
Attention and biased competition in multi-voxel
object representations
Leila Reddya,b, Nancy G. Kanwisherc, and Rufin VanRullena,b,1
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The biased-competition theory accounts for attentional effects at
the single-neuron level: It predicts that the neuronal response to
simultaneously-presented stimuli is a weighted average of the
response to isolated stimuli, and that attention biases the weights
in favor of the attended stimulus. Perception, however, relies not
on single neurons but on larger neuronal populations. The re-
sponses of such populations are in part reflected in large-scale
multivoxel fMRI activation patterns. Because the pooling of neu-
ronal responses into blood-oxygen-level-dependent signals is non-
linear, fMRI effects of attention need not mirror those observed at
the neuronal level. Thus, to bridge the gap between neuronal
responses and human perception, it is fundamental to understand
attentional influences in large-scale multivariate representations
of simultaneously-presented objects. Here, we ask how responses
to simultaneous stimuli are combined in multivoxel fMRI patterns,
and how attention affects the paired response. Objects from four
categories were presented singly, or in pairs such that each
category was attended, unattended, or attention was divided
between the two. In a multidimensional voxel space, the response
to simultaneously-presented categories was well described as a
weighted average. The weights were biased toward the preferred
category in category-selective regions. Consistent with single-unit
reports, attention shifted the weights by �30% in favor of the
attended stimulus. These findings extend the biased-competition
framework to the realm of large-scale multivoxel brain activations.

pattern classification � fMRI � response combination �
ventral temporal cortex

There has recently been an explosion of fMRI studies using
multivariate patterns of blood-oxygen-level-dependent

(BOLD) signals, distributed over large numbers of voxels, to
probe neural representations and their relation to perception.
This exciting body of work has shown that there is a wealth of
information about the perceptual and cognitive states of the
observer to be gained from such large-scale multivariate repre-
sentations that would have been otherwise hidden in the uni-
variate (i.e., average) BOLD response. For instance, decoding or
‘‘mind-reading’’ studies have shown that the visual stimulus
(1–7), the contents of perceptual experience (8), working mem-
ory (9), or mental imagery (10) can all be predicted from the
multivariate BOLD response. That is, large-scale multivariate
fMRI patterns offer a previously unavailable window into hu-
man perceptual processes (11, 12).

Although attention has long been explored with conventional
(i.e., univariate) fMRI methods (13–15), these recently discov-
ered multivariate pattern analysis techniques have only started
to scratch the surface of attentional processes. For example, it
has recently been shown that one can decode which of two
orientations (4) or motion directions (16) is currently attended,
based on multivariate patterns in early striate and extrastriate
cortex. However, the operational mechanisms of attention,
which have been thoroughly explored in animal single-unit
electrophysiology, leading to the well-established ‘‘biased-
competition’’ framework (17), have yet to be understood at the
level of multivariate fMRI patterns. Because of the robust

correspondence between these large-scale patterns and human
perceptual and cognitive variables, this understanding consti-
tutes a necessary and critical step in bridging the gap between
cognitive studies of attention and the detailed implementation of
attentional mechanisms at the level of neuronal populations.

Extensive single-neuron recording studies in monkeys have
revealed the effects of attention and competition on neural
responses (18–23). When two stimuli, one effective and the other
ineffective, are presented within a receptive field (RF) of a
neuron, the neural response corresponds to a weighted average
of the responses to the two stimuli presented in isolation (21).
Attending to one or the other stimulus biases the neural response
in favor of the attended stimulus. In the extreme case, the result
is almost as if attention eliminates the influence of the unat-
tended stimulus (18); in practice the bias, when quantified, is
only �30% on average (21, 23–27). These results form the basis
of the biased-competition framework of attention (17).

The purpose of the present study was to explore the relevance
of the biased-competition framework at the level of multivoxel
fMRI response patterns. It is important to note that the effects
of competition and attention in multivoxel representations can-
not be understood by merely extrapolating from the single-
neuron level, because several nonlinearities and unpredictable
factors come into play when combining the BOLD responses to
two stimuli. To cite just one example, a well controlled factor in
single-neuron studies that is impossible to account for in fMRI
is the control over what information is present in a given RF of
a neuron: Unlike the case with single neurons when the exper-
imenter can ensure that both stimuli are systematically presented
within the RF, within a given fMRI voxel, not all neurons will
necessarily respond to each stimulus present (some would re-
spond to one stimulus, others to both, and yet others to none).
Thus, one cannot trivially predict how multivoxel patterns com-
bine or how attention affects the combination by simply observ-
ing the effects in single neurons. Furthermore, and perhaps most
importantly, the relationship between neuronal signals and
BOLD responses is far from being well understood (28), and, as
is now frequently observed, the two signals might sometimes
agree with each other, or just as easily diverge (29), depending
on the experimental and perceptual conditions being tested.

In the present study, we thus explore biased competition at the
level of multivoxel response patterns: Instead of focusing on the
individual neuron as a system, its RF as input and its firing rate
as output, as done in seminal studies of biased competition (18,
20, 21, 23), we consider here an entire brain region as the system
of interest, the entire visual field as its input, and the large-scale
multivoxel pattern as its output. Is the biased-competition
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framework also relevant for understanding the function of such
a system? To address this question we proceed in two successive
and logically connected steps. First, we must determine how the
response patterns corresponding to each of two simultaneously-
presented stimuli combine in multidimensional voxel space.
Using a novel analysis technique based on simple mathematical
projections in a multidimensional space, we specifically compare
predictions from two simple linear models of response combi-
nation: a weighted average or a weighted sum based on a simple
linear summation of BOLD responses (30). Although there is
considerable evidence for the existence of nonlinearities in
neuronal responses (31, 32), this assumption of a linear combi-
nation serves here as a useful approximation because it permits
expressing the paired response as the sum of two weighted
components. This will conveniently allow us, in a second step, to
address the main goal of this study, to characterize and quantify
the effect of attention as a modification of these weights, i.e., a
‘‘bias’’ affecting the linear combination.

Results
Subjects were presented with stimuli from four categories (faces,
houses, shoes, and cars), either in isolation or in pairs. In the
latter condition, each category could be attended or unattended
(i.e., attention was directed to the other category) or attention
could be divided equally between the two categories. These
conditions (isolated, attended, unattended, and divided atten-
tion) allowed us to look at the effects of competition and
attention on large-scale multivoxel patterns of representation
(Fig. 1).

Response Combination. Our general approach is illustrated in Fig.
2. The patterns of responses to each of two object categories
presented in isolation (X and non-X) define a plane in the
multidimensional space of possible responses (the dimensional-
ity of the space being determined by the number of voxels in the
analysis). A novel pattern recorded in response to a paired
presentation of these two object categories can be projected onto

this plane, i.e., it can be expressed as a linear combination of the
two original patterns (plus a certain amount � of deviation from
the plane: Pair � �.X � �.non-X � �). The weights � and � of
this linear combination reveal the manner in which single-object
responses are combined into paired responses in multidimen-
sional voxel space: their sum � � � will be close to 1 for a
weighted average combination (e.g., � � � � 0.5 for the plain
average) and close to 2 for a weighted sum (e.g., � � � � 1 for
the plain sum) (see also SI Methods). The actual plane projec-
tions of our data, derived from a leave-one-run-out analysis, are
shown in Fig. 3, and the corresponding sums of weights in Fig.
S1. Note that the projection procedure results in significant
errors (the distance from the plane � , shown in Fig. S2),
suggesting that other factors also come into play that cannot be
explained by any linear combination model (measurement noise
and the small number of data samples being the most obvious of
these factors).

Fig. 3 illustrates the results of the plane projection separately
for the four categories of objects used in this experiment (faces,
houses, shoes, and cars) in three regions of interest (ROIs)
[fusiform face area (FFA), parahippocampal place area (PPA),
and the set of object responsive voxels in occipito-temporal
cortex (ORX); see Methods]. In this figure, the axes have been
normalized so that, in the ideal case, the isolated conditions (i.e.,
vectors X and non-X) would project onto the cardinal points
(0,1) and (1,0), respectively. The large red and green points in
Fig. 3 correspond to the two isolated presentations (e.g., in the

Fig. 1. Experimental design. (A) Subjects were presented with either one
(isolated condition) (Left), or two (paired conditions) (Center and Right)
streams of images that alternated on either side of fixation. In the paired
conditions, subjects were instructed to attend to one or the other category
(Center) or to both (Right). Each block began with an instruction screen
presented for 2 s telling subjects which category of stimuli they were to
perform a one-back task on. Images from four categories (faces, houses, shoes,
and cars) were used during the experiment. (B) For any pair of categories X and
non-X, this experimental design led to five conditions of interest. The high-
lighted area in each screen reflects the attended category(ies).

Fig. 2. A schematic representation of the analysis in a simplified 3D space,
where each voxel defines a dimension. In this space, the BOLD response to
different presentations of category X (presented in isolation) is shown as the
cluster of red points, the response to another isolated category (non-X) is
shown as the cluster of green points, and the response to the simultaneous
presentation of the Pair (X, non-X) is shown as the large orange sphere. Two
vectors, X and non-X (shown in red and green, respectively), represent the
average position of the responses to categories X and non-X in this space. We
first describe the Pair vector as a linear combination of the two vectors X and
non-X by projecting it onto the plane (shown in blue) defined by these two
vectors (the projection is shown as the broken orange line to point P1). Any
weighted average or weighted sum of the two vectors X and non-X also
belongs to this plane, as illustrated by the two thick blue lines. By comparing
the distance of the projection P1 to the weighted average and weighted sum
lines, we can determined that the Pair corresponded more closely to a
weighted average response (Fig. 3; Fig. S1). Therefore, in a second step, we
projected the Pair response directly onto the weighted average line (solid
orange line to point P2). The relative position of point P2 between points X and
non-X determines the weight in the weighted average response, i.e., the bias
in the biased competition model. We can thus explore how this bias varies
depending on the stimulus category, the region of interest, and the amount
of attention directed to objects X and non-X (Figs. 4 and 5).
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leftmost column the large red point represents the average
projection of all isolated face blocks and the large green the
isolated nonface blocks). These isolated conditions do not
project perfectly onto the cardinal points; this deviation is
because the projections were obtained using a leave-one-out
analysis: N � 1 runs were used to define the plane, on which data
from the Nth run was projected; this procedure was repeated N
times, each time with a different Nth run. The distance from the
isolated conditions to the cardinal points thus reflects the
variability intrinsic to the data and the small number of runs
(typically, n � 7) in the leave-one-run-out analysis (also apparent
in Fig. S2). The two blue lines in each plot in Fig. 3 correspond
to the family of vectors defined by the weighted average response
model (weights verify � � 1 � �) and the weighted sum response
model (weights verify � � 2 � �), with the intervening space
(shaded in blue) spanning intermediate possibilities between
these two extreme models. The smaller points represent the
paired presentation conditions, with attention either directed to
category X (small red points), away from category X (small
green points), or equally divided between the two (small yellow
points). By comparing the location of these three types of points
in the plane with the corresponding weighted average and
weighted sum lines, we can determine how individual responses
are combined during paired presentations.

Fig. 3 reveals that, in most cases (i.e., for all but one of the 36
observations � three paired conditions * four object categories
* three ROIs), the paired response lay closer to the expected
weighted average than to the weighted sum responses (the
exception being house/nonhouse with equally divided attention
in the FFA). The distance of the paired responses from the two
models was quantified in Fig. S1 as follows: As mentioned above,
the left and right blue lines in Fig. 3 correspond to linear
combinations of vectors X and non-X such that the sum of
weights � � � is 1 and 2, respectively. Thus, for all three paired
conditions, we can compute an index between 1 and 2 that gives

a measure of how far these points lie from the weighted average
and weighted sum conditions. This index, based on the y-
intercept of lines passing through the points of interest, and
parallel to the blue lines, was calculated thus:

(y-intercept of line of interest)/(y-intercept of weighted-
average line).

The index would be 1 for an ideal weighted average and 2 for
an ideal weighted sum. The index values obtained from the data
in Fig. 3 are shown in Fig. S1, collapsed over object categories
but separated by ROI and paired condition. All index values
were closer to 1 than to 2, i.e., they leaned toward a weighted
average response.

Note that in the above analyses (Fig. 3; Fig. S1), the reference
points used to calculate the weighted average and weighted sum
models were the actual projections of the isolated conditions
(i.e., from the left-out run in the leave-one-out analysis), rather
than the cardinal points (that were determined from the remain-
ing N � 1 runs). This makes sense, because one would expect the
two isolated conditions to lie directly on their weighted average
line. However, we also reach a similar conclusion (i.e., consistent
with the weighted average model) by directly projecting the
multidimensional paired presentation vectors (of the Nth run)
onto the average and sum lines (determined from the N � 1
runs), and then comparing the corresponding projection errors
(i.e., comparing Fig. S3 with Fig. S4). In fact, in this analysis,
there was not a single case among the 36 data points for which
the projection onto the sum line was closer than onto the average
line.

To summarize, when two objects are simultaneously pre-
sented, the large-scale multivoxel patterns tend to combine in a
manner more compatible with the weighted average model than
the weighted sum model (even though strong departures exist;
see Figs. S2–S4). The weighted average line thus provides us with
a convenient axis on which to project the paired responses in
multidimensional voxel space. We can now ask how attention

Fig. 3. The response in each condition projected onto the plane defined by the X and non-X vectors for each category and ROI. The y and x axes in each subplot
correspond to the X and non-X vectors in Fig. 2 (shown here as orthogonal to each other for convenience). The two solid blue lines correspond to the families
of vectors defined by the weighted average and weighted sum responses (as in Fig. 2). The projections were computed using a leave-one-run-out analysis: N �
1 runs of the isolated conditions defined the X and non-X vectors as well as the corresponding plane, and the Nth run of each of the five conditions was then
projected onto the plane. This procedure was first performed pair-wise for all combinations of categories (i.e., if X � face, the projection plane and projected
values were computed separately for the face-house, face-shoe, and face-car pairs), and the results were then subsequently averaged in this figure. SEM values
were computed across subjects, although they are too small to be observed in most cases. Note that the X and non-X points do not lie at (0,1) and (1,0), respectively,
because the leave-one-run-out analysis is influenced by the small number of runs and the variability inherent to the data.
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alters the position of the response pattern along this axis, i.e.,
how attention biases the competition between simultaneously-
presented stimuli.

Attention and Biased Competition. Having established that mul-
tivoxel fMRI patterns combine more in line with a weighted
average model, we now turn to the main goal of this study and
examine the specific influence of attention on paired responses.
More precisely, we ask how attention biases the weights of the
weighted average response. To this end, in a leave-one-run-out
analysis, we projected each paired condition of the Nth run onto
the line joining the two vectors defined by the isolated conditions
(in the N � 1 runs) of the two categories of interest. This
projection corresponds to the point marked P2 in Fig. 2. The
resulting projection can be expressed as a weighted average (with
weight �) of the two isolated vectors (plus a certain amount ��
of deviation from the line: Pair � �.X � (1 � �).non-X � ��).
Note that the projection procedure again results in important
errors (the distance from the line �� , shown in Fig. S3),
highlighting the variability, the small number of runs, and/or the
nonlinearity of our fMRI dataset. However, applying the same
procedure to the weighted sum model yields projections (satis-
fying: Pair � �.X � (2 � �).non-X � ��) that are even more
distant from the original data (as can be seen in Fig. S4,
illustrating the distance �� ). This result confirms our choice of
the weighted average as the optimal linear combination model.

Fig. 4 reports the values of the combination weight � for the
four object categories in the three ROIs, as a function of the
attentional condition: category X or non-X presented in isola-
tion (large red and green points, respectively), paired presenta-
tion with attention directed to category X or non-X (small red
and green points, respectively), or divided equally between both
(small yellow points). As in the previous analysis, the projections
for the two isolated blocks do not lie at their ideal position (i.e.,
� � 0 and � � 1), due to the leave-one-out analysis and the
variability in our dataset. However, the fact that these two points
are well separated in each ROI and for all categories indicates

that meaningful category information can be extracted from
these multivoxel patterns, as already demonstrated by several
previous studies (1, 2, 4, 5). The weight value when attention is
equally divided between two simultaneously-presented catego-
ries (represented by the position of the yellow points in Fig. 4)
reflects a large category bias in the FFA and PPA for faces and
houses, respectively. In these two areas, the paired presentation
is almost superimposed onto the isolated presentation of the
‘‘preferred’’ stimulus category, meaning that the weight of the
preferred category is �1 (when it is expressed relative to the
isolated conditions of the left-out run in the leave-one-out
analysis, i.e., the large red and green points, rather than the
absolute points of 0 and 1 determined from the N � 1 runs). In
other words, in these regions, the preferred stimulus acts as an
attractor for the paired response. In ORX, however, for all
categories, the divided attention condition lies more or less
halfway between the two isolated conditions, i.e., with a weight
of �0.5. Finally, the attended and unattended (albeit to a lesser
extent) conditions also tend to follow the category bias. These
findings of an influence of stimulus category and ROI on the
robustness of dual-image representations (statistically con-
firmed by the ANOVA described below) are compatible with a
previous report (33).

To statistically evaluate the effect of category and attention on
the magnitude of the weights, we performed a three-way
ANOVA of attention (attended, divided, and unattended) �
category � ROI with the weight as the dependent variable. We
observed a main effect of attention [F(2,324) � 16.04; P 	
0.0001] and a posthoc analysis revealed that the weights were
ordered by attended 
 divided 
 unattended (corrected for
multiple comparisons with Scheffé’s method), as can easily be
observed in Fig. 4. We also observed a main effect of category
[F(3,324) � 3.3; P � 0.02] and an interaction effect of category �
ROI [F(6,324) � 21.46; P 	 0.0001] as expected from the
category preferences of the FFA and PPA. No two- or three-way
significant interaction effects were observed with attention,
suggesting that the attentional effect is largely independent of
both category and ROI.

Finally, to investigate how attention modifies the weights, we
computed the amount by which attention causes the weight in the
divided attention condition to shift toward either attended
category (Fig. 5; Fig. S5). This measure is, basically, the bias in
the biased-competition theory. We found that there was approx-
imately a 30% shift in the weights with attention, quantitatively
consistent with neurophysiological results from the monkey
literature (21, 23–27). A two-way ANOVA of category � ROI
with this attentional bias as the dependent variable did not reveal
a significant main effect of category [F(3,104) � 0.27; P � 0.85]
or ROI [F(2,104) � 0.1; P � 0.9] or any interaction effect
[F(6,104) � 0.2; P � 0.98]. Thus, the 30% attentional shift was
constant, regardless of category or ROI (Fig. 5).

Fig. 4. Vector projections of each condition onto the weighted average line.
As in Fig. 3, the projections were obtained using a leave-one-run-out analysis,
N � 1 runs of the two isolated conditions defined the weighted average line,
and the Nth run was then projected onto the line. For each category X, the
procedure was repeated pair-wise for all three combinations of (X, non-X),
and the averaged results are shown here (as in Fig. 3). SEM values were
calculated across subjects. The points for each X/non-X are staggered along
the y axis to avoid superposition. The x axis represents the value (between 0
and 1) of the weight � in the weighted average: �.X � (1 � �).non-X. The
effects of category and attention on this bias can be viewed as a ‘‘slider’’ that
shifts the paired representation along the axis joining the two individual
representations.

Fig. 5. Attention modulates the weights by �30% in each ROI (A; collapsed
across categories) and for each category (B; collapsed across ROIs). The
strength of the attentional modulation was computed as the amount (in Fig.
4) by which the weight of the ‘‘attend-both’’ condition shifted toward the
‘‘isolated X’’ or ‘‘isolated non-X’’ weight in the ‘‘attend-X’’ and ‘‘attend-non-
X’’ conditions, respectively.
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Discussion
This study tested the relevance of the biased-competition frame-
work at the level of multivoxel patterns of BOLD activity. We
considered entire brain regions as our system of interest, the
entire visual field as its input, and the multidimensional pattern
of voxel responses as its output, and asked whether competition
takes place between simultaneous stimuli, and how attention
modulates this competition. We found that the response to a pair
of stimuli could be approximated by the average of their
individual responses in a multidimensional voxel space (Fig. 3;
Fig. S1) (34); preferred categories in selective regions tended to
act as attractors for the paired response (Fig. 4) (33); finally,
attention biased the paired response by �30% (Fig. 5). Despite
the fundamental differences between neuronal firing rates and
BOLD signals discussed in the introduction, these results are
surprisingly consistent with a large body of electrophysiological
literature showing that the neuronal response to a pair of visual
stimuli can be well described as an average of the response to the
two constituent stimuli (21), even though evidence for nonlinear
components also exists (31, 32), and that attention biases the
averaged response in favor of the attended stimulus (18–21, 24).
Furthermore, the degree of the attentional bias that we found in
multivoxel patterns was quantitatively comparable with that
observed in single neurons in areas V4 (21, 27) and MT (25).
Above and beyond confirming single-neuron studies at the level
of fMRI multivariate patterns, these results demonstrate that the
biased-competition framework is also relevant at the level of
large-scale, integrated perceptual representations.

Our assessment of response combination as a weighted aver-
age rather than a weighted sum was intended as a first linear
approximation (and in reality, the paired responses generally fall
in between these two linear predictions) (Fig. 3). Recent studies
tend to support more elaborate, nonlinear pooling schemes (21,
31, 32, 35). In particular, the normalization model of attention
(a powerful implementation of the biased-competition model
using a normalization factor and taking into account differences
in the sensory input to the neurons) (35, 36) can account for
various attentional effects such as response gain (37, 38), con-
trast gain (39, 40), or sharpening of the neuronal tuning curves
(41, 42). The normalization model predicts that, under sensory
conditions that drive neurons to their saturation point (i.e., at
high contrast values), the paired response is consistent with a
weighted average model; however, at lower contrasts, the com-
bined response is expected to be larger than an averaged
response. This prediction of an intermediate paired response
between a weighted average and weighted sum is actually
consistent with our findings (Fig. 3), and suggests that the
normalization model of attention may also be relevant in the
domain of multivoxel patterns. Further work will be needed,
however, to systematically extend our multivoxel approach to this
type of nonlinear framework.

Attentional effects for multiple simultaneous stimuli have
previously been explored in fMRI studies with a focus on the
univariate response of voxels or ROIs. Kastner et al. (43) showed
that the average BOLD response over a given ROI to simulta-
neous stimuli was smaller than the response to a sequential
presentation of the same stimuli, but that attention counteracted
this suppression. Bles et al. (44) reported that the spatial extent
of attentional modulation (as measured by the average BOLD)
was correlated with estimated RF size across visual cortex.
However, as is becoming increasingly evident, the univariate
BOLD response will often fail to provide information that can
otherwise be gleaned from multivariate patterns of BOLD
activity (1, 4, 5, 11). For instance, in our experiment, the average
BOLD response in ORX to isolated presentations of the four
object categories is approximately equivalent (Fig. S6), which
would lead one to conclude that this region carries no discrim-

inatory information about object category, an obviously mis-
guided conclusion, as demonstrated by the separation between
isolated conditions in Fig. 4 Right. Given that the subjects in our
experiment could easily discriminate between these categories,
in this instance, the multivariate patterns turn out to be more
representative of subjects’ perception than the univariate BOLD
response (although this is not always the case) (45). Therefore,
the question of attention and biased competition must also be
addressed with multivariate fMRI patterns, which was the
purpose of the present study.

Decoding the attentional state from multivoxel fMRI patterns
of activity was discussed recently in a study with a focus on earlier
visual areas (4). The authors demonstrated that multivoxel
patterns in V1 and V2 allow an ideal observer to determine
which of two simultaneously-presented orientations is currently
attended (4). However, neural representations in early visual
areas are local and retinotopic, and it is not clear if the same
principles would extend to higher-level visual areas of ventral
cortex with less retinotopic representations and more global
RFs; in fact, the above-mentioned finding did not generalize
easily to areas V3 and V3A/V4 (4, 46). One previous study has
considered the effects of competition between simultaneous
stimuli and attention on multivoxel ventral-temporal cortex
representations, setting the stage for the current work (33). The
purpose of that decoding study was to evaluate the ability of a
given ROI to signal the presence of its preferred category
regardless of attentional state, in other words manipulations of
attention were regarded as a potential source of confusion or
‘‘noise’’ for the decoding task being tested. In contrast, here we
evaluate how strongly attention ‘‘slides’’ the multivoxel response
to any pair of stimuli toward the response vector of the attended
category (regardless of whether it is the preferred category or not
for the ROI under consideration). In other words, in the present
study, attention served to disambiguate the overlapping multi-
dimensional patterns caused by paired stimulus presentations,
thereby increasing object discriminability. This finding is con-
sistent with the predictions of the biased competition frame-
work, and demonstrates the relevance of this framework for large
scale multivariate representations.

Methods
Subjects. Ten healthy subjects participated in the fMRI study. All subjects gave
signed consent and had normal or corrected-to-normal vision.

Experimental Timeline. Stimuli were presented with Psychophysics Toolbox. In
separate blocks, images from four categories of objects (faces, houses, shoes,
and cars) were presented either in isolation, or in pairs. In the latter ‘‘pair’’
condition, subjects were instructed to attend to one or the other image
category or simultaneously to both categories. As shown in Fig. 1, this design
allowed for five attentional conditions for each category. To ensure that
subjects attended to the category in question, they were required to perform
a one-back task on the images. In each block of 20 stimulus presentations, a
one-back repeat occurred twice per category, presented at random times.
Each block was 16-s long and each stimulus was presented for 800 ms. The
stimuli and paradigm were essentially identical to those used in ref. 33, with
the addition of the dual task condition that was essential for quantifying
response combination and attention effects. For further details, see ref. 33
and SI Methods.

ROIs. In separate localizer runs, subjects were presented with blocks of faces,
scenes, objects, and scrambled images. Based on the data obtained in these
localizer runs, three ROIs were defined. The FFA was defined as the set of
contiguous voxels in the fusiform gyrus that showed significantly stronger
activation (P 	 10�4, uncorrected) to faces than to other objects. The PPA was
defined as the set of voxels in the parahippocampal gyrus that showed
stronger activation to scenes versus objects (P 	 10�4, uncorrected). The ORX
ROI was the set of distributed voxels in the ventral temporal cortex that were
more strongly activated to objects in general, with no preferred selectivity for
any particular category. This ROI was defined by a contrast of faces, objects, or
scenes versus scrambled images (P 	 10�5, uncorrected), with the exclusion of
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any voxels that were specifically selective for faces and scenes. Note that ORX
does not simply correspond to LOC (that is generally defined as the set of
voxels in the lateral occipital and posterior fusiform regions that respond
more strongly to objects versus scrambled objects), but also includes other
object responsive voxels distributed in ventral temporal cortex.

Functional MRI Data Acquisition and Analysis. Functional MRI data were
collected on a 3T Siemens scanner (gradient echo pulse sequence, TR � 2 s,
TE � 30 ms, 20 slices with a 12 channel head coil, slice thickness � 2 mm,
in-plane voxel dimensions � 1.6 � 1.6 mm). The slices were positioned to cover

the entire temporal lobe and part of the occipital lobe. Data analysis was
performed with FreeSurfer Functional Analysis Stream (FS-FAST) (http://
surfer.nmr.mgh.harvard.edu), fROI (http://froi.sourceforge.net), and custom
Matlab scripts.
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