained and nontrained objects (normalizing to the nontrained

responses), but the absolute, unnormalized responses were very

similar before and after training (see caption of Fig. 7).

Furthermore, measurements of sensitivity for one object class

versus another, normalized to the SD rather than to the mean

response, also revealed no differential effect of training on the

sensitivity for trained compared with nontrained objects (see

Supplementary Fig. 6). In summary, training did not measurably

affect the spatial distribution of selectivity, and it had no

significant effect on the overall response to the trained object

class.

The Novel Object Selectivity Topography Was Tolerant to
Changes in Behavioral Task

We found that the spatial distribution of novel-object--evoked

activity was not only stable across time and training but also

stable across different task contexts. During the collection of

the fMRI data described so far, the shape of the objects was

irrelevant to the monkeys’ task—the monkeys were rewarded

only for fixating and for reporting color changes (color task; see

Materials and Methods). After the 3-month interval, we also

scanned each monkey during performance of the very de-

manding within-class shape discrimination task in which they

were trained (shape discrimination task; see Materials and

Methods). We found little effect of this task change on the

selectivity topography. For example, an examination of the

voxels with significant pairwise selectivity for at least 1 object

class (the same novel-object--selective ROI as used above)

Figure 7. The effect of training on overall responsiveness in IT cortex. The results are
shown for 3 experiments: color task before training (Experiment 1), color task after
training (Experiment 2), and shape discrimination task after training (Experiment 3). In
each monkey, the trained object category is the category for which the monkey was
trained in the training phase (spikies for monkey J and smoothies for monkey M) and
the untrained object category is the category for which the other monkey was trained
(smoothies for monkey J and spikies for monkey M). The responses were normalized
per experiment according to the overall response to the untrained object category.
The overall response (expressed as PSC relative to fixation) in the different
experiments was 0.90 (Experiment 1), 0.87 (Experiment 2), and 0.77 (Experiment 3).
Error bars show the standard error of the mean across all time series obtained in the
2 monkeys (N 5 53, 61, and 61 in Experiments 1, 2, and 3, respectively).
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revealed nearly the same magnitude of selectivity during the

shape discrimination task (31%) as already described in the data

obtained during the color task (see Fig. 4b). This selectivity was

highly significant in each monkey (J: P < 0.01; M: P < 0.005) and

in none of the monkeys was it significantly different from the

selectivity observed during performance of the color task

before the 3-month interval (J: P > 0.5; M: P > 0.5). The

correlation in pairwise selectivity between the color task and

the shape discrimination task across all voxels of the standard-

object--selective ROI was 0.33 averaged across monkeys and

object pairs (Fig. 6). This correlation was significantly positive in

each monkey (J: P < 0.001; M: P < 0.05). Although it tended to

be smaller than the maximum correlation of 0.42 that is

expected given the variability in the data, this effect was not

significant in either monkey (J: P > 0.4; M: P > 0.1). Thus, the

topography of selectivity noted in a color task was largely

replicated in a different task context.

The small difference in responsivity to trained versus

nontrained objects that was not significant in IT cortex during

the color task (described above) was more apparent during

performance of the shape discrimination task (Fig. 7)—monkey

J: P = 0.039; M: P = 0.099; taking all data of the 2 monkeys

together: P = 0.010. The size of this training-related response

increase was not significantly different between the color task

and the shape discrimination task (P = 0.20 with all data of the 2

monkeys together). This response increase is visible in Figure 6a,

where the color associated with the trained object class

(green and red for monkey J and M, respectively) tends to

dominate the color maps obtained during the shape discrim-

ination task, much more than in the color maps obtained prior

to training during the color task (compare top row and third

row of Fig. 6a). In sum, the combination of training to

discriminate among objects within 1 object class and perfor-

mance of that shape discrimination task resulted in somewhat

higher fMRI responses to the trained class relative to the other,

nontrained classes, while the spatial distribution of selectivity

was largely unaffected by these factors.

The Novel Object Selectivity Topography Was Tolerant to
Changes in Object Position

Although the previous analyses show that different object

classes produce reliable, stable patterns of IT selectivity in at

least 2 tasks, they leave open many important questions about

what aspects of the object classes produce those patterns. A

possible candidate is the retinotopic envelope of the 3 object

classes. Even though we jittered the stimulus position, each

object category was still associated with a specific retinotopic

envelope (see Materials and Methods and Supplementary

Figs 1 and 2). The potential importance of retinotopic envelope

was confirmed by positive spatial correlations in pairwise

selectivity in early retinotopic visual cortex (parafoveal V1

ROI) across the 3-month time interval (average correlation of

0.41, significant in each monkey, J: P < 0.001, M: P < 0.001).

Because neurophysiologic studies have shown that IT

neurons show some tolerance to changes in object position

(Kobatake and Tanaka 1994; Ito et al. 1995; Op de Beeck and

Vogels 2000), we investigated the effect of changes in object

position on the patterns of novel object-class selectivity

uncovered here. Specifically, we attempted to isolate any

position-tolerant component of the object-class selectivity by

measuring the selectivity topography not only when objects

were at the fovea with the original small scatter in object

position (as already described) but also in separate scanning

blocks in which we more strongly varied object retinal position.

In a first test, we presented the stimuli at eccentric visual

field positions so that they were completely nonoverlapping

with the visual field positions covered during the foveal scan

sessions (specifically, objects were centered at 8.5-degree

eccentricity in the 4 visual quadrants). In each monkey, we

found that this change in stimulus position greatly reduced

responses across ventral visual cortex compared with a control

scan with foveal stimuli. In monkey J, the primary visual cortex

response (parafoveal V1 ROI, see Materials and Methods) to

these nonfoveal objects was 11% of the response to foveal

objects, and the IT response was 38% of the response to foveal

objects. In monkey M, the same position test had an even

stronger effect on responsiveness (reduction to 9% and 26% of

the response to foveal stimuli in V1 and in IT cortex,

respectively). This strong effect of eccentricity on response

strength supports findings in the literature that processing in

ventral visual cortex is strongly biased toward foveal stimuli

(Op de Beeck and Vogels 2000; Brewer et al. 2002). Given the

substantially weaker responses to nonfoveal objects, it was not

surprising that the pattern of selectivity in IT cortex (across all

voxels in the standard-object--selective ROI) for 8.5-degree

eccentric stimuli was only weakly reliable in monkey J

(reliability of 0.29; see Materials and Methods), and not reliable

in monkey M (reliability of 0.07). Because of this result, we

tested the effect of changes in object position in monkey M by

using jittered foveal stimuli in which the retinotopic envelope

for each object class created by that jitter was altered and

broadened compared with the small jitter used to obtain our

original data (see Supplementary Fig. 1). Simulations confirmed

that this change in stimulus position would completely alter

the pattern of response in a retinotopic map (see Supplemen-

tary Material and Supplementary Figs 1 and 2). Thus, the

following analyses were applied to data obtained with 8.5-

degree eccentric stimuli in monkey J and to more foveal but

highly position-jittered stimuli in monkey M.

Examination of IT voxels with significant pairwise selectivity

for at least 1 object class using the original object position (the

same novel-object--selective ROI as used above) revealed nearly

the same selectivity index in blocks in which object position

was varied (object-class selectivity index of 36%, see Fig. 4b).

This selectivity was significantly different from 0 in each

monkey (J: P < 0.01; M: P < 0.05) and in neither monkey was it

significantly different from the selectivity in the originally

tested (foveal) position (J: P > 0.5; M: P > 0.35).

In IT cortex (standard-object--selective ROI), the across-

voxel correlation in pairwise selectivity computed from objects

presented in the original position and computed from objects

presented at the new positions was 0.44 averaged across

monkeys and object pairs (Fig. 6). This correlation was

significantly positive in each monkey (J: P < 0.001; M: P <

0.001) and not significantly smaller than the maximum

correlation of 0.49 expected given the variability in the data

(J: P > 0.4; M: P > 0.30). For comparison, we also performed the

same analysis on V1 voxels (parafoveal V1 ROI) and found that

the correlation in pairwise selectivity between the original

position and the new position was only 0.04 (P > 0.3 in each

monkey). The same result was found in early visual cortex as

a whole—that is, all the visually active cortex ventral to the STS

and more posterior than (not including) the estimated location

of TEO (monkey J: 2450 voxels; monkey M: 6470 voxels). In this
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large region of ‘‘pre-IT’’ cortex, the initial pattern of selectivity

as found with the original object position was replicated after

a 3-month interval when using the same object position

(monkey J: r = 0.27, P < 0.001; monkey M: r = 0.46, P <

0.0001) but not when stimulus position was changed (monkey J:

r = 0.03, P > 0.30; monkey M: r = 0.09, P > 0.15). This result is

illustrated in Figure 8. Unlike the largely stable pattern seen in

IT, the strong effect of the object position changes on the

observed object-class selectivity pattern in early visual cortex is

fully consistent with the differences in retinotopic envelope

between object classes and experiments and their expected

effect on the activation of retinotopic maps (as simulated in

Supplementary Material and Supplementary Fig. 2).

Thus, the tested changes in object position largely preserved

the spatial distribution of object-class selectivity in IT cortex,

but not in retinotopic cortex. This indicates that the object-

class selectivity that we observed in IT cortex was largely

tolerant to changes in the retinal position of the objects, at least

as long as the objects were not presented too eccentrically (in

which case much lower responses were noted in each monkey

and even a disappearance of the selectivity topography in 1

monkey).

The Novel Object Selectivity Topography Was Altered by
Changes in Object Shape

Taken together, the data presented thus far are most consistent

with the hypothesis that the patterns of object-class selectivity

in IT reflect spatially varying preferences for what is broadly

referred to as object ‘‘shape.’’ Although these data are not by

themselves sufficient to determine exactly what aspects of

shape are represented, the fact that shape selectivity is found

for novel objects opens the possibility of investigating the

determinants of this selectivity in a more systematic way than

has been done before with familiar object classes. To both

confirm that shape is an important factor (unlike time, task,

training, and retinal position) and to take a first step in this

direction, we tested simple variations in object shape. In

particular, we created new object classes (Fig. 9a) that were

derived by altering the original object classes in the combina-

tion of global shape features (including aspect ratio) and local

shape features (e.g., whether a object contains many straight

lines with right corners, many spikes ending into acute angles,

or many smoothly changing curves). We scanned the same 2

monkeys using these 3 new object classes to determine the

impact of these shape manipulations on the patterns of

selectivity described above. We merely use the labels ‘‘global’’

and ‘‘local’’ as summary labels for a series of shape changes, and

we do not claim that these are the most important dimensions

of shape. Instead, our main goal was to show that the selectivity

topography and our methods are sensitive to changes in shape.

We found that manipulation of global and local shape features

produced systematic alterations in the patterns of IT shape

selectivity. As in the analyses described above, we computed the

across-voxel correlation in pairwise selectivity, here taking pairs

of objects that corresponded in either global or local shape. For

example, we correlated the pattern of responses in the

[smoothies – spikies] contrast with the [spiky smoothies – cuby

spikies] contrast (corresponding global shape) and with the

[smoothy cubies – spiky smoothies] contrast (corresponding

local shape). Correlations tended to be positive for both global

shape (r = 0.29) and local shape (r = 0.13) comparisons (Fig. 9b).

Although these correlations tended to be significant in the

individual monkeys (global properties: J: P < 0.001, M: P < 0.03;

local properties: J: P < 0.10; M: P < 0.03), they were often

significantly smaller than the maximum correlation of 0.55 that

can be expected given the variability in the data (global shape: J:

P > 0.4, M: P < 0.001; local shape: J: P < 0.001, M: P < 0.001).

Thus, in contrast to our previous manipulations of time, training,

and object position, these shape manipulations had a clear

impact on the spatial patterns of IT selectivity. Moreover,

neither of these 2 shape properties was able to fully explain the

original selectivity pattern, suggesting that the underlying IT

functional organization reflects both global and local shape

features.

Figure 8. The effect of object position on the pattern of selectivity across the ventral
visual pathway in monkey J. The pattern of selectivity in anterior regions (especially
IT) as found with foveal stimuli (top 2 panels) was largely replicated with peripheral
stimuli (bottom panel). In contrast, the pattern of selectivity in posterior regions was
strongly altered by changes in object position. In fact, reliability analyses failed to
show within-position replicability of the pattern of selectivity in posterior regions with
peripheral stimuli that appeared in multiple positions (in contrast to all other
selectivity maps shown in this paper). That is, the color map in posterior regions in
the bottom panel was unreliable. IOS, inferior occipital sulcus.
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The Relationship between the Selectivity Topography
Uncovered with Novel Objects and Face Patches

Because previous fMRI studies in both humans and monkeys

have revealed class-selective responses for familiar object

categories (Spiridon and Kanwisher 2002; Tsao et al. 2003;

Pinsk et al. 2005), we wondered how the selectivity topogra-

phy uncovered with novel objects used here might be related

to those earlier results. For example, if previous studies using

face stimuli were uncovering selectivity that reflects the shape

properties of faces, in addition to familiarity or meaning, then

one might expect some relationship between the spatial

patterns of object selectivity reported here and the spatial

distribution of face patches, for example, a correlation across

voxels between the preference for faces over other objects and

the preference for one of the novel object classes.

To examine this relationship, we first replicated previously

reported fMRI results of face-selective patches in an around

monkey IT cortex (Tsao et al. 2003; Pinsk et al. 2005) by

comparing 3 stimulus conditions: rhesus monkey faces, well-

known objects (mainly fruits, toys, and lab apparel), and Fourier-

scrambled images of these objects. Figure 10a shows color maps

of the functional organization the same region of IT cortex for

these 3 stimulus conditions. The face ‘‘patches’’ in these images

are seen as red/orange regions in these maps, and their location

is consistent with previous work (Tsao et al. 2003). The pattern

of face selectivity across IT cortex was very reliable across time

series, with a reliability (see Materials and Methods) of 0.70 and

0.85 in monkey J and M, respectively. This is higher than the

reliability of the pairwise comparisons between novel object

classes (0.57 and 0.74 in monkey J and M).

Figure 9. Changes in stimulus shape alter the selectivity topography in IT cortex. (a) One exemplar from each of the 3 new object classes that were used in this experiment. (b)
The correlation of the spatial pattern of selectivity across voxels in the original measurement (Fig. 6) with the selectivity for object classes that have similar global shape
properties (global) or similar local shape properties (local). The horizontal lines indicate the expected correlation if the spatial patterns were identical (as in Fig. 6b).

Figure 10. Selectivity maps across IT cortex for familiar objects. (a) Selectivity maps obtained using faces, natural objects, and scrambled images. (b) Correlation of the spatial
distribution of selectivity for [faces � objects] with the spatial distribution of selectivity for 3 pairs of novel object classes. The horizontal lines indicate the expected correlation if
the spatial pattern of face selectivity was identical to the indicated novel object selectivity pattern (as in Fig. 6b). Error bars show the standard error of the mean across time
series. Sm, smoothies; Sp, spikies; Cu, cubies.
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A qualitative comparison of the spatial location of the face

patches in each monkey with the novel-object selectivity

topography (Fig. 6a) reveals a relationship between the 2

selectivity patterns. In particular, the face patches tended to be

found in or around regions that prefer smoothies (and to a lesser

extent cubies) above spikies (pink regions on the original maps).

To quantify this relationship, we computed a pairwise selectivity

index for faces, [faces – objects], and we correlated this index

with the 3 pairwise selectivity indices that were introduced

before: [smoothies -- spikies], [smoothies -- cubies], and [cubies --

spikies]. The absolute value of most of these spatial correlations

was significantly above 0 (P < 0.05; the only exception was the

correlation with [cubies -- spikies] in monkey M with P < 0.10),

with an average correlation of 0.31 across object pairs and across

monkeys (see Fig. 10b). This analysis confirms that there is at

least a partial relationship between the spatial distribution of

novel objects selectivity and the distribution of face selectivity.

However, each of these correlations was also significantly

smaller (P < 0.01) than the maximum correlation (0.71 on

average) that can be expected given the high reliability of the

data. Thus, a substantial proportion of the distribution of novel

object selectivity cannot be simply reduced to the distribution

of face selectivity (and vice versa).

This conclusion was confirmed when we predicted the

selectivity for novel objects after a 3-month interval from the

originally measured novel object selectivity and from face

selectivity. We performed a multiple regression analysis with

the selectivity in each voxel in a pairwise comparison after the

interval as the dependent variable and 3 predictors: the

selectivity in the same object pair before the interval, face

selectivity, and a constant to estimate the offset. This analysis

was done for each pairwise comparison in each monkey (n =
6), and each time we found a larger standardized regression

coefficient for the novel object selectivity (average coefficient

0.49; different from 0 across the 6 analyses: P = 0.0002) than for

the face selectivity (average coefficient 0.12; not different from

0 across the 6 analyses: P = 0.12). This difference in predictive

value between novel object selectivity and face selectivity was

significant across voxels in each analysis (P < 0.001), and it was

significant across the 6 analyses (t(5) = 3.99, P = 0.010). Thus,

most of the temporally stable selectivity topography for novel

objects could not be reduced to the distribution of face

selectivity.

Finally, we found very replicable patterns of selectivity for

novel objects across regions of IT cortex that showed no

preference for faces over objects. The aforementioned correla-

tion of the novel object selectivity over the 3-month time

interval (average correlation of 0.52) was obtained using the

data of all object-selective voxels in anterior IT cortex (standard-

object--selective ROI). If the reproducible novel object

selectivity reflects more than face selectivity, then a sizable

correlation should be obtained if the voxels contained in the face

patches are eliminated from the previous analyses. Indeed, even

after removing all IT voxels with any face selectivity (even if

nonsignificant, 19% of standard-object--selective ROI removed),

the selectivity topography in the remaining voxels was still

highly correlated across the 3-month interval (0.47 on average;

significantly higher than 0 for each object pair, P < 0.05).

In sum, the novel object classes revealed reproducible

functional organization in IT outside of the face patches, and

similarly, the distribution of face patches could not fully explain

the pairwise selectivity across any of the novel object classes.

However, the partial relationship between the selectivity

topography for novel object classes and the spatial distribution

of face patches suggests that at least part of the latter is due to

shape properties of faces that are also found in initially novel

objects.

Discussion

To test for selectivity in IT cortex for novel object classes, we

scanned 2 monkeys with fMRI while they viewed 3 classes of

initially novel object stimuli. We report here the existence of

a large-scale (mm+) topography for novel objects spanning IT

cortex. Only a subset of voxels in IT cortex showed significant

selectivity when considered individually, and this selectivity was

not absolute: the response to the nonpreferred object class was

about two thirds of the response to the preferred object class.

However, using multivariate analyses that consider the pattern

of response across multiple voxels (Haxby et al. 2001), we found

a reliable topography of selectivity spanning a much larger

region of IT cortex. This topography of selectivity is largely

stable across time, training, changes in task, and changes in

retinal position. The overall response magnitude to the different

object classes is influenced by some of these manipulations, but

the spatial distribution of selectivity across IT cortex is largely

stable. In contrast, the topography of selectivity is sensitive to

changes in object shape. Finally, this topography is not

reducible to spatially organized face selectivity. Taken together,

these results suggest that IT cortex contains a large-scale spatial

organization for some dimensions of shape, which we will call

a ‘‘shape map.’’

The finding of a large-scale shape map in IT cortex is largely

consistent with, but not predicted by, prior work on IT cortex.

Although single-unit recording and optical imaging studies

have previously reported clustering of selectivity in IT cortex,

the scale of that ‘‘columnar’’ organization (Tanaka 2003) is on

the order of hundreds of microns (Fujita et al. 1992; Tanigawa

et al. 2005), and such studies provide a restricted field of view

of the cortex (revealing only a small part of IT cortex).

Conversely, although fMRI studies in monkeys and humans

have described large patches of selectivity in the cortex for

specific object categories (e.g., faces, places, and bodies)

(Kanwisher et al. 1997; Epstein and Kanwisher 1998; Downing

et al. 2001, 2005; Tsao et al. 2003; Pinsk et al. 2005), and it has

even been argued that the ventral pathway in humans contains

an ‘‘object form topology’’ (Haxby et al. 2000), those studies

have mostly used familiar object classes which confound shape

with multiple other dimensions (evolutionary significance,

familiarity, semantic attributes, types of processing, and

associated eccentricity biases). Here we show that even novel

object classes, which minimize those confounds, are associated

with distinct patterns of selectivity across IT cortex.

Perhaps, the most surprising property of the shape map is its

stability. Our data indicate that the shape map was present the

first day that the monkeys viewed the objects, and the

topography did not change for the remainder of our experi-

ments. We made a concerted effort to induce and find changes,

by scanning over several months, by extensively training the

monkeys with 1 class of novel objects to change the

significance of that object to the monkey, and by changing

the subject’s behavioral task. None of these manipulations

produced a discernible effect on the object-class selectivity

topography, even though our data were powerful enough to
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easily detect changes resulting from partial manipulation of

object shape (Fig. 9). The only effect of training that we

uncovered with our methods was a small increase in the

magnitude of response to the trained object class. This effect

was only significant in a task context in which monkeys were

actively processing shape, so the response increase might be

related to attention.

Effects of Training in Monkeys versus Humans

The stability of the shape map across training stands in contrast

with the outcome of our recent experiments with human

subjects using the same object classes (Op de Beeck et al.

2006). Like the results described here, the human studies

revealed selectivity for the novel object classes and training-

associated increases in response to those objects in object-

selective cortex. However, 10 days of training changed the

spatial pattern of selectivity in humans. In humans, the results

could be described best as a mixture of the hypotheses in

Figure 1c,d: Part of the pretraining topography of selectivity

remained in place, but part of it changed as a consequence of

training. In contrast, here we found that months of training did

not change the pattern in monkeys.

We can only speculate why the shape map is more stable

in monkeys than humans. Perhaps, object representations

in humans are more flexible than object representations in

monkeys. A close comparison of the procedures and results in

the 2 studies suggests other possible explanations for this

difference. A first possibility is the general phenomenon that

humans achieve higher performance levels on tasks that involve

a comparison of multiple stimuli, like the shape task that we

used here (Op de Beeck et al. 2003a). Each of themonkeys in the

present study showed a very strong behavioral improvement

during the training period, starting with chance performance for

the largest stimulus differences in the trained object class and

ending with reasonably good performance for intermediate

stimulus differences (see Behavioral Tasks). Nevertheless,

human subjects achieved far higher performance levels after

only 10 h of training than monkeys after 3 months of training.

Perhaps, the smaller effects on spatial organization of object

selectivity in monkeys are linked to this behavioral difference.

A second difference between the human and monkey studies

is that because the monkey studies include fewer subjects and

effects must be demonstrated in each individual, the number of

visual stimulus exposures prior to training was at least 5 times

as large in monkeys compared with humans (more pretraining

scan sessions and more stimulus exposures per session). We

cannot exclude the possibility that this additional pretraining

exposure somehow makes the preexisting topography of

selectivity less prone to later changes in the face of training.

A third difference is that the human study used BOLD

imaging and the monkey study MION imaging. However,

although MION and BOLD may differ (Smirnakis et al. 2007),

previous studies at 3 Tesla have shown similar patterns of

activation in temporal cortex from the 2 methods (Leite et al.

2002; Tsao et al. 2003). Critically, at 3-Tesla MION is more

sensitive than BOLD, arguing against the idea that we simply

lacked the power to see training-induced changes in monkeys.

Is the lack of a training effect on the fMRI-determined IT

selectivity topography consistent with single-unit neurophysi-

ology studies? In general, such studies have revealed effects of

experience on the overall responsiveness and selectivity in IT

cortex (Kobatake et al. 1998; Baker et al. 2002; Sigala and

Logothetis 2002; Freedman et al. 2006; Op de Beeck et al. 2007).

Although potentially important and still underexplored, such

effects at the single-unit level are typically small in magnitude

(small changes in spikes/s relative to stimulus-driven changes).

Training-related effects are also variable in direction, with some

studies reporting training-related decreases in responsiveness

(Baker et al. 2002; Freedman et al. 2006; Op de Beeck et al.

2007) and others reporting increases in responsiveness

(Logothetis et al. 1995; Kobatake et al. 1998). Thus, our finding

of a small training-related increase in fMRI-determined re-

sponsiveness is not obviously at odds with the single-unit

literature. Although single-unit studies have not investigated

potential effects of training on the spatial distribution of

selectivity across IT cortex, slight increases in very local spatial

clustering of similarly selective neurons have been reported in

neighboring perirhinal cortex (Erickson et al. 2000). Our study

is the first to look for such effects in monkey IT cortex, and we

were unable to find significant effects of training on the spatial

pattern of selectivity at mm+ scale. Our failure to find such

effects does not rule out the possibility that training effects may

occur under different training conditions, nor does it rule out

the possibility that the training in our study changed the

selectivity of single IT neurons without a strong change in

overall fMRI-determined responsiveness or spatial pattern.

Shape Maps and Single Neurons

The stability of the shape map across the various shape-

preserving manipulations agrees with the reported responses

of single units in monkey IT cortex that show some tolerance

for stimulus position (Ito et al. 1995; Op de Beeck and Vogels

2000) and task context (Richmond and Sato 1987; Vogels and

Orban 1994). Indeed, our finding of relative stability of the

object selectivity topography in IT in spite of changes in object

position shows that this topography is primarily driven by

differences in shape (i.e., a shape map) and not by differences

in absolute retinotopic envelope. Nevertheless, our results do

not rule out the possibility that monkey IT cortex also contains

some kind of retinotopic map, as suggested for parts of human

object-selective cortex (Hasson et al. 2002; Brewer et al. 2005;

Larsson and Heeger 2006). Our data are not directly relevant

for that question, although our results confirm the well-known

finding that responses in IT cortex are far stronger for foveal

than for peripheral stimuli.

Further work is needed to understand the relationship

between the shape map revealed by fMRI and the underlying

neuronal activity, especially synaptic input (e.g., as measured

through local field potentials [LFPs]) and spiking activity

(Logothetis 2002). In early visual cortex, hemodynamic

changes measured by fMRI correlate somewhat better with

LFPs than with average spiking activity (Logothetis et al. 2001).

In IT cortex, average spiking activity over 3--6 mm regions is

a reasonable, but far from perfect, predictor of LFP shape

preferences at the center of such regions (Kreiman et al. 2006).

Furthermore, LFP shape preferences correlate for sites that are

up to 8 mm apart. Thus, the spatial distribution of selectivity in

LFPs has a scale that is very similar to the scale of our fMRI-

determined selectivity maps (see Supplementary Material and

Supplementary Fig. 5). A reasonable hypothesis is that the fMRI-

determined selectivity map correlates well with both an LFP-

determined selectivity map and a spatially smoothed spiking

activity map. Another nonexclusive hypothesis is that small

pockets of very high spike selectivity across even novel object
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classes underlie the fMRI-determined maps as has been

reported recently for faces (Tsao et al. 2006).

The relationship between fMRI maps, cortical input (as

measured with LFPs), and output (spiking activity) might also

explain why we did not see any effect of training on the fMRI

maps. Training might leave the input to IT cortex unaltered, and

it might mostly affect how this input is processed. This

hypothesis would predict a smaller effect of training on fMRI

maps or LFP signals than on spiking activity. Further inves-

tigations with multiple methods of these input/output relation-

ships and how they change as a consequence of experience

might help illuminate a fundamental question: What is the

functional significance of the spatial organization of shape

selectivity in IT cortex? In particular, do the strong clustering of

neurons in face patches (Tsao et al. 2006) or the shape

topography (described here) have any computational or

mechanistic benefits for the coding of faces and other objects?

Selectivity for Novel and Familiar Objects

What is the relationship between the stable, large-scale IT shape

map inferred from our current data, and the previously

described face patches within IT? Although face patches bear

a clear relationship to the selectivity topography we found for

our novel objects, this selectivity topography is not reducible to

the face patches—when we remove from our analysis all voxels

with any preference for faces, the correlation between repeated

measurements of the shape map with our novel object classes

remains intact. Although we do not have a quantitative

measurement of the amount of shape similarity between our

novel objects and faces, the partial similarity we observed

between the pattern of selectivity among novel objects and the

pattern among faces versus objects (Results, Fig. 10) might be

related to a partial overlap in shape features like how compact

or round a stimulus is. This is consistent with the observation of

Tsao et al. (2006) that the few nonface stimuli that sometimes

elicited a small response from face cells tended to have round

shapes (e.g., an apple). Indeed, this partial relationship between

the face patches and the shape topography revealed here raises

further intriguing questions. Is a large-scale general shape map

formed first in development, in turn determining where face

patches appear in that map (similar to the proposed role of

retinotopic biases, see Levy et al. 2001; Hasson et al. 2002)? Or

might a more general shape map develop through extensive

exposure to a few prominent natural object categories such as

faces? A further question is whether category-selective

responses found with familiar categories such as faces and

bodies reflect only the perceived shape of the stimuli, or also

more experience-dependent associations, for example, a hand

and a leg are both body parts but have a very different shape

(Erickson et al. 2000; Hanson et al. 2004; Pietrini et al. 2004).

Conclusion

Now that we have clear evidence of a stable, large-scale shape

map in IT cortex, there are many open questions that will

require years of investigation to answer. We do not know the

number of shape dimensions coded in the shape map (Cutzu

and Edelman 1996), which shape aspects are coded and which

are not (Kayaert et al. 2003; Op de Beeck et al. 2003b), and the

degree to which these characteristics of the shape map adhere

to the predictions of current models of object recognition (e.g.,

O’Toole et al. 2005; Riesenhuber and Poggio 1999; Kersten

et al. 2004) or to neuronal data (Kayaert et al. 2005; Kiani et al.

2007). Nor do we know whether shape maps are similar across

individuals—an investigation that will require a much larger

number of subjects. The present study provides a foothold that

will enable us to investigate fundamental questions about the

nature of object representations, the development of cortical

maps, and the mechanisms underlying our remarkable ability

for visual object recognition.
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