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Abstract  19 
The majority of visual recognition studies have focused on the neural responses to repeated 20 
presentations of static stimuli with abrupt and well-defined onset and offset times. In contrast, 21 
natural vision involves unique renderings of visual inputs that are continuously changing without 22 
explicitly defined temporal transitions. Here we considered commercial movies as a coarse 23 
proxy to natural vision. We recorded intracranial field potential signals from 1284 electrodes 24 
implanted in 15 patients with epilepsy while the subjects passively viewed commercial movies. 25 
We could rapidly detect large changes in the visual inputs within approximately 100 ms of their 26 
occurrence, using exclusively field potential signals from ventral visual cortical areas including 27 
the inferior temporal gyrus and inferior occipital gyrus. Furthermore, we could decode the 28 
content of those visual changes even in a single movie presentation, generalizing across the 29 
wide range of transformations present in a movie. These results present a methodological 30 
framework for studying cognition during dynamic and natural vision. 31 
 32 
 33 
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1. Introduction  37 
How does the brain interpret complex and dynamic inputs under natural viewing conditions? 38 
The majority of studies in visual recognition have simplified this question by examining neural 39 
responses to isolated shapes, presented in static images, with well-defined onset and offset 40 
times, and reporting averaged neural signals across multiple repetitions of identical stimuli. The 41 
extent to which the principles learned from these studies generalize to the complexities of 42 
temporally segmenting and interpreting the kind of rich, dynamic information present in real-43 
world vision remains unclear (Felsen and Dan 2005; Rust and Movshon 2005).  44 
 45 
Studies of the neural responses to flashing static stimuli along the ventral visual stream have 46 
revealed a cascade of computational steps that show progressively increasing shape selectivity 47 
and invariance to stimulus transformations (for reviews, see (Logothetis and Sheinberg 1996; 48 
Riesenhuber and Poggio 1999; Connor et al. 2007; DiCarlo et al. 2012)). The starting point to 49 
analyze the responses to flashed stimuli involves aligning the neural signals to the stimulus 50 
onset, and showing raster plots and post-stimulus time histograms aligned to the transition from 51 
a blank screen to a screen containing the stimulus. Despite the trial-to-trial variability in the 52 
neural responses elicited by repeated presentation of the same stimulus, several studies have 53 
demonstrated that it is possible to read out information about image content in single trials by 54 
applying machine learning techniques (reviewed in (Kriegeskorte and Kreiman 2011)). 55 
Furthermore, it is also possible to identify the time at which the stimulus onset happens purely 56 
from the neural responses (Hung et al. 2005). 57 
 58 
In stark contrast to experiments that present stimuli with well-defined onsets and offsets, natural 59 
viewing conditions require interpreting the visual world from a continuous stream of visual input. 60 
These conditions present a series of important challenges: (i) there is no obvious “stimulus 61 
onset” to align responses to; (ii) the visual system is continuously bombarded with rapidly 62 
changing input; and (iii) natural images are significantly more complex and cluttered than those 63 
used in many studies with single shapes on a uniform background. In an attempt to begin to 64 
examine how the visual system responds under more naturalistic and dynamic conditions, there 65 
has been growing interest in using movies as stimuli in neurophysiological studies (e.g. (Vinje 66 
and Gallant 2000; Lewen et al. 2001; Fiser et al. 2004; Lei et al. 2004; Montemurro et al. 2008; 67 
Honey et al. 2012; McMahon et al. 2015; Podvalny et al. 2016)) and also in non-invasive studies 68 
(e.g. (Hasson et al. 2004; Bartels and Zeki 2005; Whittingstall et al. 2010; Nishimoto et al. 2011; 69 
Huth et al. 2012; Conroy et al. 2013; Russ and Leopold 2015)).  70 
 71 
These studies have demonstrated that general principles of visual processing derived from 72 
flashing static stimuli are maintained when considering dynamic stimuli but they have also 73 
highlighted important differences. For example, in primary visual cortex, investigators have 74 
reported that models built from responses to flashed gratings fail to capture all the variance in 75 
the neural responses to movies (Vinje and Gallant 2000; Carandini et al. 2005). In higher visual 76 
areas, the responses to complex shapes such as faces are strongly modulated by the dynamic 77 
aspects of movie stimuli (McMahon et al. 2015; Russ and Leopold 2015). 78 
 79 
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Here we describe a methodology to examine neural responses obtained from intracranial field 80 
potentials (IFP) in human epilepsy patients while they passively watched commercial movies. 81 
We tackled the central questions defined above by directly using the neural signals to: (i) 82 
evaluate when there are large visual changes in the continuous visual inputs, and hence how to 83 
align neural signals in response to movies, and (ii) identify what is the content in the changing 84 
movie frames, despite the complex and heterogeneous variations in the movies. In a first 85 
experiment, we presented multiple repetitions of short movie clips. We showed that we could 86 
decode intracranial field potentials to determine when a visual change happened and identify 87 
what changed in those visual events, generalizing across the transformations present in movie 88 
clips. In a second experiment, we extended this methodology to the analysis of neural 89 
responses to single presentations of a full-length movie.  90 
 91 
2. Material and Methods 92 
Raw data and code for this manuscript are available at 93 
http://klab.tch.harvard.edu/resources/Isiketal_whatchangeswhen.html 94 
 95 
2.1 - Physiology subjects  96 
Subjects were 15 patients (ages 4-36, 8 males, 2 left handed) with pharmacologically intractable 97 
epilepsy treated at Children’s Hospital Boston (CHB) or Brigham and Women’s Hospital (BWH). 98 
They were implanted with intracranial electrodes to localize seizure foci for potential surgical 99 
resection (Ojemann 1997; Liu et al. 2009). All studies described here were approved by each 100 
hospital’s institutional review board and were carried out with the subjects’ informed consent. 101 
Electrode types, numbers and locations were driven solely by clinical considerations. 102 
 103 
2.2 - Recordings and data preprocessing  104 
Subjects were implanted with 2 mm diameter intracranial subdural electrodes (Ad-Tech, Racine, 105 
WI, USA) that were arranged into grids or strips with 1 cm separation. Each subject had 106 
between 26 and 144 electrodes (86±26, mean±SD). We conducted two experiments (described 107 
below). We studied a total of 1284 electrodes (954 in Experiment I, and 330 in Experiment II, 108 
Supplemental Table 1 and Supplemental Table 2). All data were collected during periods 109 
without seizures or immediately following a seizure. Data were recorded using XLTEK (Oakville, 110 
ON, Canada) and BioLogic (Knoxville, TN, USA) with sampling rates of 256 Hz, 500 Hz, 1000 111 
Hz or 2000 Hz. 112 
 113 
For each electrode, a notch filter was applied at 60 Hz and harmonics, and the common 114 
average reference computed from all channels was subtracted. We focused on the broadband 115 
voltage signals in the 0.1-100 Hz range (referred to as broadband signals throughout the 116 
manuscript). In the Supplementary Material, we also considered the power in the intracranial 117 
field potential signals filtered in the following broadband frequency ranges: alpha (8-15 Hz, 118 
alpha broadband), low gamma (25-70 Hz, low gamma broadband), and high gamma (70-120 119 
Hz, high gamma broadband). All of these are broadband frequency ranges and not single 120 
frequency oscillatory signals. After notch filtering, signals were band passed filtered in each of 121 
those frequency bands. Power in each frequency band was extracted using a moving window 122 
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multi-taper Fourier transform (Chronux Toolbox, Mitral and Bokil, 2008) with a time-bandwidth 123 
product of five tapers. The window size was 200 ms with 10 ms increments.  124 
 125 
2.3 - Electrode localization  126 
Electrodes were localized by coregistering the preoperative MRI with the postoperative 127 
computerized tomography (CT) (Liu et al. 2009; Destrieux et al. 2010; Tang et al. 2014). For 128 
each subject, the surface of the brain was reconstructed from the MRI and then assigned to one 129 
of 75 anatomically defined regions by Freesurfer. Each surface was also co-registered to a 130 
common brain (Freesurfer fsaverage template) for display purposes only, all analyses 131 
separating electrodes by brain region were based on localization in individual subject’s own 132 
anatomical images. We emphasize that all electrode locations are strictly dictated by clinical 133 
criteria. In this type of study, comparisons across subjects are complicated because not all 134 
subjects have electrodes in the same anatomically defined brain region and there are also 135 
differences in electrode locations within each such region across subjects. The locations of the 136 
electrodes in Experiment I are shown in Figure 4A , and the locations of the electrodes in 137 
Experiment II are shown in Figure 7A . Tables S4-S5  report the number of subjects contributing 138 
to each anatomically defined brain region in experiment I and II, respectively. 139 
 140 
2.4 – Neurophysiology experiments  141 
 142 
2.4.1 - Experiment I  143 
In the first experiment, 11 subjects viewed three 12 s cartoon clips from two separate movies 144 
(example frames for one of these movies are shown in Figure 1A ). Each clip was repeated 145 
multiple times, between 10-68 repetitions (see Supplemental Table 1), depending on subject 146 
fatigue and clinical constraints. Clips were presented in a random order with a 1 second interval 147 
between clips. Subjects passively viewed the clips. Clips were presented at approximately 4x3 148 
degrees of visual angle. Clips were shown in color and had no sound.  149 
 150 
2.4.2 - Experiment II  151 
In the second experiment, 4 different subjects viewed a full-length commercial movie: Home 152 
Alone (subject 12, see example frames in Figure 1B ), Charlie and the Chocolate Factory 153 
(subjects 13-14) or In the Shadow of the Moon (subject 15). Movies were presented with sound 154 
and color at ~18x12 degrees of visual angle. Subjects passively viewed the movies once 155 
through. The movies were interleaved with static images presented for a separate experiment. 156 
The movie was played for 25s, followed by 20 static images from different categories, and then 157 
again by the next 25s of movie.  158 
 159 
2.5 - Eye tracking experiment 160 
Even though the stimulus size was relatively small to prevent large eye movements, we 161 
performed a post-hoc experiment to evaluate whether subjects generate consistent saccades 162 
under these viewing conditions (consistency within a subject across repetitions of the same clip 163 
and consistency across subjects). A post-hoc eye tracking experiment was conducted on 7 in-164 
lab subjects to examine eye movements. Each subject viewed each 12s clip in Experiment 1, 165 
presented five times in a random order. The viewing conditions were the same as in the 166 
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physiology experiments. Eye position was recorded with an infrared camera eye tracker 167 
(EyeLink D1000, SR Research). The median eye position across subjects and repetitions is 168 
shown in Figure S1 . 169 
 170 
2.5 - Data analyses  171 
 172 
2.5.1 - Cut detection  173 
Movies were segmented based on sharp visual transitions between scenes referred to as movie 174 
cuts throughout (see examples in Figure 1 ). In Experiment I, the cuts within the 12s clips were 175 
manually labeled. In Experiment II, the cuts in the full-length movies were first detected 176 
automatically using an algorithm calculating and thresholding pixel differences between 177 
consecutive movie frames. The automatically detected movie cuts were then checked and 178 
refined manually. We refer to a “shot” as the time period in between two adjacent cuts and we 179 
refer to an “event” as a single occurrence of a shot.  180 
 181 
2.5.2 - Movie labeling  182 
We manually labeled shots in the movies by assigning one label to an entire segment between 183 
movie cuts (shots ranged in length from 0.4s to 3.73 s, with an average length of 1.67s). The 184 
objects and background within a given shot are generally different than those in the previous 185 
shot and are approximately constant throughout a shot. 186 
  187 
In Experiment I, we labeled the presence or absence of the main characters (humanized 188 
versions of cartoon animals) in each 12s clip. This allowed us to test visual selectivity for each 189 
repeated event (e.g. appearance of a particular shape) across the course of the movie. In 190 
particular, in Experiment I, both 12s clips contained shots with a single animal, and shots with 191 
no animal. Two pairs of animal/no-animal scenes were selected in each 12s clip, one pair 192 
occurring at the beginning of the clip and one pair at the end. In the decoding analyses 193 
described below, pairs that were close in time were selected as foils (e.g. each animal shot was 194 
closer in time to its no-animal foil than to the other animal shot) so that the decoding algorithm 195 
could not simply exploit correlations in the physiological data that occur due to temporal 196 
proximity.  197 
 198 
In Experiment II, we labeled in each movie shots with a single face and shots with no faces or 199 
bodies. Faces were selected as a target for visual decoding because they are a consistent, 200 
repeating visual element in all movies shown.  201 
 202 
2.5.3 - Correlation analyses  203 
In Experiment I, we evaluated how consistent the neural signals were across the repeated 204 
presentation of the same 12 s clip for all the cut-responsive electrodes. We correlated the time 205 
courses across repetitions of the same 12 s clip. For each of the n=954 electrodes, we 206 
calculated the Pearson correlation coefficient between each pair of repetitions in every 50 ms 207 
overlapping bin (step size of 1 sample) in each of the three 12 s clips (correlations for an 208 
example electrode during one movie clip are shown in Figure 2D ). The choice of a 50 ms 209 
window was dictated by the attempt to make the window as small as possible while keeping a 210 
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sufficient number of sampled voltage values to compute a correlation. To quantify the statistical 211 
significance of the correlation coefficients thus obtained, we defined a null distribution by 212 
computing the correlation coefficients between each 50 ms bin in the movie and random 213 
temporally offset segments. We defined a segment as showing a significant consistency across 214 
repetitions when the correlations between repetitions were significantly above chance in at least 215 
20 consecutive 50 ms bins with p<0.01 with respect to the null distribution (e.g. horizontal marks 216 
in Figure 2D ). To examine how the timing of consistent responses across repetitions revealed 217 
by the inter-repetition correlations related to movie cuts, we calculated the latency between the 218 
onset of significantly above chance consistency segments and the previous movie cut (Figure 219 
3).  220 
 221 
We repeated the above correlation analyses using a binning window of 400 ms in Figure S13B, 222 
E, H. This longer time window implies more time points in the calculation of each correlation 223 
coefficient. To ensure that this increase in the number of time points would not bias the results, 224 
we repeated the analyses with a bin size of 400 ms and a smoothing factor of 8 in Figures 225 
S13C, F and I to match the number of time points in Figure 3 . Given the larger time window in 226 
the analyses in Figure S13 , we explicitly removed windows that intersected a camera cut (to 227 
avoid, for example, a window from -200 to +200 ms with respect to a movie cut to be assigned 228 
to -200 ms and erroneously suggest windows of high correlation before movie cuts).   229 
 230 
2.5.4 - Cut responsiveness  231 
To examine whether the physiological signals showed a significant evoked response to cuts 232 
(e.g. Figure 2B ), we compared the IFP response, defined as the range (max-min) of the 233 
broadband signals or the total power in each frequency band in the 50 to 400 ms post-cut 234 
window to the corresponding values in the -400 to -50 ms pre-cut window. We defined cut 235 
responsive electrodes as those that showed a p<0.01 difference in the post-cut versus the pre-236 
cut windows when considering all repetitions of the n=20 cuts (all cuts, excluding the first cut – 237 
i.e. movie onset – in each movie) based on a permutation test where the pre-cut and post-cut 238 
windows were randomly shuffled 1000 times to define a null distribution. Channels that yielded a 239 
greater IFP response than 99% of the null distribution were defined as significant with p<0.01. 240 
All of the electrodes that met this significance criterion are reported in Supplemental Tables 2 241 
through 5 and in Section 3.1. 242 
 243 
2.5.5 - Decoding methods  244 
Several analyses in the manuscript describe the accuracy in discriminating between visual 245 
events during the movie using statistical classifiers. We describe next the methods for those 246 
analyses. 247 
 248 
Classifier features – In each decoding analysis, we considered the average voltage in 50 ms 249 
non-overlapping time bins for each electrode as input to the classifiers described below. In the 250 
Supplementary Material we repeated these analyses examining the average power in the alpha 251 
(8-15 Hz), low gamma (25-70 Hz), or high gamma (70-120 Hz) frequency ranges. Depending on 252 
the specific analyses, we used either single electrodes, pseudo-populations composed of a 253 
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fixed number of electrodes per region or a population from multiple electrodes selected across 254 
subjects, as described below. The entire decoding procedure was repeated in each 50 ms bin.  255 
 256 
In Experiment I, because subjects viewed multiple repetitions of identical stimuli, electrodes 257 
were pooled across all subjects into pseudo-populations for specific locations. We first 258 
examined the decoding performance in each brain region by pooling electrodes within a given 259 
anatomical parcel from the Freesurfer Destrieux atlas (Section 2.3). For this analysis, we 260 
considered all anatomical parcels with at least 8 electrodes, and performed decoding with the 261 
pattern of activity across the top 8 electrodes (as measured by the electrode selection 262 
procedure described below) in each of these regions (Figure 4B-C, Figure 5B-C ). Next, we 263 
also evaluated performance by combining electrodes across separate brain regions and 264 
subjects (Figure 5D , (Tang et al. 2014)).  265 
 266 
In Experiment II, because subjects did not all view the same movie, decoding was performed 267 
separately for each electrode and subject. We calculated decoding performance per brain 268 
region with at least 5 electrodes by averaging the single electrode decoding results for all 269 
electrodes in each anatomical region (Figure 7B-C ). We also pooled all electrodes per subject 270 
and movie to perform population level decoding, and then again averaged the decoding results 271 
post-hoc across subjects (Figure 7D ). 272 
 273 
Feature pre-processing - The data from each electrode (feature) was z-scored normalized 274 
based on the mean and standard deviation in the training data. In addition, an ANOVA was 275 
performed on each input feature using only the training data. The ANOVA selects electrodes 276 
that show a larger variance between “categories” than within a “category” as described next. In 277 
Figures 4B and 7B, the ANOVA analysis was used to select those electrodes that showed a 278 
larger variance between cuts and non-cuts compared to the variance within repetition of cuts. In 279 
Figure 5B , the ANOVA was used to select electrodes that showed a larger variance between 280 
different movie shots compared to the variance within the same movie shots.  In Figures 5C-D , 281 
the ANOVA was used to select electrodes that showed a larger variance between shots with an 282 
animal and shots without an animal compared to the variance within shots with an animal and 283 
within shots without an animal. This method has been shown empirically to improve the signal to 284 
noise ratio of decoding with human MEG and monkey LFP time series data (Meyers et al. 2008; 285 
Isik et al. 2014). 286 
 287 
Classifier - Decoding analyses were performed using a maximum correlation coefficient 288 
classifier. This classifier computes the correlation between each test data point and the mean of 289 
all training data points from each class. Each test point is assigned the label of the class of the 290 
training data with which it is maximally correlated (Figure S12A ).  291 
 292 
Cross-validation - For each decoding run, the data were divided into 10 cross-validation splits. 293 
Feature pre-processing (z-scoring and ANOVA) was performed on 9 out of 10 of the splits, and 294 
testing was performed on the 10th held out split.  295 
 296 
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The decoding at each time bin was repeated for 20 times, each with a different train/test data 297 
split. The average performance of the 20 decoding runs is displayed as “classification accuracy” 298 
as a function of time from cut onset in Figures 5D and 7D. In other cases, we summarized 299 
classification accuracy by reporting the average value from 50 to 400 ms post-cut onset 300 
(Figures 4B, 5B-C, 7B-C ).  301 
 302 
Decoding analyses, Experiment I 303 
(i) We compared movie segments with a movie cut versus random segments falling at least 400 304 
ms away from a movie cut (Figure 4B ).  305 
 306 
(ii) We evaluated whether we could detect visual transitions in the entire 12 second clip. The 307 
procedure is illustrated in Figure S12B . We used the average vector representing “cut” and “no-308 
cut” events as described in (i) and Figure S12A . For each 50 ms window from held-out 309 
repetitions, if the correlation with the “cut” vector was larger than the correlation with the “no-310 
cut”, we assigned a label of +1, otherwise we assigned a label of -1. We defined hits as those 311 
50 ms windows which had a label of +1 and which were within the 0 to 400 ms after a cut. 312 
Similarly, we defined false alarms as those 50 ms windows which had a label of +1 and which 313 
did not occur within 0 to 400 ms after a cut. We calculated the d prime measure across all 50 314 
ms time bins in the 12s clip: d prime = Z(hit rate) – Z(false alarm rate), where Z is the inverse 315 
cumulative distribution function (Figure S12B , Figure 4C ). We defined a predicted visual 316 
transition as a set of 1 or more continuous 50 ms windows classified as +1. For each predicted 317 
visual transition, we defined the time of the transition as the first 50 ms window in the set. We 318 
calculated how far away those predicted visual transitions were from the nearest prior cut in 319 
Figure 4D . 320 
 321 
(iii) We tested for visually selective signals by decoding the different camera shots from each 322 
other (Figure 5B ). We included the 13 camera shots in the first two movies (all the movie cuts 323 
that were presented at least 20 times across subjects, see Supplemental Table 1, Figure S6 , 324 
excluding the first and last shot).  325 
 326 
(iv) We compared shots with an animal versus shots without an animal (Figure 5A,C-D ). We 327 
performed this animal versus no animal decoding first across repetitions of the same movie clips 328 
(referred to as the “within shot” condition). Next, we decoded across shots in the same 12s clips 329 
(referred to as the “across shot” condition), and finally and across shots from different movie 330 
clips (referred to as the “across clip” condition).  331 
 332 
Decoding analyses, Experiment II 333 
(i) We compared movie segments with a movie cut versus random segments falling at least 400 334 
ms away from a movie cut, as in experiment I (Figure 7B ).  335 
(ii) We compared shots with a single face versus shots with no face (Figure 7C-D ). 336 
 337 
3. Results  338 
We investigated the neurophysiological responses elicited by dynamic movie stimuli by 339 
recording intracranial field potential (IFP) signals from 1324 electrodes implanted in 15 patients 340 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

with epilepsy (Tables S1-S3 ). We conducted two experiments: (i) Experiment I consisted of 341 
repeated presentation of three 12s commercial cartoon movie clips (Figure 1A,  954 electrodes); 342 
(ii) Experiment II consisted of a single presentation of a full-length commercial movie (Figure 343 
1B, 370 electrodes). 344 
 345 
3.1 - Neurophysiological responses to time-varying stimuli (Experiment I) 346 
In multiple Visual Neuroscience experiments, stimuli are flashed with well-defined onset and 347 
offset times and responses are analyzed by aligning activity to the appearance of a stimulus. 348 
Movies, as a coarse proxy to natural vision, lack those stimulus onsets. We conjectured, with 349 
others (McMahon et al. 2015), that the drastic changes between consecutive frames that occur 350 
during movie cuts provide a strong temporal demarcation. Figure 1  shows two examples of 351 
movie cuts (transition from frame 130 to 131 in Figure 1A  and from frame 15869 to 15870 in 352 
Figure 1B ) and the accompanying large changes in the visual field. We set out to investigate 353 
whether such movie cuts trigger the onset of physiological responses and can thus be used to 354 
demarcate visual events in movies.  355 
 356 
We started by aligning the IFP signals to movie cuts. Figure 2B  shows the responses of an 357 
example electrode located in the right inferior occipital gyrus (Figure 2A ) that demonstrated a 358 
vigorous modulation after one of the movie cuts. The changes in IFP were evident in almost 359 
every single repetition of the movie clip, showed a consistent latency of approximately 100 ms 360 
after the cut and were short-lived, with the voltage returning to baseline within approximately 361 
400 ms after the cut. This electrode showed an appreciable modulation elicited by most, but not 362 
all, the cuts in the 12s clips (Figure 2C ). To further quantify the modulation in IFP, we computed 363 
the degree of consistency in the responses evaluated by the Pearson correlation coefficient 364 
between the voltage time series for every possible pair of repetitions, using a window of 50 ms 365 
(Figure 2D ). The correlation coefficient largely hovered around zero, indicating that the IFP 366 
signals were inconsistent across repetitions, except for sharp spikes in correlation, which were 367 
typically evident right after a movie cut. For the example electrode in Figure 2  and movie clip 1, 368 
there was a significant increase in consistency after 9 of the 10 movie cuts.  369 
 370 
We defined an electrode as visually responsive if the range (max-min) of the broadband IFP 371 
signals from 50 to 400 ms after a movie cut was significantly different from the range from -400 372 
ms to -50 ms before a movie cut, using all cuts across the 3 movie clips (p < 0.01 permutation 373 
test, Section 2.5.4 , similar criteria have been used in other work, e.g., (Liu et al. 2009)). In the 374 
Supplementary Material, we report the results obtained by evaluating modulation in the alpha 375 
(8-15 Hz), low gamma (25-70 Hz) and high gamma (70-120 Hz) bands of the IFP signals.  376 
 377 
Using these criteria, out of the total of 954 electrodes in Experiment I, we obtained 51 378 
electrodes, which were mostly located in the occipital pole, and inferior and middle occipital gyri 379 
and, to a lesser degree, in the fusiform gyrus, medial lingual gyrus, and inferior temporal gyrus 380 
(Table S4 ). In order to avoid potential physiological changes elicited by eye movements, we 381 
kept the stimuli relatively small (~4 x 3 degrees) and we restricted the analyses to the initial 382 
neurophysiological response between 50 and 400 ms. Furthermore, we conducted a separate 383 
post-hoc experiment in non-epilepsy subjects to measure eye movements under the same 384 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

stimulus presentation conditions and we did not observe any consistent eye movements elicited 385 
by the movie cuts (Figure S1 ). Therefore, it seems more likely that the modulatory changes in 386 
the physiological signals were triggered by the large changes in the visual stimulus rather than 387 
by large saccadic eye movements. Reliable responses triggered by movie cuts were also 388 
evident in other frequency bands, an example in the high gamma band is shown in Figure S2 . 389 
 390 
3.2 – Responses that were reproducible between repe titions largely clustered shortly 391 
after movie cuts  392 
We next sought to evaluate the degree of trial-to-trial reproducibility in the physiological 393 
responses across the entire 12s clip and the whole set of electrodes in our sample. We plotted 394 
the statistical significance of the correlation coefficient over the entire 12s clips in each electrode 395 
on the Freesurfer fsaverage template brain (Figure S5A ). Multiple electrodes along the ventral 396 
stream showed reliable responses (Table S4, see Figures S5B-D  for the results in other 397 
frequency bands). As illustrated for the example electrode in Figure 2 , the increase in 398 
correlation between repetitions was largely present in the initial ~300 ms after cut onset. We 399 
followed the procedure in Figure 2D  to detect segments with statistically significant correlation 400 
between repetitions. The majority of consistent responses fell within ~300 ms of a movie cut 401 
(Figure 3A ). Throughout the entire population of electrodes, there was a small number of 402 
consistent responses occurring >500 ms away from movie cuts (Figure 3A ). For example, there 403 
was a small but statistically significant peak before the 3rd cut and another small non-significant 404 
peak before the 5th cut in Figure 2D . However, the degree of consistency, as quantified by the 405 
correlation coefficient between repetitions, showed a small drop with the time from movie cut 406 
onset (Figure 3B ). Moreover, the duration of those segments showing consistency between 407 
repetitions also showed a small decrease as a function of time from the previous cut (Figure 408 
3C). To further illustrate this point, we searched in the entire electrode sample for two example 409 
electrodes with the most reliable response segments that were more than 400 ms away from a 410 
movie cut (Figure S4 ). Even though the peaks in Figure S4  represent the strongest examples, 411 
they are still weaker and shorter than those illustrated in Figure 2D . Similar conclusions were 412 
drawn when considering other frequency bands (Figure S3 ). The correlation coefficients in 413 
Figure 3 were calculated using a window size of 50 ms; similar conclusions were reached when 414 
considering a window size of 400 ms (Figure S13 ). In sum, the abundance, strength and 415 
duration of consistent responses was largely linked to the occurrence of movie cuts.  416 
 417 
3.3 - Detecting the presence of movie cuts (Experim ent I) 418 
Under natural viewing conditions, in the absence of a blank screen followed by a flashed 419 
stimulus, the brain needs to determine when there is a visual change and what that change 420 
consists of. The when and what computations need to take place in single events, without 421 
averaging. To evaluate whether the neural signals are able to discriminate the timing of changes 422 
in the visual world, we built machine learning classifiers to discriminate between movie 423 
segments (350 ms duration) containing a movie cut versus movie segments without a movie cut 424 
(Figure 4B ). The control movie segments consisted of random time periods that were at least 425 
400 ms away from a cut. We built pseudopopulations of electrodes in different anatomically 426 
defined brain regions that contained at least 8 electrodes by pooling data across all patients 427 
(Figure 4A , Methods). In each region, we used the 8 most selective electrodes per region (as 428 
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determined by an ANOVA applied to the training data, see Methods ). We report the 429 
classification accuracy, i.e., the proportion of repetitions where the machine learning classifier 430 
correctly determined the presence or absence of a movie cut (chance = 0.5). Of the 25 regions 431 
with at least 8 electrodes (Table S4 ), 5 regions showed significantly above chance classification 432 
accuracy: inferior occipital gyrus, fusiform gyrus, middle occipital gyrus, inferior temporal gyrus 433 
and occipital pole. The average classification accuracy across these 5 regions was 0.62±0.04 434 
(mean±SD, across regions; see Supplemental Figure 7A-C for the corresponding classification 435 
results using IFP signals filtered in different frequency bands). 436 
 437 
Whereas the analysis in Figure 4B  compares 350 ms segments with and without cuts, the brain 438 
needs to be able to detect those events in single events and during a continuous stream. Next, 439 
we developed a classifier to investigate whether it is possible to detect visual transitions in 440 
single events during the entire 12s clips (Methods). The procedure is schematically described in 441 
Figure S12B . This classifier continuously determines whether there is a visual transition, thus 442 
making correct detections (hits) as well as false ones (false alarms). We evaluated the accuracy 443 
of this continuous prediction by measuring the classifier’s sensitivity using d prime. We found 444 
that classifiers using data from five of the seven regions described in Figure 4A  (excluding the 445 
middle temporal gyrus and the occipital pole) detected visual transitions with above chance 446 
precision with an average d’ of 0.48±0.18 (mean±SD across significant regions, Figure 4C ). We 447 
estimated the latency of these visual transition predicitons by measuring the time difference to 448 
the nearest prior cut; the mean latency was 690±610 ms (mean±SD, across all significant 449 
regions, Figure 4D ). The distribution of these time differences was significantly different from 450 
the one expected under the null hypothesis defined by 10,000 runs of randomly selecting the 451 
same number of time points per movie as predicted transitions (Figure 4D , black line, p<10-10, 452 
Kolmogorov-Smirnov test; see Supplemental Figure D-I for the corresponding classification 453 
results using IFP signals filtered in different frequency bands). In sum, it is possible to detect 454 
when the image changes within a continuous stream from the neural responses along the 455 
ventral visual stream.   456 
 457 
3.4 - Decoding visual events in movies (Experiment I) 458 
After detecting when there is a visual transition in the movie, we asked whether it is possible to 459 
selectively identify what visual event changes occur. To address this question, we assessed 460 
whether the neural signals could discriminate among the 350 ms windows (ranging from 50 to 461 
400 ms) after movie cuts. We selected 13 movie cuts that were presented at least 20 times 462 
(Figure S6 , Methods ). Of the 25 regions with at least 8 electrodes, we found 7 regions that 463 
showed above chance classification accuracy based on a p<0.01 permutation test (Figure 5B ). 464 
These 7 regions included the 5 regions described in Figure 4B  and also the medial lingual 465 
gyrus and middle temporal gyrus. The average classification accuracy across these 7 regions 466 
was 0.27±0.07 (chance = 1/13 = 0.08; see Supplemental Figure 8A-C for the corresponding 467 
classification results using IFP signals filtered in different frequency bands). 468 
 469 
The results in Figure 5B  show classification accuracy averaged from 50 to 400 ms with respect 470 
to movie cuts. To summarize and visualize dynamic changes in classification accuracy as a 471 
function of time, we pooled electrodes across all subjects and selected those electrodes that 472 
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showed larger variation across the 13 movie cuts than within repetitions of the same movie cut 473 
using only training data (described under feature selection in Methods ). We performed the 474 
same 13-way cut classification analysis described in Figure 5B . This analysis shows that 475 
classification accuracy started to increase at around 100 ms after a movie cut and peaked at 476 
around 400 ms (Figure S8D ), consistent with the example electrode dynamics shown in Figure 477 
2 and also with previous work decoding different objects with static images (Liu et al. 2009; 478 
Tang et al. 2014). Figure S8D  shows that classification accuracy was also high at t=0, and even 479 
before the onset of the movie cut. Unlike experiments where static images are presented in 480 
random order and are preceded by a blank screen, in the movie presentation, the visual 481 
stimulus preceding a movie cut was always the same across different repetitions. Furthermore, 482 
several movie cuts were preceded by another movie cut within a few hundred ms (e.g. cut 483 
numbers 2 and 3 in movie clip 1, Figure S6 ), contributing to the significant classification 484 
accuracy before and at t=0 in Figure S8D .  485 
 486 
3.5 - Invariant decoding of visual events in movies  (Experiment I) 487 
A central challenge in visual recognition involves combining selectivity to different shapes with 488 
invariance to the myriad transformations in those shapes (Booth and Rolls 1998; Riesenhuber 489 
and Poggio 1999; Serre et al. 2007; DiCarlo et al. 2012). After identifying when visual transitions 490 
occur and what changes during each event, we asked whether these visual shape-selective 491 
signals generalize across transformations in the stimuli. To test the degree of invariance in the 492 
visual shape-selective responses, we labeled the content of each shot with the presence or 493 
absence of a cartoon humanized animal. We selected four animal/no-animal shot pairs (from 494 
movies 1 and 2, Figure S6,  Methods ), and used the same methodology described above to 495 
determine in each event whether an animal was present or not, with varying amounts of 496 
generalization described next (Figure 5A ).  497 
 498 
First, the classifier was trained on a subset of the repetitions and tested on the remaining 499 
repetitions of the same shots (“within shot”, Figure 5C , blue bars), requiring generalization 500 
across different repetitions of identical stimuli (similar to Figure 5B , here using a subset of the 501 
shots for comparison with the next set of analyses and specifically distinguishing shots 502 
containing an animal versus shots not containing an animal, chance = 0.5). As expected from 503 
the previous analyses, in Figure 5C  we observed significant classification accuracy in 6 of the 7 504 
regions described in Figure 4A (the medial lingual gyrus did not reach statistical significance in 505 
this analysis). The mean within-shot classification accuracy in these 6 regions was 0.74±0.06 506 
(mean ± SD across regions).  507 
 508 
Next, we evaluated the degree of generalization across different shots containing an animal 509 
within the same movie (“across shots”, Figure 5C , red bars). To avoid conflating tolerance to 510 
different shots with correlated activity in time, each animal versus no animal pair was selected to 511 
be closer in time to each other than to the second animal versus no-animal pair (i.e., each shot 512 
containing an animal was closer in time to its no-animal foil shot than to the other animal 513 
containing shot, Figure S6 ). This analysis revealed significant classification accuracy in 4 of the 514 
7 regions described in Figure 4A:  inferior occipital gyrus, fusiform gyrus, inferior temporal gyrus 515 
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and occipital pole. The mean within-shot classification accuracy in these 4 regions was 516 
0.71±0.05.  517 
 518 
Finally, we considered the most extreme case of visual generalization by asking whether we 519 
could train a classifier to discriminate shots containing an animal or not in one movie and test it 520 
on a different movie (“across clip”, Figure 5C , green bars). Three brain regions, inferior occipital 521 
gyrus, fusiform gyrus and inferior temporal gyrus, yielded significant classification accuracy with 522 
an average performance of 0.68±0.07.  523 
 524 
To summarize and visualize the temporal dynamics in classification accuracy, we followed the 525 
procedure described in the previous section for Figure S8D-G  and combined electrodes across 526 
all subjects in Figure 5D . The dynamics revealed an increase in classification accuracy 527 
commencing around 100ms post cut onset and peaking around 400ms post cut onset. As noted 528 
in Figure S8D-G , the within-shot condition (blue curve) also revealed strong classification 529 
accuracy at and before cut onset in Figure 5D . Figure S9  presents corresponding results 530 
examining IFP signals filtered in different frequency bands. In sum, the results presented in the 531 
previous section and this section show that we can selectively extract information about what 532 
changes in the image in single events and with a considerable degree of invariance to the pixel-533 
level transformations.  534 
 535 
3.6 - Detecting the presence of movie cuts in singl e presentation of movies (Experiment 536 
II) 537 
The insights and analyses derived from Experiment I relied on multiple repeated presentations 538 
of the same identical movies. Under natural viewing conditions, the brain must rely strictly on 539 
unique presentations of single events. Figure 5C-D  showed that it was possible to decode the 540 
presence of absence of an animal by generalizing across different shots and even different 541 
movie clips. However, all the classifiers in Figure 5C-D  were still trained using multiple 542 
repetitions of identical stimuli. As a more stringent test of generalization across events, we 543 
conducted Experiment II where subjects passively viewed a single repetition of a full-length 544 
commercial movie (Methods ). In lieu of identical stimulus repetitions, we leverage the repetition 545 
of similar visual events across the duration of a movie.  546 
 547 
We assessed whether it was possible to detect when large visual changes occurred in the full-548 
length movies. As described in Figure 2 , neural signals showed strong changes in voltage 549 
shortly after movie cuts in the full-length movie. Figure 6  illustrates the responses of an 550 
example electrode located in the left occipital pole that showed consistent (but not identical) 551 
changes after almost every movie cut (see raster plot depicting every movie cut in Figure 6B ), 552 
despite the fact that the cuts vary enormously in content and were only shown once (see also 553 
Figure S10 ). The voltage deflections commenced approximately 100 ms after a movie cut 554 
(Figure 6C ). In total, we found 61 (out of 330 total) cut-responsive electrodes (Section 2.5.4), 555 
located primarily in the cuneus, medial lingual gyrus, fusiform gyrus, inferior occipital gyrus and 556 
occipital pole (Table S5 ).  557 
 558 
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Following the procedure used in Figure 4B , we evaluated whether we could distinguish a 559 
segment from 50 to 400 ms post cut onset from random time points in single events (Figure 560 
7B). Because of the smaller total number of electrodes in Experiment II, we considered regions 561 
with at least 5 electrodes (as opposed to the threshold of 8 electrodes used in Figures 4  and 5). 562 
Also, because subjects watched different full-length movies, we did not build pseudo-563 
populations combining electrodes in the same labeled region across subjects. Instead, we used 564 
single electrodes and report average classification accuracy for single electrodes in Figure 7B  565 
(whereas Figure 4B  is based on a pseduopopulation of 8 electrodes in each region). Of the 20 566 
regions with at least 5 electrodes, we observed a small but significant classification accuracy in 567 
4 regions: inferior occipital gyrus, cuneus, medial lingual gyrus and occipital pole (see Figure 568 
S11A-C for the corresponding analyses after filtering the IFP signals in different frequency 569 
bands).  570 
 571 
Not all the same regions were interrogated in the different subjects that participated in 572 
Experiment I and II (Tables S4  and S5 provide detailed information about electrode locations in 573 
the two experiments). All of the 7 regions described in Figure 4A  had enough coverage to be 574 
considered in Experiment II. Three of these regions - inferior occipital, medial lingual gyrus and 575 
the occipital pole – showed significant classification accuracy to detect the presence of movie 576 
cuts in both experiments, while the other four regions did not reach significant classification 577 
accuracy in Experiment II. In addition, the cuneus showed significant classification accuracy to 578 
detect the presence of movie cuts in Experiment II but not in Experiment I.  579 
 580 
3.7 - Invariant decoding of visual events in single  presentation of movies (Experiment II) 581 
Following the steps in Experiment I, we next asked whether we could decode what changed in 582 
the image at a given movie cut. We trained the classifier to distinguish those shots containing a 583 
face from shots that did not contain a face following the procedures in Figure 5 , with two 584 
important differences. First, given the extensive preponderance of frames including human 585 
faces in the full-length movies in Experiment II, we labeled each shot as containing a face or not 586 
(as opposed to the animal faces in Experiment I, Methods ). Second, as described above, we 587 
also considered single electrodes and report average classification accuracy in Figure 7C , as 588 
opposed to results based on pseudopopulations. Of the 5 regions described in Figure 7B , we 589 
could discriminate with small but significant classification accuracy shots containing a face from 590 
those with no face from single electrodes in the inferior occipital gyrus. Additionally, the fusiform 591 
gyrus also showed even smaller but still significant classification accuracy (see Figures S11D-F 592 
for the corresponding analyses considering IFP signals filtered in different frequency bands.  593 
 594 
To summarize the temporal dynamics in classification accuracy, we followed the procedure 595 
described in Figure S8D, 5D  for Experiment I and combined electrodes across all subjects in 596 
Figures 7D . Again, because subjects watched different full-length movies, we did not combine 597 
electrodes across subjects but instead built pseudo-populations using each subjects’ electrodes 598 
and averaged the four subjects’ classification accuracies post-hoc. There was an increase in the 599 
classification accuracy to detect the presence or absence of a face starting slightly before 200 600 
ms post cut onset and peaking around 300ms post cut onset (Figure 7D ; see Figures S11G-I 601 
for the corresponding analyses considering IFP signals filtered in different frequency bands). In 602 
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sum, the previous section and this section demonstrate that the results obtained in Experiment I 603 
extrapolate to the conditions in Experiment II, whereby we can discriminate when there are 604 
visual changes and what those visual changes consist of in single presentations of a full-length 605 
movie. 606 
 607 
4. Discussion  608 
Parsing a continuous stream of visual stimuli is a fundamental challenge for the visual system. 609 
Here we considered commercial movies as a coarse proxy for natural visual input and described 610 
a methodology to extract visual information from invasive physiological recordings from the 611 
human brain during a continuous movie. Intracranial field potentials recorded along the ventral 612 
visual stream showed strong modulation approximately 100 ms after movie cuts, defined as 613 
discontinuous changes from one frame to the next (Figure 2 ). Such vigorous physiological 614 
responses allowed us to detect when there are visual changes during the continuous stimulus 615 
(Figure 4B-D ). By aligning the responses to those changes, we identified what visual 616 
information was present in each shot (e.g., shots with or without an animal), generalizing across 617 
different events within the same movie or even across different movies (Figure 5 ). We further 618 
demonstrated that these findings extend to detecting the timing of visual changes and decoding 619 
events in a single presentation of a full-length movie (Figures 6-7 ).  620 
 621 
We separately considered broadband signals from 0.1 to 100 Hz and broadband, band-limited 622 
signals in the alpha (8-15 Hz), low gamma (25-70 Hz) and high gamma (70-120 Hz) bands. We 623 
observed fewer and weaker visual responses in the alpha band, consistent with previous 624 
studies (e.g. Bansal et al 2012). The qualitative and conceptual conclusions derived from 625 
examining the low and high gamma band were consistent with those based on the broadband 626 
signals. Yet, there were quantitative differences in terms of the numbers of responsive 627 
electrodes, classification performance and, in some cases, the specific areas that showed 628 
significant decoding accuracy. These differences are discussed in further detail in the 629 
Supplementary Material. These qualitative similarities and quantitative differences between 630 
broadband and gamma band responses were noted in several previous studies (e.g., (Vidal et 631 
al. 2010; Privman et al. 2011; Bansal et al. 2012; Miller et al. 2014)). 632 
 633 
Commercial movies such as the ones used here and in other studies clearly constitute artificial 634 
stimuli that are different from natural viewing conditions. Movies are commercial forms of art 635 
specifically and carefully designed to evoke strong emotional experiences, producing 636 
memorable audiovisual scenes in a compressed time frame beyond the occurrences of 637 
everyday life. Movie cuts are introduced in videos by the director to manipulate spatial 638 
coordinates, context, attention, and interactions (Dudai 2012; Smith et al. 2012). These cuts 639 
only constitute a first order approximation to the type of discontinuities that arise under natural 640 
viewing conditions as a result of sudden changes in moving objects, occlusion, lighting and 641 
internally dictated changes such as eye movements. Despite these caveats, movies provide a 642 
rich stimulus for probing neural responses in situations where the brain is continuously subject 643 
to incoming inputs, as opposed to a blank screen followed by the onset of a picture. Indeed, 644 
several previous studies have demonstrated that sharp transitions between frames in movies 645 
can trigger a strong neural response all along ventral visual cortex from early visual areas (Vinje 646 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

and Gallant 2000; Montemurro et al. 2008) to the highest visual areas (Privman et al. 2007; 647 
Honey et al. 2012; McMahon et al. 2015).  648 
 649 
Critically, the brain must be able to capture these dynamic transitions in single events without 650 
averaging responses over multiple repetitions. Even with the type of coarse signals and limited 651 
spatial sampling considered here, it is possible to detect visual changes in a movie within 652 
approximately 100 ms of those changes (Figures 2, 4, and 6). These latencies are close to 653 
those reported in monkey and human ventral visual cortex in response to static images 654 
(Richmond et al. 1990; Rolls and Tovee 1995; Keysers et al. 2001; Hung et al. 2005; Liu et al. 655 
2009). Thus, our intuitions about the initial dynamics of neural responses triggered by flashing 656 
static pictures seem to extrapolate to dynamic and continuous viewing conditions.  657 
 658 
The rapid field potential changes were elicited by most movie cuts and were consistent 659 
throughout tens of repetitions. Intriguingly, we observed few consistent physiological responses 660 
across repetitions outside of movie cuts (Figure 2D , Figure 3 ). In other words, we largely failed 661 
to note consistent responses from one repetition of the movie clip to another except within a few 662 
hundred milliseconds after a movie cut. There are several non-exclusive possibilities for this 663 
observation. First, our sampling of brain locations was far from exhaustive. The electrode 664 
locations were strictly dictated by clinical criteria. Although we interrogated a relatively large 665 
number of brain regions for this type of study (almost 1,000 different electrodes distributed over 666 
46 brain regions, Table S4 ), there could well be many other brain loci that show consistent 667 
responses to other aspects of the movies unrelated to the movie cuts. Second, we studied 668 
coarse field potential signals recorded from low-impedance electrodes that capture neural 669 
activity over vast numbers of neurons (Buzsáki et al. 2012). It is quite possible that there are 670 
strong neuronal responses to other aspects of the movies that are not captured by field potential 671 
signals. Third, it is conceivable that other aspects of cognition beyond visual processing are 672 
modulated or even governed by different mechanisms that do not lead to the type of sharp and 673 
consistent responses illustrated in Figure 2 . In particular, other aspects of cognition beyond 674 
visual processing during a movie may not have a well-defined temporal onset (e.g. when exactly 675 
emotions are triggered during a scene), or they may show rapid adaptation (e.g. the first viewing 676 
of a movie scene might trigger stronger emotions than the tenth viewing), both of which would 677 
reduce the reproducibility of these signals across multiple trials. In sum, while we argue here 678 
that we can rapidly decode visual transitions in single events during a movie, there remain 679 
important questions about how to study the neural basis of higher cognitive functions under 680 
natural conditions. 681 
 682 
In the absence of fixed image onset times or movie cuts, the brain must segment continuous 683 
information into discrete visual events. How are visually evoked signals aligned under natural 684 
viewing conditions? Several sources in the brain could in principle provide an internal alignment 685 
signal to the ventral visual stream, including a copy of a motor efferent from eye movements, or 686 
external object movement onset information conveyed by the dorsal stream. While this study 687 
does not explain the mechanistic origin for the physiological changes triggered by movie cuts, 688 
the results presented here show that it is possible to align and interpret signals directly from the 689 
field potentials recorded from electrodes in the ventral visual stream. During natural viewing 690 
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conditions, we speculate that signals along the ventral visual stream may be sufficient to 691 
interpret what changes when without the need for additional sources of information.  692 
 693 
The main regions along the ventral visual stream that contributed to decoding when and what 694 
information included the inferior occipital gyrus, the fusiform gyrus, the inferior temporal gyrus 695 
and the occipital pole (Figures 4 and 7). All of these regions have also revealed selective visual 696 
responses in previous invasive human neurophysiology studies (e.g. (Privman et al. 2007; Liu et 697 
al. 2009; Vidal et al. 2010)). These areas are also consistent with locations highlighted in non-698 
invasive human fMRI studies (e.g., (Grill-Spector and Malach 2004)) and with putative 699 
homologous regions in the macaque brain (e.g., (Logothetis and Sheinberg 1996; Tanaka 1996; 700 
Connor et al. 2007)). 701 
 702 
Once the onset of visual changes is detected, approximately the same ventral visual regions 703 
provide a rich representation that contains selective information about the nature of those 704 
changes (Figures 5 , 7C-D). Selective visual information arose within the first 200 ms of a movie 705 
cut, and was relatively robust to the many highly varied transformations that took place in these 706 
commercial movies. Specifically, in Experiment I, classifiers trained to detect the presence 707 
versus absence of a humanized animal, using electrodes in the inferior occipital gyrus, inferior 708 
temporal gyrus or fusiform gyrus, showed a significant degree of extrapolation to independent 709 
test data from a completely different movie clip (Figure 5C , green bars). In Experiment II, 710 
classifiers trained to discriminate the presence versus absence of human faces from the field 711 
potential responses from single electrodes in the inferior occipital gyrus or fusiform gyrus 712 
showed a weak but significant degree of extrapolation to independent test data during single 713 
repetitions of other parts of the movie (Figure 7C-D ). The results in Figure 5 should not be 714 
interpreted to imply that those electrodes were selective to “humanized animals” or that the 715 
corresponding analyses in Figure 7  imply selectivity for “human faces”. This study used 716 
commercial movies and no attempt was made to circumscribe the visual changes to the 717 
appearance of animals or faces. The appearance of animals and faces was correlated and 718 
accompanied by changes in motion, contrast and many other visual properties. It seems likely 719 
that the main drivers of the strong visually evoked transitions, such as the ones illustrated in 720 
Figure 2 , are the sharp contrast changes and motion energy changes triggered by movie cuts. 721 
Further studies directly comparing the responses to dynamic stimuli versus stimulus flashes will 722 
be needed to further dissect the specific features that dictate selectivity to movie events 723 
revealed here. The current results demonstrate that it is possible to distill reliable, selective and 724 
invariant information, even in single events during a continuous stream of frames. 725 
 726 
Moving from repeated presentations of identical, static stimuli with fixed onsets and offsets to 727 
movie stimuli constitutes an important step to bridge the gap between laboratory studies and 728 
understanding vision in the real world. Furthermore, movies present rich visual and social input. 729 
The initial methodological steps suggested here open the doors to interpreting neural responses 730 
to complex cognitive events during single presentations of movies.  731 
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Figures 
 

 
 
Figure 1 - Experimental paradigm and movie cuts  
A. Experiment I - Three 12s clips from commercial cartoon movies were presented multiple 
times without sound, at 30 frames per second, and subtending ~4x3 degrees of visual angle 
(see Supplemental table 1). The first frame, three middle frames (demonstrating a movie cut 
between frames 130-131), and the final frame from clip 1 are shown (Methods). Subjects 
passively viewed the 12s movie clips.  
B. Experiment II – A full-length movie was shown once through with sound, at 24 frames per 
second, and subtending ~18x12 degrees of visual angle. We considered data from patients 
watching one of three movies in this study (Methods). Example frames from one of the movies, 
Home Alone 2, including the first frame, three middle frames (demonstrating a movie cut 
between frames 15869-15870), and the final frame are shown. Subjects passively watched 
these full-length movies. 
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Figure 2 – Example 
electrode showing 
consistent physiological 
responses to movie cuts 
(Experiment I)   
A. Electrode location. The 
electrode was located in 
the right inferior occipital 
gyrus (Talairach 
coordinates = [35.9, -82.8, 
-14.5]).   
B. Raster plot showing 
the intracranial field 
potential (IFP) 
surrounding the cut 
transition shown in Figure 
1A (frame 130-131 in 
movie clip 1). Each row 
denotes a repetition of the 
movie (n=32 repetitions). 
The color indicates the 
IFP at each time point (bin 
size = 3.9 ms, see color 
scale on right). The movie 
cut triggered a large 
change in voltage in 
almost every repetition.  
C. Electrode’s broadband 
voltage time course over 
the entire 12s movie clip 
1. Mean activity is shown 
with a thick black line, and 
32 individual repetitions 
are shown with gray 
traces. Dashed vertical 
lines indicate movie cuts, 
and the cut shown in B is 
indicated with an asterisk. 

Several, but not all, of the cut transitions elicited large voltage changes that can be observed 
even in individual repetitions. The y-axis is cut at -250 and 250 µV but some individual traces 
extend beyond these limits. 
D. Average pairwise correlation (Pearson coefficient, r, mean±SEM) across the 32 choose 2 
(496) pairwise comparisons between repetitions calculated in 50 ms non-overlapping bins. 
Horizontal black lines at the bottom of the plot indicate time periods when the average pairwise 
correlation across repetitions was significantly above chance based on a p<0.01 permutation 
test (Methods). See Figure S2  for a similar example in the high gamma frequency band. 
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Figure 3. Properties of neural responses that 
were consistent across trials  
A. Distribution of the onset of segments with 
statistically significant correlation across repetitions 
in all electrodes (n=954), calculated with a sliding 
window of 50 ms duration, as a function of time from 
the previous cut. Bin size = 100 ms (Methods ). 
These segments of consistent correlation across 
repetitions begin mostly within the 300 ms following 
a cut.  
B. Average correlation coefficient between 
repetitions in each time bin for all the segments with 
statistically significant correlation between 
repetitions in A (mean±SEM).  
C. Average duration between the beginning of the 
first and last time points for all the consecutive 
segments with statistically significant correlation 
between repetitions in A (mean±SEM).  
See Figure S3  for corresponding analyses in 
different frequency bands and Figure S13  for the 
same analyses using different window sizes. 
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Figure 4 – Movie cuts and shots can be decoded from  ventral visual cortex regions  
A. Location of all electrodes in Experiment I projected onto a common reference brain 
(Freesurfer fsaverage brain) shown at lateral and ventral views. Each dot corresponds to one 
electrode (total = 994 electrodes, Supplemental Table 1). Seven anatomical regions (out of 25 
regions with at least eight electrodes) with significantly above chance decoding performance in 
any of the decoding tasks in B or C are highlighted.  
B. Classification accuracy from n=8 electrodes in each region, between movie segments with a 
cut versus segments without a cut in the seven regions highlighted in Fig. 4A (mean ± SD 
across 20 decoding runs, Methods). Chance = 0.5. The classification accuracy is reported as 
the average from 50-400 ms post cut onset. Asterisks indicate significant decoding based on a 
p<0.01 permutation test (Methods, Supplemental Figure 12A ). 
C. Sensitivity (d’) to detect visual transitions during the entire 12s clip time course for held out 
repetitions of movie clips 1 and 2 (mean ± SD across 20 decoding runs, Methods , 
Supplemental Figure 12B ). Number at the top of each bar plot indicates the number of 
predicted visual transitions per region (the actual number of all cuts in movie clips 1 and 2 was 
17). 
D. The bars show the latency difference between the time of the predicted visual transitions 
(first time point in visual transition predicted periods, see Figures S12B ) in C and the time of the 
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previous true cut for the five regions with significantly above chance d’ values in C. Bin size = 50 
ms. The line shows the average distribution obtained from randomly selecting the same number 
of times as predicted visual transitions. The distribution of selected transition times is 
significantly different from the random distribution (p<10-10, Kolmogorov-Smirnov test).  
See Figure S7  for corresponding analyses in different frequency bands.  
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Figure 5 – Visual information generalizes across mo vies in 12s clips  
A. We decoded shots with an animal versus shots without an animal, first from repetitions of the 
exact same shot pairs (“within shot”, blue), next with generalization across different shots in the 
same movie clip (“across shot”, red), and finally across movie clips (“across clips”, green). One 
example pair of frames (first frame in shot) depicting the different conditions is shown. Decoding 
was repeated for four pairs of clips (from two of the three 12s clips that represent the two unique 
movies, Fig. S4, Methods).  
B. Classification accuracy to label each of the 13 cuts from clips 1 and 2 (excluding the first and 
last cut from each movie, Figure S6 ) using n=8 electrodes in each of the seven regions 
highlighted in A (mean ± SD across 20 decoding runs, Methods). Chance = 1/13. The 
classification accuracy is reported as the average from 50-400 ms post cut onset. Asterisks 
indicate significant decoding based on a p<0.01 permutation test (Methods). 
See Figure S7  for corresponding analyses in different frequency bands. 
C. Classification accuracy from n=8 electrodes in each region for shots with versus without an 
animal (mean ± SD across 20 decoding runs, chance = 0.5) in the seven highlighted regions 
described in Fig. 4A . We considered 3 conditions corresponding to different levels of 
extrapolation: within shot (blue), across shots (red), and across movies (green). The 
classification accuracy is reported as the average from 50-400 ms post cut onset. Region labels 
are color coded following the conventions in Fig. 4A . Asterisks indicate significant decoding for 
each of the three decoding conditions based on p<0.01 permutation test (Methods).  
D. Visualization of dynamic classification accuracy for shots with an animal versus without an 
animal across time relative to cut onset from a pseudo population based on feature selection 
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from all electrodes across all subjects (mean ± SD across 20 decoding runs, Methods). Feature 
selection was applied at each time point to choose selective electrodes in the training data to be 
used in the classifier (Methods). Horizontal line indicates chance classification. Note that the 
‘within shot’ classification accuracy was significantly above chance even before the cut onset, 
because the visual stimulus pre-cut was identical in the training and test sets (see discussion in 
text). While the ‘Within shot’ classification accuracy was significantly above chance for the entire 
time course, the ‘Across shot’ and ‘Across clip’ classification accuracies were significantly above 
chance from 100-1000 ms and 200-1000 ms post-cut onset, respectively. See Figure S9  for 
corresponding analyses in different frequency bands.  
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Figure 6 – Example electrode 
showing a consistent 
physiological response to 
movie cuts in full-length 
movies   
A. Location of one example cut-
responsive electrode (Experiment 
II) in the left occipital pole 
(Talairach coordinates = [-2.2, -
92.4, -4.3]) 
B. Raster plot showing the 
intracranial field potential (IFP) 
surrounding all cut transitions in 
the full-length movie (Home Alone 
2). Each row denotes a different 
cut (n=1630 cuts). The color 
indicates the IFP at each time 
point (bin size = 0.5 ms, see color 
scale on right).  
C. Average IFP time course 
(mean ± SEM) over all movie 
cuts.  
See Figure S11 for a similar 
example in the high gamma 
frequency band.  
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Figure 7 - Movie cuts can be decoded from a single presentation of a full-length movie  
A. Location of all electrodes in Experiment II projected onto a common reference brain 
(Freesurfer fsaverage brain) shown at lateral and ventral views. Each dot corresponds to one 
electrode (total = 330 electrodes, Supplemental Table 1 ). The five anatomical regions (out of 
20 regions with at least five electrodes) with significantly above chance classification accuracy 
in any of the decoding tasks in Fig. 7  or Fig. 8  are highlighted.  
B. Average single electrode classification accuracy between movie segments with a cut versus 
those without a cut for the 5 regions highlighted in Fig. 7A (mean ± SEM across all electrodes in 
each region). Chance = 0.5 (horizontal dashed line). The classification accuracy is calculated as 
the average from 50-400 ms post cut onset. The number of electrodes averaged is: inferior 
occipital, n=7; cuneus, n=10; fusiform, n=26, medial lingual, n=11, occipital pole, n=13. 
Asterisks indicate regions with significantly above chance average classification accuracy based 
on a p<0.01 permutation test (Methods). 
C. Average single electrode classification accuracy between movie shots with a face versus 
those without a face for those regions highlighted in Fig. 7A (mean ± SEM across all electrodes 
in each region). Chance = 0.5, horizontal dashed line. The classification accuracy is calculated 
as the average from 50-400 ms post cut onset. The number of electrodes averaged is the same 
as in Fig. 7B . Asterisks indicate regions with significantly above chance average classification 
accuracy based on a p<0.01 permutation test. 
D. Visualization of dynamic classification accuracy for shots with a face versus those without a 
face versus time relative to cut onset using feature selection from all subjects and all electrodes 
(mean ± SEM across four subjects, Methods). Feature selection across all electrodes based on 
the training data only was applied at each time point to choose selective electrodes to be used 
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in the classifier (Methods). Since the subjects viewed different movies, decoding results were 
then averaged post-hoc. Horizontal line indicates chance classification. The decoding was 
significantly above chance from 250-850 ms post-cut onset based on a p< 0.01 permutation 
test.  
See Figure S11  for corresponding analyses in different frequency bands. 


