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Diffusion-weighted MRI (DW-MRI) has become a popular imaging modality for probing the microstructural
properties of white matter and comparing them between populations in vivo. However, the contrast in
DW-MRI arises from the microscopic random motion of water molecules in brain tissues, which makes it
particularly sensitive to macroscopic head motion. Although this has been known since the introduction
of DW-MRI, most studies that use this modality for group comparisons do not report measures of head motion
for each group and rely on registration-based correction methods that cannot eliminate the full effects of head
motion on the DW-MRI contrast. In this work we use data from children with autism and typically developing
children to investigate the effects of headmotion on differences in anisotropy and diffusivity measures between
groups. We show that group differences in headmotion can induce group differences in DW-MRImeasures, and
that this is the case even when comparing groups that include control subjects only, where no anisotropy or
diffusivity differences are expected. We also show that such effects can be more prominent in some white-
matter pathways than others, and that they can be ameliorated by including motion as a nuisance regressor in
the analyses. Our results demonstrate the importance of taking head motion into account in any population
study where one group might exhibit more head motion than the other.

© 2013 Elsevier Inc. All rights reserved.
Introduction

Diffusion-weighted MRI (DW-MRI) encodes information on the
direction and speed of the diffusion of water molecules in the intensity
values of the acquired images. In neuroimaging this has become a tool
for inferring the local orientation of white-matter (WM) pathways at
every voxel in the brain, as well as deriving measures of diffusivity and
anisotropy that are thought to reflect the local structure and integrity of
those pathways. These measures have been used to follow progressive
changes in the brain across the lifespan (Yoshida et al., 2013; Salat, in
press) and to study the effects of a variety of conditions, including
Alzheimer's disease (Stebbins and Murphy, 2009), Huntington's disease
(Bohanna et al., 2008), Parkinson's disease (Cochrane and Ebmeier,
2013), multiple sclerosis (Inglese and Bester, 2010), schizophrenia
(Kubicki et al., 2007), and autism (Travers et al., 2012).

However, the populations compared in such studies may differ not
only in terms ofWM structure, but also in how likely they are to exhibit
head motion during the scan. Remaining still in the scanner may be
more challenging for some age groups than others. It may also be
more challenging for subjects with one of the aforementioned disorders
than control subjects. This can make group comparisons of measures
derived from DW-MRI scans problematic. Subject motion during the
endiki).
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acquisition of a DW-MRI series will not only result in misalignment
between the images in the series; but can also alter the intensity values
in the images, because motion during the diffusion-encoding gradient
pulses leads to attenuation of the image intensity. That is, the very
phenomenon that gives rise to the DW-MRI contrast is also what
makes it particularly sensitive to subject motion. Signal attenuation
due to macroscopic headmotion can confound the measurement of in-
terest, which is signal attenuation due tomicroscopic randommotion of
water molecules in tissues. If a subject moves only during the applica-
tion of one diffusion-encoding gradient, this can give the appearance
of preferential diffusion in the direction of that gradient and lead to an
overestimation of diffusion anisotropy. If a subject moves randomly
throughout the scan, this can reduce the contrast between diffusion
directions and lead to an underestimation of diffusion anisotropy.

The deleterious effects of head motion on DW-MRI have been known
since the early days of its application to neuroimaging (Anderson and
Gore, 1994). However, the issue has received surprisingly little attention
in the numerous DW-MRI studies of clinical populations that have been
published since then. It is common to realign the images in a DW-MRI
series to each other (Andersson and Skare, 2002; Rohde et al., 2004).
This will mitigate motion artifacts but not remove them completely, and
most studies do not report the levels of detectedmotion by group. For ex-
ample, 48 studies of autism spectrum disorders (ASD) that use DW-MRI
are reviewed in Travers et al. (2012). Almost all of these studies report sig-
nificant differences in diffusionmeasures between subjects with ASD and

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2013.11.027&domain=pdf
http://dx.doi.org/10.1016/j.neuroimage.2013.11.027
mailto:ayendiki@nmr.mgh.harvard.edu
http://dx.doi.org/10.1016/j.neuroimage.2013.11.027
http://www.sciencedirect.com/science/journal/10538119


80 A. Yendiki et al. / NeuroImage 88 (2014) 79–90
control subjects. However, onlyfive of the studies evaluate somemeasure
related to head motion for each group and report that it is comparable
between groups.

In this work, we use data collected from children with ASD and
typically developing (TD) children to investigate the effects of head
motion on measures of anisotropy and diffusivity derived from
DW-MRI and tractography. We show that group differences in such
measures can increase substantially for small increases in the difference
in head motion between groups. This is the case not only when the
groups being compared are children with ASD vs. TD children, but
also when both groups include TD children only. We also show that
DW-MRI findings may be more sensitive to head motion for some
WM pathways than others. Our results have implications not only for
autism studies but for a wide range of neurological and psychiatric ap-
plicationswhere the population under study and the control population
are likely to exhibit different levels of head motion.

Materials and methods

Data acquisition

All MRI data was collected at the Massachusetts Institute of
Technology, using a Siemens 3 T Magnetom Tim Trio scanner (Siemens,
Erlangen, Germany) with a custom-made 32-channel pediatric
head coil (Keil et al., 2011). All sessions included DW images and
T1-weighted images.

The DW images were acquired using a conventional 2D spin-echo
echo-planar imaging (EPI) sequence. The series included 30 images
acquired with diffusion weighting along non-colinear directions
(b = 700 s ⋅ mm−2), and 10 images acquired without diffusion
weighting (b = 0). The acquisition parameters were: 2 mm isotropic
resolution, matrix size 128 × 128, number of slices ranging from 52 to
74 and chosen for full brain coverage, no inter-slice gap, TE = 84ms,
TR ranging from 8.04 s to 14.18 s depending on the number of slices,
BW = 1395 Hz/px, and GRAPPA acceleration factor 2.

The T1-weighted images were acquired using a 3D multi-echo
magnetization-prepared gradient echo (MP-RAGE) sequence with
prospective motion correction (van der Kouwe et al., 2008; Tisdall et al.,
2012). The acquisition parameters were: 1 mm isotropic resolution,
192 × 192 × 176 image matrix, 12 echos with minimum TE = 1.64 ms
and maximum TE = 27 ms, TR = 2.53 s, BW = 651 Hz/pixel, flip
angle 7°, and GRAPPA acceleration factor 3.

Participants

The data described above was collected for 112 children, 50 in the
ASD group and 62 in the TD group. Several of the subjects were scanned
twice, leading to a total of 165 scans. The subjects' ages were 5–12 years.
Their non-verbal IQ was evaluated using the Kaufman brief intelligence
test II (Kaufman and Kaufman, 2004). All subjects included in the study
had non-verbal IQ of at least 80; no history of birth or brain trauma;
and normal or corrected-to-normal vision. The children in the ASD
group were evaluated using the diagnostic criteria in the DSM-IV, as
well as the autism diagnostic observation schedule (ADOS) (Lord et al.,
2000). In addition, all children were evaluated on the social responsive-
ness scale (SRS) (Constantino et al., 2007). For more information on the
standardized tests administered as part of this study, see Koldewyn
et al. (2013).

Image analysis

For eachDW-MRI scan, we aligned all images in the series to thefirst
non-diffusion-weighted image using affine registration (Jenkinson
et al., 2002) and reoriented the corresponding diffusion-weighting
gradient vectors accordingly (Rohde et al., 2004; Leemans and Jones,
2009). Affine registration between volumes is a processing step that is
commonly applied to DW-MRI data to reduce misalignment between
the images due to head motion and eddy currents. To quantify head
motion in each scan, we derived volume-by-volume translation and
rotation from this affine registration, as well as slice-by-slice signal
drop-out measures that are specific to DW-MRI (Benner et al., 2011).
The registration-based measures are better at capturing slower,
between-volume motion, whereas the intensity-based measures are
better at capturing more rapid, within-volume motion. In more detail
the motion measures were:

1. Average volume-by-volume translation: We used the translation com-
ponent of the affine registration from each volume to the first volume
to compute the translation vector between each pair of consecutive
volumes. We averaged the magnitude of these translation vectors
over all volumes in the scan.

2. Average volume-by-volume rotation: We used the rotation component
of the affine registration from each volume to the first volume to com-
pute the rotation angles between each pair of consecutive volumes.
We averaged the sum of the absolute values of these rotation angles
over all volumes in the scan.

3. Percentage of slices with signal drop-out: We computed the signal
drop-out score proposed in Benner et al. (2011) for each slice in
each volume. Slices with a score greater than 1 are considered to
have suspect signal drop-out. We computed the percentage of slices
in the entire scan that had a score greater than 1.

4. Signal drop-out severity: We computed the average signal drop-out
score over all slices in the scan that had a score greater than 1.

We used TRActs Constrained by UnderLying Anatomy (TRACULA) to
delineate 18majorWMfascicles in each scan (Yendiki et al., 2011). This is
an algorithm for automated global probabilistic tractography that esti-
mates the posterior probability of each of the 18 pathways given the
DW-MRI data. The posterior probability is decomposed into a data likeli-
hood term, which uses the “ball-and-stick” model of diffusion (Behrens
et al., 2007), and a pathway prior term,which incorporates prior anatom-
ical knowledge on the pathways from a set of training subjects. The infor-
mation extracted from the training subjects is the probability of each
pathway passing through (or next to) each anatomical segmentation
label. This probability is calculated separately for every point along the
trajectory of the pathway. Thus there is no assumption that the pathways
have the same shape in the study subjects and training subjects, only
that the pathways traverse the same regions relative to the surrounding
anatomy. In other words, TRACULA does not rely on perfect alignment
between the study subjects and training subjects. The anatomical seg-
mentation labels required by TRACULA were obtained by processing
the T1-weighted images of the study subjects with the automated corti-
cal parcellation and subcortical segmentation tools in FreeSurfer (Fischl
et al., 2002, 2004a,b). More details on the tractographymethod, as well
as an evaluation of its accuracy on healthy subjects and schizophrenia
patients, can be found in Yendiki et al. (2011).

The pathways reconstructed by TRACULA are: corticospinal tract
(CST), uncinate fasciculus (UNC), inferior longitudinal fasciculus (ILF), an-
terior thalamic radiations (ATR), cingulum–cingulate gyrus bundle (CCG),
cingulum–angular bundle (CAB), superior longitudinal fasciculus-parietal
terminations (SLFP), superior longitudinal fasciculus-temporal termi-
nations (SLFT), corpus callosum–forceps major (FMAJ), and corpus
callosum–forceps minor (FMIN). Other than the corpus callosum, all
other pathways are reconstructed for the left (L) and right (R) hemi-
sphere. Fig. 1 shows an example reconstruction, where an isosurface
of the probability distribution of each pathway is displayed.

We obtained mean values of the fractional anisotropy (FA), mean
diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD) in
each of the 18 WM pathways reconstructed by TRACULA for each sub-
ject. To compute these mean values, the pathway distributions were
thresholded at 20% of their maximum value, and the FA, MD, RD, and
AD values at each voxel were weighted by the pathway probability at
that voxel. We also computed the average FA, MD, RD, and AD in the



Fig. 1.WMpathways reconstructedbyTRACULA.ATR: anterior thalamic radiations; CAB:
cingulum–angular bundle; CCG: cingulum–cingulate gyrus bundle; CST: corticospinal
tract; FMAJ: corpus callosum–forceps major; FMIN: corpus callosum–forceps minor; ILF:
inferior longitudinal fasciculus; SLFP: superior longitudinal fasciculus-parietal terminations;
SLFT: superior longitudinal fasciculus-temporal terminations; UNC: uncinate fasciculus.
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entire WM for each subject. For this purpose we generated aWMmask
from the subject's anatomical segmentation and mapped it from the
space of the T1-weighted image to the space of the DWIs. Note that
the tensor model was fit to the data only to extract these anisotropy
and diffusivity measures, and not to perform the tractography in
TRACULA, which relies on the ball-and-stick model of diffusion instead.

Our quality assurance procedure involved careful visual inspection
of all the DW images, FA maps, and tractography reconstructions, in
conjunction with the motion measures described above. As will be
discussed further in Discussion section, we excluded from any further
analysis 17 scans (12 of them from children with ASD) that were
deemed to have excessive motion. Thus all analyses presented in the
following include the remaining 148 scans only.

Group comparisons

Our goal was to examine whether more group differences in
DW-MRI measures would be detected between groups with different
levels of head motion than between groups with similar levels of head
motion. We had at our disposal subjects with different amounts of mo-
tion and, for someof those subjects, two scanswith different amounts of
motion. Thus we were able to generate multiple combinations of scans
to include in each group and, for each combination, quantify the differ-
ences in motion parameters and the differences in DW-MRI measures
between groups.We first considered the casewhere a group of children
with ASD was compared to an age-matched group of TD children. We
then considered the case where both groups consisted of age-matched
TD children only, thus no group differences in DW-MRI measures
were expected. Finally, using the TD subjects that had two scans, we
examined differences between scans from the same children but with
different levels of motion. All the aforementioned analyses where per-
formed on mean values of the DW-MRI measures over the entire path-
ways. To further investigate how the effects were distributed spatially,
we also performed a voxel-wise analysis of the association between
FA and motion.

ASD vs. TD
First we investigated how motion affected the differences between

subjects with autism and control subjects. We generated 50,000 random
combinations of 30 children with ASD and 30 age-matched TD children.
For subjects that had two scans, we chose one of the two scans at random
each time. For each of the 18 pathways and for the entire WM, we com-
puted T-tests on the difference in the mean FA, MD, RD, and AD between
the ASD and TD group, using age as a nuisance regressor. For each of the
50,000 scan combinations, we recorded how many of the 18 pathways
exhibited significant differences in each DW-MRI measure at the
p b 0.05 level between the ASD and TD group.We also computed the dif-
ference in the average motion measures between the ASD and TD group.

Introducing nuisance regressors is a common ad hoc approach to ac-
counting for confounds in neuroimaging studies.We examinedwhether
the use of a motion score as a nuisance regressor would reduce findings
of statistically significant differences in DW-MRI measures between
groups. We define here the following total motion index (TMI) for the
i-th subject:

TMIi≜
X4

j¼1

xij−Mj

Q j−qj
;

where j = 1,…,4 indexes the four motion measures described in Image
analysis section, xij is the value of the j-th motion measure for the i-th
subject, and Mj, Qj, and qj are, respectively, the median, upper quartile,
and lower quartile of the j-thmotionmeasure over all subjects included
in a group comparison. Note that the mean and standard deviation are
not good measures of central tendency and dispersion for the four mo-
tion parameters, as their distributions are skewed (see Results section).
We repeated the group comparisons of the mean FA, MD, RD, and AD
for each of the 50,000 scan combinations, using TMI as a nuisance regres-
sor (in addition to age).

TD vs. TD
To confirm that motion-induced differences were not specific to

autism, we repeated the previous experiment using only control sub-
jects. This time we generated random combinations of 60 TD children
that could be split into two age-matched groups of 30. We adopted the
following procedure for generating groups that had subtle differences
in head motion. For subjects with a single scan, that scan could be
drawn either for group 1 or for group 2. For subjects with two scans,
we used the lower-motion scan when the subject was drawn for group
1 and the higher-motion scan when the subject was drawn for group 2.
Comparisons between groups 1 and 2 were carried out for each of the
18 pathways and for the entireWM, as described in the previous section.
The frequencywithwhich significant group differences in DW-MRImea-
sureswere detectedwas now the false positive rate, as no differences are
expected between random combinations of TD children.

Test vs. retest
To demonstrate definitively that motion can generate false positives

where no true differences exist, we used data from the subjects that had
two scans. In this experiment we included only TD children whose
motion parameters were below a rather stringent threshold (themedian
plus 1.5 times the interquartile range of the cohort) for both of their
scans. This left us with 25 subjects. We used paired T-tests to test for dif-
ferences in DW-MRI measures in each pathway between the lower- and
higher-motion scans of these 25 children.

Voxel-based analysis
The tractography-based approach that we followed in this workwas

to compute mean values of DW-MRI measures over each pathway in
each subject's native space, and compare these mean values across
subjects. A popular alternative is the voxel-based approach, where the
images of the subjects are aligned in a common (template) space, and
the values of DW-MRI measures at individual voxels are compared
across subjects in this template space. To further investigate the effects
of motion with the voxel-based approach, we used Tract-Based Spatial
Statistics (TBSS), a popularmethod for aligning FAmaps across subjects
in a template space and performing voxel-wise statistics on FAvalues on
the interior skeleton of theWM (Smith et al., 2006). In this analysis we
included data from all subjects. We used group, age, and motion param-
eters as regressors.We tested for voxels with a statistically significant as-
sociation of FA with motion, using non-parametric permutation testing
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Fig. 2. Overview ofmotionmeasures. Histograms of the four motion measures are shown for the 148 scans that were included in our analyses (green) and 17 scans that were excluded
due to excessive motion (black).
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(Nichols and Holmes, 2002) and threshold-free cluster enhancement
(Smith and Nichols, 2009).
Results

Overview of motion in the data

Fig. 2 shows histograms of the four measures of motion described in
Image analysis section for the 148 data sets that were included in the
analyses, and for the 17 data sets that were excluded by visual inspection
due to egregious motion artifacts. Fig. 3 shows box-and-whisker plots of
these measures by group for the 148 scans that were deemed acceptable.
As seen in these plots, themedian of all fourmotionmeasureswas higher
in the scans of children with ASD than those of TD children. A Wilcoxon
rank-sum test showed statistically significant group differences (transla-
tion: p = 0.009; rotation: p = 0.0006; portion of slices with signal
drop-out: p = 0.01; signal drop-out score: p = 0.02). For children that
had two scans, the median time between scans was 29 days and the in-
terquartile range was 40 days. There was no general tendency for more
or less motion in the earlier scan compared to the later scan (translation:
p = 0.48; rotation: p = 0.57; portion of slices with signal drop-out:
p = 0.89; signal drop-out score: p = 0.83). There was no difference in
the time between scans between groups (p = 0.97).
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Table 1 contains demographic information on the subjects whose
scans were included in the analyses, including age, IQ, SRS score, and
ADOS score. Pearson correlation coefficients of each of these variables
to translational and rotational motion are also shown. There were no
significant correlations of age, IQ, or SRS scores with motion measures.
However, the ADOS symptom severity scores of the autistic children
were positively correlated with rotational motion (p = 0.04).

ASD vs. TD

In Fig. 4 we have grouped the 50,000 random combinations of 30
children with ASD and 30 age-matched TD children based on how
many of the 18 pathways reconstructed by TRACULA were found to
have significant FA differences between the ASD and TD group at the
p b 0.05 level. The plots show the average difference in motion mea-
sures between the groups (ASD-TD), plotted against the number of
pathways that exhibited significant FA group differences. As seen in
the figure, the trials with significantly different FA between the ASD
and TD groups in a greater number of pathways were also, on average,
the trials with a greater difference in motion measures between the
two groups. The most frequent outcome was only one pathway with a
significant group difference (10,998 trials with no findings, 21,867 with
one, 12,131 with two, 3719 with three, 946 with four, and 339 with
five or more). The one-pathway outcome was also associated with the
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Table 1
Demographic information for the children whose 148 scans were included in the
analyses. For each group the number of subjects (nsubj) and total number of scans
(nscan) are shown. For the age, IQ, SRS and ADOS scores of each group, the columns
show average value (μ), standard deviation (σ), correlation with translational motion
(rT) and correlation with rotational motion (rR). Pearson correlation coefficients are pro-
vided with the respective p-values in parentheses.

ASD (nsubj = 45, nscan = 57) TD (nsubj = 61, nscan = 91)

μ σ rT rR μ σ rT rR

Age 8.7 1.7 −0.14 −0.22 8.4 1.9 −0.02 −0.04
(0.31) (0.11) (0.86) (0.71)

IQ 108.0 16.9 −0.15 −0.12 115.2 14.0 0.01 −0.00
(0.35) (0.43) (0.92) (0.99)

SRS 77.5 9.2 −0.08 −0.08 47.0 8.9 −0.20 −0.20
(0.66) (0.63) (0.18) (0.18)

ADOS 7.0 1.9 0.24 0.31
(0.12) (0.04) – – – –
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lowest difference in motion between the ASD and TD groups, for three
out of the four motion measures.

In general, as the difference in motion between the children with
ASD and the TD children increased, differences in DW-MRI measures
between the groups increased, and this was more pronounced for
some pathways than others. To illustrate this, we show results from
two sets of trials: the 500 trials with the lowest group differences in ro-
tational motion and the 500 trials with the highest group differences in
rotational motion. In the former set, the groups had average differences
(ASD-TD) in translation: 0.040 ± 0.034 mm; rotation: 0.054 ± 0.012°;
portion of slices with drop-out: 0.040 ± 0.018%; and drop-out score:
0.022 ± 0.017. In the latter set, the groups had average differences in
translation: 0.358 ± 0.031 mm; rotation: 0.276 ± 0.011°; portion of
slices with drop-out: 0.113 ± 0.015%; drop-out score: 0.075 ± 0.016.
Fig. 5 shows group differences in FA, MD, RD, and AD, averaged over
the 500 trials with low or high differences in motion, for each pathway
and for the entire WM. Fig. 6 shows the frequency (fraction of the 500
trials) with which these differences reached statistical significance at
the p b 0.05 level.
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Fig. 4. Subjectswith autismvs. control subjects. Thedifference inmotionmeasures between g
of pathways that exhibited significant FAdifferences between theASD andTDgroup at thep b 0
over a total of 50,000 randomly drawn subject combinations. On average, the greater the differ
significant FA differences.
As seen in Fig. 6, the right ILF is the pathway that exhibits significant
group differences in DW-MRI measures the most consistently, for both
lower and higher group differences in motion. Other pathways show
significant differences in DW-MRI measures mostly when there are
higher differences in motion between groups. As seen in Fig. 5, when
there is more motion in the ASD group relative to the TD group, the
FA of the ASD group tends to decrease and its RD tends to increase
relative to the TD group. Note that for some of the pathways the FA is
somewhat higher in the ASD than the TD group (although these differ-
ences may not be significant) when the differences in motion are small.
For those pathways, the FA differences decrease and then change sign as
the motion differences become greater. This is, perhaps, why in Fig. 4
the trials where FA differences do not reach statistical significance in
any pathways have somewhat more motion than the trials where
there is a significant difference in one pathway.

Using TMI as a nuisance regressor
Fig. 7 shows the frequency of significant differences in DW-MRI

measures at the p b 0.05 level, for the same trials as the ones shown
in Fig. 6, when the TMI of the subjects is used as a nuisance regressor.
The plots show that, with the introduction of the motion regressor in
the analysis, the results become very similar between the trials with
low group differences in motion (Fig. 7a) and the ones with high
group differences in motion (Fig. 7b). A comparison of these plots to
the respective plots in Fig. 6 shows that the frequency of significant
findings is decreased when TMI is used as a regressor, and that this
decrease is muchmore substantial for the trials with high group differ-
ences inmotion than for the trialswith low groupdifferences inmotion.

TD vs. TD

Figs. 8, 9, and 10 show results from comparisons of random combi-
nations of TD children, i.e., groups of 30 TD children with less head
motion vs. 30 age-matched TD children with more head motion. As
in the previous section, sets of 500 trials with lower differences in
head motion between the two groups and 500 trials with higher
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a) Lower differences in motion between groups
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Fig. 5. Subjects with autism vs. control subjects. Group differences in FA, MD, RD, and
AD, for each of the 18 pathways reconstructed by TRACULA and for the entire WM, aver-
aged over 500 trials with low differences in motion (a) and 500 trials with high differ-
ences in motion between groups (b). Differences in DW-MRI measures are expressed
as 100 ⋅ (xASD − xTD)/xTD, where xASD and xTD are the measures for the ASD and TD
group, respectively. There were greater group differences in DW-MRI measures for
some pathways when the group differences in motion were higher.
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Fig. 7. Subjects with autism vs. control subjects, regressingmotion. Frequency of signifi-
cant group differences in FA, MD, RD, and AD at the p b 0.05 level, for each of the 18 path-
ways reconstructed by TRACULA and for the entire WM. Results are shown for 500 trials
with low differences in motion (a) and 500 trials with high differences in motion between
groups (b). The horizontal blue line indicates the type-I error rate of 0.05. Introducing the
motion regressor led to similar results between trials with low and high group differences
in motion.
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differences in head motion between the two groups were identified.
In the former set, the groups had average differences in translation:
0.041 ± 0.031 mm; rotation: 0.0003 ± 0.0002°; portion of slices with
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Fig. 6. Subjects with autism vs. control subjects. Frequency of significant group differ-
ences in FA,MD, RD, and AD at the p b 0.05 level, for each of the 18 pathways reconstruct-
ed by TRACULA and for the entireWM. Results are shown for 500 trials with low differences
in motion (a) and 500 trials with high differences in motion between groups (b). The hori-
zontal blue line indicates the type-I error rate of 0.05. Some pathways showed significant
group differences in DW-MRI measures more frequently when the group differences in mo-
tion were higher.
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Fig. 8. Control subjects only. Group differences in FA, MD, RD, and AD, for each of the 18
pathways reconstructed by TRACULA and for the entireWM, averaged over 500 trialswith
low differences in motion (a) and 500 trials with high differences in motion between
groups (b). Differences in DW-MRI measures are expressed as 100 ⋅ (xTD2 − xTD1)/xTD1,
where xTD1 and xTD2 are themeasures for the TD groupwith less andmoremotion, respec-
tively. There were group differences in DW-MRI measures for some pathways, only when
the group differences in motion were higher.
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Fig. 9. Control subjects only. False positive rates for FA, MD, RD, and AD at the p b 0.05
level, for each of the 18 pathways reconstructed by TRACULA and for the entire WM. Re-
sults are shown for 500 trials with low differences in motion (a) and 500 trials with
high differences in motion between groups (b). The horizontal blue line indicates the
type-I error rate of 0.05. False positive rates increased for some pathways when the
group differences in motion increased.
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drop-out: 0.013 ± 0.010%; and drop-out score: 0.016 ± 0.012. In
the latter set, the groups had average differences in translation:
0.276 ± 0.047 mm; rotation: 0.204 ± 0.011°; portion of slices
with drop-out: 0.071 ± 0.013%; and drop-out score: 0.065 ± 0.016.
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Fig. 10. Control subjects only, regressingmotion. False positive rates for FA,MD, RD, and
ADat thep b 0.05 level, for eachof the 18pathways reconstructedby TRACULA and for the
entireWM.Results are shown for 500 trialswith lowdifferences inmotion (a) and 500 tri-
als with high differences inmotion between groups (b). The horizontal blue line indicates
the type-I error rate of 0.05. Introducing the motion regressor led to similar false positive
rates between trials with low and high group differences in motion.
Note that these differences between lower-motion and higher motion
scans from TD children are more subtle than the respective differences
between scans from childrenwith ASD and TD children, whichwere re-
ported in the previous section.

Fig. 8 shows group differences in FA, MD, RD, and AD, averaged over
the 500 trials with low or high differences in motion, for each pathway
and for the entire WM. Fig. 9 shows the frequency (fraction of the 500
trials) with which these differences reached statistical significance at
the p b 0.05 level. This frequency is now a false positive rate, as no dif-
ferences in DW-MRImeasures are expected between random combina-
tions of TD children. As seen in the plots, when the motion differences
between the groups of TD children were low, there were no group
differences in DW-MRI measures (Fig. 8a) and the false positive rate
was around 5% for all pathways (Fig. 9a). This was consistent with the
chosen threshold (p b 0.05) for the probability of detecting a difference
between groups under the null hypothesis.When themotion difference
between groups was higher, the false positive rates increased (Fig. 9b),
particularly for the forceps major of the corpus callosum and the
cingulum bundle. For these pathways, there was an increase in RD
and a (smaller) decrease in AD for the groupwith more motion relative
to the groupwith lessmotion (Fig. 8b). As a result, there was a decrease
in FA but a much smaller increase in MD in the presence of motion.

Using TMI as a nuisance regressor
Fig. 10 shows the frequency of significant differences in DW-MRI

measures at the p b 0.05 level, for the same trials as the ones shown
in Fig. 9, when the TMI of the subjects is used as a nuisance regressor.
The introduction of the motion regressor in the analysis reduced the
false positives substantially in the trials with high group differences in
motion (Fig. 10b), although it did not bring them quite to the same
level as the trials with low group differences in motion (Fig. 10a). The
false positive rate was decreased, when motion was used as a regressor,
even for the trials with low group differences in motion, where it fell
slightly below 5%. This may be an indication that themotion regressor in-
troduces some noise in the analysis, as the motion parameters are them-
selves noisy estimates derived from image data. Thus it is plausible that
the introduction of motion parameters in the analysis reduces the bias
due to motion at the cost of a small increase in variance due to noise.

Test vs. retest

Herewe used data from 25 TD children only. These children had test–
retest scans that did not exceed a stringent motion threshold, so that the
maximum translational and rotational motion in any of the scans includ-
ed in this analysis was, respectively, 1.17 mm and 0.58°. The median
number of days between test–retest scans was 22 and the interquartile
range was 37. Paired T-tests between the earlier and later scans showed
no significant change in FA; thus there were no significant longitudinal
within-subject changes between these scans. The higher- and lower-
motion scans of these 25 children had average differences in translation:
0.157 ± 0.032 mm; rotation: 0.126 ± 0.020°; portion of slices with
drop-out: 0.025 ± 0.014%; and drop-out score: 0.037 ± 0.017.

Fig. 11 shows comparisons of FA, MD, RD, and AD, for each of the 18
pathways reconstructed by TRACULA and for the entire WM, between
the subjects' lower-motion and higher-motion scans. The corpus
callosum and cingulum bundle showed significant differences in FA be-
tween the lower-motion and higher-motion scans of these 25 TD chil-
dren. The differences followed a similar pattern as the one seen in the
previous section: higher motion led to decreased FA but largely un-
changed MD, due to an increase in RD and decrease in AD. The sizes of
these differences are shown in Table 2.

We also investigated whether the differences in DW-MRI measures
could be caused by the inclusion of more gray matter voxels in the pos-
terior probability distributions of the pathways in the presence of more
motion. Due to the fact that the distributionswere thresholded at 20% of
their maximum value, and the voxels that remained were weighted by
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Fig. 11. Subjects with test–retest scans.Mean FA, MD, RD, and AD for each of the 18 pathways reconstructed by TRACULA and for the entire WM are plotted for the lower- and higher-
motion scans of the same 25 children. Group averages and standard error bars are shown. An asterisk indicates a significant difference in FA between groups (p b 0.05) and a disk indicates
a trend towards significance (p b 0.1) based on a paired T-test. Significant group differences were found between test and retest scans of the same children, particularly in the corpus
callosum and cingulum bundle.
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their probabilities, graymatter voxels contributed very little to the com-
putation of the mean values of DW-MRI measures over each pathway.
For example, for the forceps major of the corpus callosum, which
showed the greatest sensitivity to motion, the sum of the probabilities
of all included gray matter voxels was on average 0.01 ± 0.003 for the
lower-motion scans, 0.02 ± 0.005 for the higher-motion scans, and
their differences did not reach statistical significance based on a paired
T-test (p = 0.062).
Table 2
Percent differences in FA, MD, RD, and AD between the test–retest scans of 25 TD
children. Differences are expressed as 100 ⋅ (xTD2 − xTD1)/xTD1, where xTD1 and xTD2 are
the measures for the scans with less and more motion, respectively. Results are shown
for the three pathways that showed statistically significant changes in FA (FMAJ, L-CCG,
R-CCG). The columns show average (μ), standard error (�), and p-value from a paired T-
test on the difference between the lower-motion and higher-motion scans.

FMAJ L-CCG R-CCG

μ ± � p μ ± � p μ ± � p

FA −4.9 ± 0.4 0.01 −5.5 ± 0.5 0.02 −5.1 ± 0.5 0.03
MD 0.1 ± 0.3 0.99 0.9 ± 0.2 0.38 1.1 ± 0.2 0.41
RD 8.1 ± 0.7 0.03 5.3 ± 0.4 0.03 4.6 ± 0.5 0.09
AD −3.6 ± 0.7 0.03 −2.4 ± 0.2 0.03 −1.7 ± 0.2 0.10
Voxel-based analysis

Statistical significancemaps from the voxel-wise statistical analysis of
the association of FA and rotational motion in the full set of scans are
shown in the supplementary figure. Increased motion is associated with
decreased FA, and the corpus callosum shows the strongest association.
This result replicates, in our cohort of children, what was shown for a
group of middle-aged and older adults by Salat (in press), (Fig. 10).
Using translational instead of rotational motion did not alter this result.

Discussion

Anisotropy and diffusivity measures derived from DW-MRI are
sensitive to several confounding factors, including head motion, partial
volume, and fiber crossing effects (Jones and Cercignani, 2010;Metzler-
Baddeley et al., 2012; Jones et al., 2013). Although we have focused
exclusively on head motion in this work, care must be taken by re-
searchers to ensure that group differences in their studies are not
caused by any of the above factors.

Effects of head motion

Our results illustrate that group differences in motion can have a
non-negligible effect on group differences in DW-MRI measures. In
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our comparison of subjects with autism to control subjects, the former
always exhibited greater motion than the latter. Small increases in this
difference in motion between the two groups were accompanied by
increases in the number of pathways that had significantly different
FA between the groups (Fig. 4). A comparison of results from trials
with smaller motion differences between groups (Figs. 5a, 6a) to those
from trials with larger motion differences between groups (Figs. 5b,
6b) showed that the latter were characterized by greater group differ-
ences in DW-MRI measures. In particular, more motion in the ASD
group relative to the TD group was accompanied by an apparent in-
crease in RD and decrease in FA in the ASD group relative to the TD
group. This pattern of group differences in anisotropy and diffusivity
has often been reported in the autism literature (Travers et al., 2012).

However, in the absence of ground truth on the structure of the
autistic brain, it is difficult to determine if these findings are false posi-
tives. As we found head motion to be correlated with ADOS symptom
severity scores in the childrenwith ASD, in principle one could not elim-
inate the possibility of a true biological underpinning for the greater dif-
ferences in DW-MRI measures for ASD groups with more head motion.
Furthermore, group comparisons of measures derived from the tensor
model of diffusion can be confounded by other factors. For example,
subjects from different populations could differ not only in terms of
headmotion, but also in terms of partial-volume or fiber-crossing effects.
To make sure that we can isolate the effects of head motion from other
possible group differences, we went on to compare groups consisting of
control subjects only.

When we compared groups of randomly drawn, age-matched TD
children with similar levels of head motion, differences in DW-MRI
measures of anisotropy and diffusivity were close to zero and the false
positive rate was uniformly at 5% for all 18 pathways (Figs. 8a, 9a).
However, the magnitude of the differences increased substantially
when one group of TD children exhibited more head motion than the
other (Figs. 8b, 9b). The motion differences between these groups
were even subtler than the differences between ASD and TD groups in
our previous set of experiments. We were also able to detect within-
subject differences between the lower-motion and higher-motion
scans of a set of TD children who had received test–retest scans, even
after removing the subjects with the most head motion (Fig. 11). The
pattern that emerged from our analyses of data from TD children was
that, asmotion increased, there was an overestimation of RD, accompa-
nied by an underestimation of AD. This led to a significant underestima-
tion of FA but only a very small (non-significant) overestimation of MD.

The pathways that exhibited the most substantial motion-induced
group differences in our datawere the corpus callosum and the cingulum
bundle. Perhaps this is related to the proximity of non-brain voxels (such
as the ventricles) to a sizeable portion of those pathways. Furthermore, in
our voxel-based analysis of the association of FA and motion, deeper
brain areas appear to be more affected than more superficial ones (see
Supplementary figure). Thus distance from the head coils may also be
a factor. Interestingly, anisotropy and diffusivity measures for the
corpus callosum and cingulum bundle have often been reported in the
literature to differ between a variety of clinical populations and healthy
subjects (Salat, in press; Stebbins and Murphy, 2009; Bohanna et al.,
2008; Cochrane and Ebmeier, 2013; Inglese and Bester, 2010; Kubicki
et al., 2007; Travers et al., 2012). This raises questions about the extent
to which differences in head motion between the clinical and control
population may be a confound in such studies, particularly given that
reporting levels of head motion by group is not commonplace in the
literature.

Strategies for group comparisons

There are several approaches to comparing DW-MRI measures be-
tween groups. In this work, we have focused on mean values of such
measures over major WM pathways, as obtained from tractography.
Motion will affect these mean values if it affects a large enough portion
of the pathway. As can be seen in the statistical maps produced by a
voxel-wise analysis (Supplementary figure), the effects of motion may
be more significant in certain parts of a given pathway than others.
Thus, one would expect that if tractography were used to compare
DW-MRI measures along the trajectory of a pathway, the effects of
motion might not be homogeneous over the entire trajectory. In general,
wewould not expect results from voxel-wise statistical analysis, which is
performed in a common template space and thus relies on good spatial
alignment of subjects in that space, to agree perfectlywith tract-wise sta-
tistical analysis, wheremeasures are extracted in the native space of each
subject.

An alternative approach to defining WM pathways, instead of
tractography, is to use regions of interest from an atlas (e.g., Faria et al.
(2011); Keihaninejad et al. (2013)). This would rely on accurate reg-
istration of the individual to the atlas but it would not rely on the
DW-MRI data beyond that. Our approach is an intermediate one, where
prior information from an atlas is used to constrain the tractography so-
lutions in areas where there is uncertainty in the DW-MRI data. Finally,
if a study were to examine more than one of the pathways included
here, the p-values would typically be corrected for multiple compari-
sons. If we applied Bonferroni correction to the results of Fig. 9, then
both the blue line indicating the threshold and the bars indicating the
frequency of significant findings would be lower than they are now.
However, for the trials with greatermotion differences between groups,
the frequency of significant findings would still be above the blue line,
and thus greater than what would be expected by random chance
alone, for the same pathways.

Our results are based on data from children aged 5–12, a population
that is particularly challenging to scan regardless of diagnosis. However,
our voxel-based analysis (Supplementary figure) replicates a result on
the sensitivity of the corpus callosum to motion that has been shown
elsewhere for a group of middle-aged and older adults (Salat, in press,
Fig. 10). Importantly, even if the average adult moved less that the sub-
jects in our study, studies of adult subjects could still be confounded by
different amounts of head motion between groups, such as younger vs.
older or clinical vs. control populations.

A potential concernwhen analyzing image data from children is that
analysis methods that have been developed for adult subjects may not
be appropriate. Our tractography method relies on an automated
surface reconstruction and segmentation of our subjects' T1-weighted
images. The validity of this particular anatomical data processing stream
and its lack of age-related bias have been shown previously for children
of the same age range (Ghosh et al., 2010). Our tractography algorithm
does not rely on exact spatial alignment of our subjects to an atlas, as it
uses information only about which anatomical labels each pathway
passes through or next to, and not about the exact spatial coordinates
or shape of the pathways (Yendiki et al., 2011).

Strategies for motion compensation

Having illustrated the impact that headmotion can have onDW-MRI
group studies, our results underline the importance of accounting for
motion in any such studywhere one population is more prone tomotion
in the scanner than the other. In general, methods for motion compensa-
tion in imaging data are either retrospective, i.e., they are performed as a
post-processing step after the images are acquired, or prospective, i.e.,
they are built into the image acquisition. In the following we discuss
these potential remedies briefly.

The most popular retrospective approach to motion correction in
DW-MRI relies on image registration to align the DW images to a base-
line image (Andersson and Skare, 2002; Rohde et al., 2004). However,
the effects of head motion on DW-MRI are two-fold; it can cause
misalignment between different volumes in the DW-MRI series but it
can also alter the intensity values of a specific volume (or,more appropri-
ately for a 2D acquisition, a specific slice), if head motion occurs during
the diffusion-encoding gradient pulse. Although registration-based
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correctionwill address themisalignment between volumes, the drop-out
in intensity values will persist. All the results shown in the present study
were obtained after performing registration-based correction.

A common strategy for controlling confounding factors in neuroim-
aging group studies is to introduce these factors as linear regressors in
statistical analyses. In this work we used TMI, a composite index defined
from four measures of motion, as a nuisance regressor in the statistical
analysis of the mean values of FA, MD, RD, and AD in each pathway.
The use of this regressor allowedus to reduce the frequency of significant
findings among trials with high motion difference between groups,
making it very similar to the respective frequency among trials with
low motion difference between groups. This was the case in compari-
sons between children with ASD and TD children (Fig. 7), as well as
comparisons between TD children with lower and higher motion
(Fig. 10). We found TMI to be more effective in this regard than the
individual motion measures (results not shown). Of course, any such
linear regression approach is ad hoc, as anisotropy and diffusivity
measures are not linear with respect to global motion parameters.
Thus regressors cannot be expected to eliminate false positives
completely. A true model-based approach would involve knowledge
of the trajectory of headmotion during the acquisition of each slice. Fur-
thermore, measures of motion may be linearly dependent with respect
to other regressors that are often included in DW-MRI group analyses,
most notably age.

Another retrospective approach to addressing the effects of motion is
outlier rejection. This can range from a procedure as simple as discarding
an entire scan that exceeds acceptable levels of motion, either by visual
inspection or based on a hard threshold on motion parameters, to statis-
ticalmethods for detecting anddiscarding subsets of the data in each scan
as outliers (Chang et al., 2005; Zwiers, 2010).When discarding subsets of
the data in a scan, i.e., volumes or slices, the amount of redundancy in
each data set is an important consideration. It has been shown that the
minimum number of distinct gradient directions that are necessary for
robust estimation of FA values is 30 (Jones, 2004). Thus it is desirable to
have more than 30 gradient directions per data set, so that outlier
volumes can be discarded and scans with intermittent head motion can
still be used without introducing bias in the analyses. However, the
data in the present study included only 30 gradient directions. In the ab-
sence of redundancy, we chose to discard egregiously poor scans in their
entirety but maintain the full range of data quality in the scans that were
included in our analyses.

Specifically, we inspected all scans and discarded only the ones
where head motion led to visibly poor quality of the FA maps. This was
the case for 17 scans, or roughly 10% of the full set of data. As seen in
Fig. 2, the scans that we discarded based on visual inspection included
most if not all of the scans that would be deemed outliers based on one
of the four measures of motion. (Note that, if a scan had visible signal
drop-out in a slice at the very top or base of the brain that would not
affect the major WM pathways, we did not discard it. Hence a few of
the scans included in the analyses may score high in terms of signal
drop-out but none scores high in terms of the percentage of affected
slices.) Some of the 17 discarded scans were outliers based on only one
of the four motion measures, some were outliers based on more than
one measure, and some were not outliers based on any of these mea-
sures. This illustrates the difficulty in setting a hard threshold on motion
measures for excluding scans from a study and the importance of taking
into account all such measures, as well as inspecting the data visually.
Hard thresholds that have been used in other autism studies are 2 mm
of translational motion (Knaus et al., 2010; Shukla et al., 2011) and 2°
of rotational motion (Knaus et al., 2010). As seen in Fig. 3, none of the
data sets included in our analyses exceeded the 2° threshold. Only two
data sets exceeded the 2 mm threshold, and excluding them from the
analyses did not change our results.

The approach thatwe followed here, applying one of themostwidely
available methods for registration-based correction (Jenkinson et al.,
2002) and discarding poor-quality scans based on visual inspection,
is certainly not the only possible route but it is one that we believe
reflects current common practices. No matter which combination of
registration-based and outlier-based corrections is used, however, a
concern with all such retrospective methods is that data with different
levels of motion will also be subjected to different levels of processing.
In a group study where subjects from one group tend to move more,
scans from this group will have more volumes smoothed due to the
interpolation performed by a registration-based motion correction
method, and more data points removed by a method for rejecting
outlier slices or volumes.

A potential remedy for the residual effects of motion that cannot be
removed by retrospective correction methods, as well as the effects of
treating one group more than the other with such methods, is to
make sure that the scans in the two groups are matched with respect
to some summary measures of motion. Our results indicate that, when
the groups do not differ in terms of the motion measures that we
considered in this work, the chance of false positive findings is reduced
substantially. However, even if matching groups for motion measures
can decrease false positives, it will not address the potential for false
negatives due to motion. That is, the contamination of the image data
with motion, even if that motion is comparable between groups, may
occlude true but subtle differences in WM microstructure. For accurate
measures of this microstructure, one needs not only equal motion arti-
facts between groups, but ideally no motion artifacts at all.

An additional drawback of motion correction methods that rely on
registration of DW images is that their performance is dependent on
the b-value. Images acquired with very high b-values do not contain
enough anatomical features to be registered accurately. For such data,
it is not possible to use registration-based approaches, either to correct
translational and rotational motion, or to quantify it andmatch it across
populations. This makes motion correction particularly problematic for
high-angular resolution DW-MRI scans that require the acquisition of
datawith higher b-values than routine scans. Such high-angular resolu-
tion acquisitions are at once more sensitive to head motion due to
higher diffusion contrast at high b-values and more likely to include
head motion due to the longer scan time needed to acquire more
diffusion-encoding gradient directions.

Prospective methods for motion correction have been proposed to
overcome some of the limitations of retrospective methods. Several
motion-compensated sequences for DW-MRI have been introduced
recently, using volume registration (Benner et al., 2011; Sarlls et al.,
2012), external optical tracking systems (Aksoy et al., 2011), free-
induction decay navigators (Kober et al., 2012), or volumetric navigators
(Alhamud et al., 2012; Bhat et al., 2012). In Aksoy et al. (2011) and
Alhamud et al. (2012) the authors compare their methods to standard
retrospective methods for motion correction and show that the prospec-
tive approach leads to improved performance. A particular benefit of pro-
spective motion correction is that it avoids the interpolation of image
intensities performedby registration-based retrospectivemethods. In ad-
dition to motion-compensated sequences, a promising development for
DW-MRI is accelerated acquisition methods (Feinberg and Setsompop,
2013), as reducing the duration of a scanwill alsomake it less susceptible
to subject motion.

Further analyses

The results presented here show the effects ofmotion on group com-
parisons of anisotropy and diffusivity. However, there are other types of
analyses thatwe havenot investigated in thiswork but thatmaybe con-
founded by head motion:

• Differences in lateralization of diffusionmeasures between groups. It is not
entirely clear how differences in headmotionmight affect differences
in lateralization. If subjects in one group moved more, thus reducing
the apparent anisotropy in both hemispheres, power to detect differ-
ences between hemispheres in that group could be reduced.Whether
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these differences would still be detectable would also depend on the
level of noise in the data.

• Correlation of diffusion measures with other study parameters. The
amount of head motion that subjects exhibit in the scanner could be
correlated with several demographic and behavioral attributes of
the subjects, including age, IQ, cognitive performance metrics, or
symptom severity for various conditions. If such a correlation existed,
motion could induce spurious associations between demographic or
behavioral parameters and themeasures of anisotropy and diffusivity
extracted from DW-MRI data.

Implications for autism studies and beyond

In the autism literature,whichhas been themotivation for thiswork,
findings of all the types listed above have been reported (Travers et al.,
2012). Among the 48 studies reviewed in Travers et al. (2012), the
following strategies for mitigating motion artifacts are mentioned:
retrospective registration-based correction in 30 studies; ad hoc outlier
rejection (discarding entire scans either by visual inspection or by a
hard threshold on amotion parameter) in 13 studies; and selective seda-
tion (only for themost challenging subjects) in 10 studies. However, de-
spite the limitations of the above approaches, very few of the 48 studies
report measures of head motion for subjects in each group.

Specifically, Thakkar et al. report that there was no significant differ-
ence in translationalmotion between subjectswith ASD and control sub-
jects in their study (although thosemotionmeasures are estimated from
a functional MRI scan). They find significant FA differences between
groups in the subcortical WM underlying a number of cortical regions
of interest (Thakkar et al., 2008). Knaus et al. report that there were no
significant group differences in motion parameters in the DW-MRI
scans of their subjects, based on a multivariate analysis of variance.
They find no significant group differences in the FA of the arcuate fascic-
ulus (Knaus et al., 2010). Shukla et al. report that there were no signifi-
cant group differences in translational or rotational motion in their
DW-MRI data. They find significant group differences in FA in a region-
of-interest analysis (Shukla et al., 2010), aswell as a voxel-based analysis
(Shukla et al., 2011). Groen follows a statistical approach to outlier re-
moval as part of the tensor estimation step. The author uses the mean
diffusivity values in cerebrospinal fluid to quantify motion artifacts and
reports that there was no significant difference between groups in that
respect. Groen finds no significant group differences in FA after
correcting for age and IQ, but does find significant differences in mean
diffusivity. In addition, that work reports a significantly higher number
of voxels classified as outliers in subjects with ASD than control subjects
(Groen, 2011).Weinstein et al. use sedation for all of the subjects in their
study. They find significant FA differences between groups in a voxel-
based analysis (Weinstein et al., 2010). In a more recent study, Walker
et al. compare sedated children with ASD to sleeping TD children. They
find significant but small differences in FA, on the order of 1%–2%, in
voxel-based analyses. Importantly, they also study the spatial distribu-
tion of artifacts, as identified by theirmethod for detecting outlier voxels,
and they report differences between the two groups. The authors con-
clude that these differences may be partly due to more head motion in
the unsedated TD subjects than the sedated subjects with ASD, and
that this could have affected certain aspects of their DW-MRI findings
(Walker et al., 2012).

Taken together, the studies discussed above suggest that differences
in measures derived from DW-MRI between subjects with autism and
control subjects could not be explained entirely by head motion, and
that true effects are likely to exist. However, as we have shown here,
it is worth revisiting studies that have not reported measures of motion
and examining whether group differences in motion exist and, if so,
whether controlling for this and using analysis methods that are robust
to outliers increase the specificity of the findings. In our own data, we
find significant but not wide-spread differences between children with
ASD and TD children, after matching the groups for motion (Koldewyn
et al., in review). Specifically, our follow-up analyses confirm that differ-
ences between the two groups in the right ILF persist even after headmo-
tion is accounted for.

The small portion of studies that report measures of motion for each
group is not characteristic only of the autism literature. It is representa-
tive of the wide range of applications that use DW-MRI to infer group
differences inWMmicrostructure. Our results show the impact that dif-
ferences in head motion between groups can have on DW-MRI group
studies and thus underline the importance of reporting measures of
headmotion. If differences in the amount of motion are found between
the groups, a combination of the retrospective correction methods
described above, i.e., between-volume registration, outlier rejection,
and using motion measures as nuisance regressors, will mitigate the
effects of motion. However, it is important to note the limitations of
these approaches and not to assume that they will eliminate all such
effects completely. Ultimately, our results demonstrate the significance
of developing motion-compensated acquisition methods for DW-MRI
and incorporating them into the common practice of neuroimaging
studies.

Conclusions

We found that small differences in the amount of head motion be-
tween two groups of subjects were sufficient to yield false positive find-
ings of differences in anisotropy and diffusivity between the groups, and
that some WM pathways were more sensitive to this than others. The
popular post-processing approach to motion correction by registration
of DW images to a baseline image did not eliminate the problem. The in-
troduction of a motion index as a regressor in the analysis reduced the
false positives substantially. Our results have implications for any diffu-
sion MRI study where one population is less likely to remain still in the
scanner than the other. Specifically, these results highlight the impor-
tance of (i) ensuring that there are no group differences in motion and
reporting motion measures by group in any study that reports group
differences in the DW-MRI measures that we studied here, and (ii)
using motion-compensated acquisition methods for DW-MRI in future
studies.
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