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ABSTRACT

The ability to perceive others’ social interactions, here defined as the directed contingent actions between two or more people, is a fundamental part of human
experience that develops early in infancy and is shared with other primates. However, the neural computations underlying this ability remain largely unknown. Is
social interaction recognition a rapid feedforward process or a slower post-perceptual inference? Here we used magnetoencephalography (MEG) decoding to address
this question. Subjects in the MEG viewed snapshots of visually matched real-world scenes containing a pair of people who were either engaged in a social interaction
or acting independently. The presence versus absence of a social interaction could be read out from subjects’ MEG data spontaneously, even while subjects performed
an orthogonal task. This readout generalized across different people and scenes, revealing abstract representations of social interactions in the human brain. These
representations, however, did not come online until quite late, at 300 ms after image onset, well after feedforward visual processes. In a second experiment, we found
that social interaction readout still occurred at this same late latency even when subjects performed an explicit task detecting social interactions. We further showed
that MEG responses distinguished between different types of social interactions (mutual gaze vs joint attention) even later, around 500 ms after image onset. Taken
together, these results suggest that the human brain spontaneously extracts information about others’ social interactions, but does so slowly, likely relying on iterative

top-down computations.

1. Introduction

As fundamentally social primates, humans need to know who is doing
what to whom, and why. Indeed, the ability to perceive and interpret
social interactions between other agents is shared with other primates
(Sliwa and Freiwald, 2017) and develops early in infancy (Hamlin et al.,
2007), with neurophysiological signatures distinguishing different social
interactions recently identified in infants (Cowell Jason and Decety,
2015a) and young children (Cowell Jason and Decety, 2015b). Further,
social interaction representations are apparently computed in a special-
ized region of the posterior superior temporal sulcus (Isik et al., 2017;
Walbrin et al., 2017). These findings underscore the importance of social
interaction perception, but leave unanswered the question of how this
information is extracted from visual input. In particular, is social inter-
action recognition a rapid feedforward process, akin to object recogni-
tion, or a slower post-perceptual inference?

Considerable evidence suggests that much of visual perception in
primates, including face, scene, and “core” object recognition, is
computed by rapid and largely feedforward pattern classification pro-
cesses. First, these tasks in primates are well approximated by purely
feedforward neural network models, not only in terms of accuracy but

also in terms of the representations extracted (Khaligh-Razavi and Krie-
geskorte, 2014; Radoslaw Martin Cichy, 2016; Yamins et al., 2014).
Second, visual recognition in primates is fast, occurring within 200 ms of
image onset, as expected of a largely feedforward process. These fast
latencies have been demonstrated for face (Bentin et al., 1996; Dobs
et al., 2018), scene (Cichy et al., 2016a; Greene and Hansen, 2018), and
object (Carlson et al., 2013a; Isik et al., 2014; Yamins et al., 2014)
recognition. In contrast, some visual information cannot be computed
from bottom-up visual information alone. Object recognition under
complex viewing conditions, such as occlusion takes longer (~300 ms),
and cannot be performed with purely feedforward models (Rajaei et al.,
2018; Tang et al., 2018, 2014). Generative models offer an attractive
solution to these challenging vision problems (Wu et al., 2016; Yuille and
Kersten, 2006). Rather than relying solely on bottom-up cues, these
systems build models of objects and the world around them, and use
these generated models as hypotheses to interpret incoming visual
information.

Behavioral studies have suggested that the perception of social in-
teractions shares some of the hallmarks of a classic visual pattern
recognition problem: face recognition. First, people are better able to
perceive social interactions when stimuli are presented upright rather
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than inverted, but the same is not true for perception of independent
actions (Papeo et al., 2017). Second, social interactions receive prefer-
ential access to visual awareness (Su et al., 2016) and facilitate visual
processing of groups of individuals (Vestner et al., 2019). Others have
tried to address this question with computational modeling. One study
showed that different types of social interactions can be distinguished
based on bottom-up visual cues (Blythe et al., 1999), but more recent
work has suggested that top down or generative models are required to
solve this problem (Ben-Yosef et al., 2017; Ullman et al., 2009). Impor-
tantly, all these modeling efforts focused on categorizing different types of
social interactions (e.g., a hug versus a handshake), and it remains an
open question whether feedforward computations are sufficient to simply
detect social interactions (i.e., identify whether or not two agents are
engaged in a social interaction).

Neurophysiologically, body-selective visual cortex responds more to
bodies facing towards versus away from each other (Abassi and Papeo,
2019). This region may serve as a precursor to the pSTS “social inter-
action region”, which is selectively engaged in social interaction detec-
tion and categorization, independent of the number and body position of
the agents (Isik et al., 2017; Walbrin et al., 2017). It remains unknown,
however, whether bottom-up information from relevant visual features,
such as body pose, are sufficient to detect social interactions.

Neural dynamics are a useful tool to understand such computational
questions. Understanding when different representations occur relative
to each other can indicate how computations unfold over time and
distinguish between different computational theories (e.g., fast feedfor-
ward processing versus slower recurrent computations, as described
above). Here we used MEG decoding to ask whether social interactions
can be detected via fast, feedforward processing. Using decoding
methods, we ask whether the detection and categorization of a social
interaction in a visual stimulus occurs on the rapid time scale of invariant
object recognition (about 150 ms), as predicted from a feedforward
pattern classification model, or more slowly, as expected if it requires a
top-down inference. The perception of social interactions is a highly
complex phenomenon that we operationalize in this study as follows. By
social interactions we mean the relational process of two or more agents
acting toward one another (for example looking at one another or
“mutual gaze”) or a shared point of interest (for example looking at a
common object or “joint attention”). We focused on these two gaze-based
interactions because they are two fundamental types of social in-
teractions that are easily depicted in images and among the earliest
identified by infants (Beier and Spelke, 2012; Tomasello and Farrar,
1986). We use minimal yet naturalistic stimuli to depict these two cases
of social interactions and contrast them to situations where the agents are
acting independently (with separate objects of attention or “independent
actions”) or where only one agent is directing their attention toward the
other (“watch”). Perceiving these interactions is also a complex process
that we break down here into two primary components: detection
(whether or not two agents are involved in a social interaction) and
categorization (which type of interaction the agents are involved in).

We find both the presence (detection) and type (categorization) of
social interaction could be decoded from subjects’” MEG data, but this
readout occurred quite late, at 300 ms and 500 ms for detection and
categorization, respectively. In a second experiment, we showed that this
readout did not occur earlier even when subjects performed an explicit
social interaction detection task.

2. Material and methods

The below methods were pre-registered on the Open Science
Framework platform: https://osf.io/3vnem/registrations. Any deviations
from our pre-registration are noted as exploratory analyses.

2.1. Social interaction dataset

We created an image dataset depicting pairs of people interacting
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with each other or independently in different ways. There were five
different conditions, shot across 12 scenes with 12 different actor pairs
(60 images total, see Fig. 1A-B for example images). The five conditions
differed in the way each pair of people were or were not interacting with
each other. The different conditions include:

i. Mutual gaze — pair of actors is looking at each other. Social
interaction.

ii. Joint attention — pair of actors looking at the same object. Social
interaction.

ii. Independent actions 1 — two actors are engaged in separate in-
dependent actions. No social interaction.

iv. Independent actions 2 — two actors are engaged in separate in-
dependent actions (different actions from above). No social
interaction.

v. Watch — one actor watches the other actor who is looking away.
One-way interaction.

These five conditions were included to encompass our operational
definition of a social interaction: two agents with actions directed to-
wards each other (mutual gaze) or a shared point of interest (joint
attention). We sought to distinguish these two relational actions from
cases where the actors acted independently (independent actions) or a
case where one agent is aware of the other and has “perceptual access”
(watch), but the relation between the two agents is not present.

The images were shot in a way to minimize changes between con-
ditions besides the objects of the actors’ actions (i.e., objects or other
actors). Actors were spaced at roughly equal distances in all conditions
and visual information like background and lighting were fixed across
conditions. We further ensured that different visual features could not
distinguish between scenes with versus without a social interaction using
a deep convolutional neural network model (see ‘CNN model’ below).

2.2. Subjects

35 naive subjects (19 for Experiment 1, and 16 different subjects for
Experiment 2) between 18 and 45 years old with normal or corrected to
normal vision participated in these experiments. Our experimental pro-
tocol was approved by the MIT Committee for the Use of Humans as
Experimental Subjects. Three subjects were excluded from Experiment 1
based on a pre-defined behavioral exclusion criteria (<80% accuracy on
behavioral task). Thus 16 subjects were included in each experiment.
This sample size was based on prior MEG image decoding studies.

2.3. Experimental procedure

2.3.1. Experiment 1

In a first experiment, we asked whether and when social interaction
information was spontaneously extracted by the brain. Subjects viewed
the 60 images conveying different visually matched social and non-social
scenes presented 30 times each in the MEG while they performed an
orthogonal task. Subjects were instructed to fixate centrally and judge if
the two people in each image were the same or different genders. The
order of the 60 images was randomized within each block. The images
were presented at 9 x 5 degrees of visual angle for 500 ms each with a
central fixation cross. Each image was immediately followed by task
instructions, and subjects responded yes or no. After each question a 200
ms fixation cross would appear before the next image. Task responses
were self-paced, and the button order flipped halfway through the
experiment to avoid motor confounds.

2.3.2. Experiment 2

In a second experiment, we sought to understand the role of task
demands on the speed of social interaction information in the brain. The
procedure was exactly the same as Experiment 1 except for three modi-
fications. First, subjects viewed only 48 of the 60 images, excluding
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Fig. 1. Stimulus set and behavioral responses. Subjects in the MEG viewed images depicting two actors engaged in (A, C) a social interaction, (B, D) independent
actions, or (E) one actor watching the second. Enlarged versions of one social interaction image (joint attention) and one independent action are shown in (A and B,
respectively). The social interaction images consisted of either a joint attention event (C, left column) or a mutual gaze event (C, right column). After the experiment,
subjects rated (F) the extent to which each image depicted a social interaction (from 1 = “definitely not” to 5 = “definitely™), and (G) the visual interest of each image
(from 1 = “very un-interesting” to 5 = “very interesting”). Error bars show standard deviation across subjects.

“watch” condition. Second, to mitigate the effect of eye movements, 2.4. Eye tracking

images were presented smaller (5 x 2.8 degrees of visual angle) and for a

shorter duration of 200 ms. While this does not remove the possibility of We tracked the subjects’ left and right eye positions using an Eyelink
differential looking patterns between the conditions, it drastically re- 1000 eye tracker with a 9-point calibration. We were not able to achieve
duces the need and time for subjects to make a saccade during each trial. an accurate calibration for 4 subjects in Experiment 1 and 3 subjects in
Third, subjects performed an explicit social interaction task (“Are these Experiment 2, so these subjects’ eye position data were excluded from the
two people engaged in a social interaction?*). eye tracking analysis. To test whether there is stimulus-selective infor-

mation was present in our eye tracking data, we performed the below

w
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decoding procedures using the X,Y output of each eye as classifier fea-
tures (see Decoding Methods for more details).

2.5. MEG acquisition and pre-processing

The MEG data were collected using an Elekta Neuromag Triux scan-
ner with 306 sensors, 102 magnetometers and 204 planar gradiometers,
with an online bandpass filter between 0.01 and 330 Hz. Subjects head
position was continuously monitored throughout the experiment using
five head position index (HPI) coils. First the signals were filtered using
temporal Signal Space Separation and motion corrected (based on the
position of the HPI coils) with Elekta Neuromag software. Next, Signal
Space Projection (Tesche et al., 1995) was applied to correct for move-
ment and sensor contamination. The MEG data were divided into epochs
from —200 to 1000 ms, relative to video onset, with the mean baseline
activity removed from each epoch. The signals were band-pass filtered
from 0.1 to 100 Hz to remove external and irrelevant biological noise
(Acunzo et al., 2012; Rousselet, 2012). The above preprocessing steps
were all implemented using the Brainstorm software (Tadel et al., 2011).

2.6. MEG decoding

We analyzed the MEG data using the neural decoding toolbox for
Matlab (Meyers, 2013). We averaged the data in each sensor into 10 ms
non-overlapping bins, and trained and tested a new linear correlation
coefficient classifier at each time point. We evaluated classification
performance on independent, held-out test data using 5-fold cross vali-
dation (CV) splits (training on 80% of the data and testing on the held out
20%) (Kriegeskorte et al., 2009). We performed feature selection using
an ANOVA on only the training data (to avoid double dipping/circu-
larity) and selected the 25 sensors whose activity most significantly
co-varied with the training labels. These selected sensors were fixed for
testing. We repeated the entire decoding procedure at each time point 20
times and report the mean accuracy for each condition. See (Isik et al.,
2018, 2014) for a more detailed description of the decoding methods and
for more details on the decoding parameter selection.

The variables we decoded were:

1. 60-way image identity. Each image was repeated 30 times, and we
divide the data into five cross validation splits with 6 trials per CV
split. To increase signal to noise, we averaged the data from all 6 trials
together.

2. Social interaction (mutual gaze and joint attention) vs. independent
action images (2 non-interacting conditions per scenario).

3. Joint attention vs. mutual gaze.

. Social interaction (mutual gaze) vs. watch.

5. Non-interacting images vs. watch.

N

In two additional exploratory analyses, we also decoded:

6. Mutual gaze images vs. non-interacting images.
7. Joint attention images vs. non-interacting images.

For tests 2-7, we ran the decoding in a manner that generalized across
scenario. In particular, we trained our classifier on 10 scenarios and
tested on the remaining two, held-out scenarios. For the generalization
decoding, we averaged 30 trials together (note that in our pre-
registration we stated we would average 24 trials together. This was an
error as 24 is not divisible by the number of trials included in conditions
3-5 so would require us to exclude data from the decoding).

2.7. Statistical inference
We assessed decoding significance using non-parametric statistical

tests that do not make assumptions about the underlying distribution of
the data and accounts for its underlying noise structure (Pantazis et al.,
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2005). Specifically, we performed a sign permutation test that centers
each subjects” MEG data around chance and randomly multiplies it by +1
or —1. We repeated this procedure 1000 times to generate a null distri-
bution. To correct for multiple comparisons, we used cluster correction in
time with a cluster defining threshold of p < 0.05 and a corrected sig-
nificance level of p < 0.05 (Cichy et al., 2016b; Mohsenzadeh et al.,
2018).

2.8. CNN model

We ran our stimuli through a pre-trained feedforward deep neural
network: VGG-16 trained on Imagenet (Simonyan and Zisserman, 2014).
We asked if the output of each of the models’ five pooling layers could
distinguish between images with vs. without a social interaction. First, to
reduce the dimensionality of each layers’ output we performed PCA and
selected the top 50 components from each layer (note our pilot data
showed very similar results with 40-59 components). Within each layer,
we then took the response to each image and, as with our MEG data,
trained a linear classifier to distinguish between scenes with vs. without a
social interaction on data from 10 of 12 scenes. We tested the linear
classifier on data from the two held-out scenes. We repeated this pro-
cedure 20 times, holding out two random scenes each time.

2.9. Representational similarity analysis

We compared our MEG data to our behavioral data in Experiment 2
using representational similarity analysis. Extracting a simple MEG
measure to correlate with behavioral data is not straightforward, and
thus we used pairwise relationships. This representational similarity
analysis (RSA) framework is a popular approach that has become stan-
dard for comparing neuroimaging and behavioral data that are in
fundamentally different spaces (Kriegeskorte et al., 2008). To produce
the MEG dissimilarity matrix, we followed a similar procedure to (Cichy
et al., 2014). We first performed PCA on the MEG responses to the 60
images in our data to reduce the dimensionality of the data the number of
components that explains 99.99% of original variance in data. We next
calculated the dissimilarity between each pair of images based on their
pairwise classification accuracy computed over those PCs. We repeated
this at each time point to get a new dissimilarity matrix.

To produce the behavioral dissimilarity matrix, we used a behavioral
metric that took into account both the subjects’ reaction time and
response. Simply relying on their response would reduce behavior to a
binary variable, giving us little dynamic range to detect correlations with
the MEG data. Using just reaction time would not separate a very fast
response for social interactions from a very fast response for independent
actions (which should be represented as maximally different). We thus
calculated a metric that scaled subjects’ responses by their reaction time:
Response*(1-RT/max(RT)), where RT is reaction time, and the response
is +1 for social interactions and —1 for independent actions. This scale
places a very fast social interaction response and a very fast independent
action response on opposite ends of its scale (responses ranged from +1
for the fastest social interaction responses to —1 for the fastest non-social
interaction responses). Slower responses are represented between these
two extremes as they are likely more behaviorally ambiguous (i.e., a very
slow response for social interaction is considered to be a weaker
behavioral response, and thus represented lower on our scale, than a very
fast response for social interaction). For each subject, we calculated the
average pairwise difference between each image pair to construct our
behavioral dissimilarity matrix.

3. Results
3.1. Experiment 1

3.1.1. Late, spontaneous readout of social interactions
To identify MEG signals that contain information about the presence
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Fig. 2. Image identity and social interaction decoding from MEG signals in
Experiment 1. (A) Time series of 60-way image identity decoding, with sig-
nificant onset at 60 ms. (B) Time series of social interaction vs. independent
images decoding, with significant onset at 320 ms. (n = 16 subjects; error bars
indicate 95% CI; vertical line indicates stimulus onset; black lines below time
series indicate significant time points; two-sided permutation test; p < 0.05
cluster defining threshold; p < 0.05 cluster threshold).

of social interactions, sixteen naive subjects viewed visually matched
images of different actor pairs in one of five different social or non-social
conditions shot in one of 12 different scenes (60 total images, Fig. 1A-C).
The five conditions were: 1) joint attention (two actors looking at the
same object, a classic form of social interaction), 2) mutual gaze (two
actors looking at each other, a different form of social interaction), 3)
independent action 1 (two actors engaged in separate independent ac-
tions, i.e., no social interaction), 4) independent action 2 (a different
instance of the two engaged in separate independent actions, no social
interaction), 5) watch (one actor watching the other who is looking
away, a one-way interaction or “perceptual access”). We defined social
interactions broadly to include either joint attention or mutual gaze. The
different conditions were well matched in terms of visual information,
and a standard deep neural network model could not distinguish between
scenes with versus without a social interaction in a manner that gener-
alized across scenes (Fig. S1). In a post-MEG behavioral experiment,
subjects rated the joint attention and mutual gaze images as significantly
more social than the independent action images (Fig. 1D, p = 1.9 x
10716, two-sided t-test) and also slightly more interesting (Fig. 1E, p =
0.003). Mutual gaze images were rated as slightly more social than joint
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attention images (p = 0.017), but there was no difference in their interest
rating (p = 0.41).

During MEG recording, each subject viewed each of the 60 images 30
times, randomized within block, while performing an orthogonal task. In
particular, subjects were asked if the two actors were of the same or
different gender. This task was balanced across actor pairs and scenes and
the presence versus absence of social interactions. First, to replicate prior
visual decoding studies and to ensure data quality, we asked whether we
could decode the 60 individual images based on subjects’ MEG signals.
These images included different scenes and actors, and hence differ in
many visual properties. We trained a linear classifier on the MEG
response at each 10 ms time bin on 80% of the trials, and tested it on the
remaining 20%. We found that we could significantly decode which
image subjects viewed beginning at 60 ms after image onset (Fig. 2A).
This time course of image decoding replicates several prior MEG
decoding studies (Carlson et al., 2013b; Cichy et al., 2014; Isik et al.,
2014), and presumably reflects primarily early visual processing. We
next trained and tested a classifier at each training timepoint and each
testing timepoint to generate a matrix of decoding accuracies across all
train and test time points (King and Dehaene, 2014; Fig. S2A). Decoding
accuracy was highest on the diagonal, when the classifier was trained and
tested at the same time point, and was only significant during a narrow
time window around the diagonal. This finding suggests that the neural
signals are highly dynamic, in line with previously reported results of
visual decoding (Cichy et al., 2014; Isik et al., 2014; Zhang et al., 2011).

We next asked the central question of this experiment: when do MEG
signals encode information about whether a scene contains a social
interaction (joint attention and mutual gaze conditions vs. independent
action conditions)? To obtain abstract representations of social in-
teractions, invariant to visual scene and actor information, we trained
our classifier on data from subjects viewing 10 of the 12 scenarios and
tested on the two held-out scenarios. This is a strong test of generaliza-
tion, as the images within each scenario are much more visually similar
to each other than they are to the other images in the dataset. We found
that we could indeed read out the presence versus absence of a social
interaction invariant to scene (Fig. 2B). This readout occurred relatively
late however, beginning at 310 ms after stimulus onset. Applying the
same temporal generalization approach as before, we found again a
primarily diagonal decoding pattern, indicating transient social interac-
tion representations (Figure S2B). These results suggest that humans
spontaneously form abstract representations of social interactions, but
this occurs later than the time scale of primarily feedforward processes as
in the case of invariant object recognition.

3.1.2. Social interaction decoding cannot be explained by visual interest or
eye movements

We next asked if other experimental factors could account for this
social interaction decoding. First, subjects rated the social interaction
images as slightly more visually interesting than the non-interacting
images, but this was not uniformly true across image pairs. In an
exploratory analysis (not included in our pre-registration), we took the
half of the image pairs with the smallest difference in interest ratings
between the social and non-social images. We found that although there
was no longer a significant difference in subjects behavioral interest
ratings (mean rating 2.9+0.44 and 2.8+0.35, p = 0.29), we could still
decode scenes with vs. without a social interaction (Figure S3). Overall
the timecourse of decoding looked very similar to that for all images
(though the onset of significant decoding did not occur until 400 ms,
likely due to lower power). Thus, differences in generic attention or in-
terest are unlikely to account for our ability to decode the presence of
social interactions.

We next asked if subjects’ eye movements varied systematically
across interacting and non-interacting images. To do this, we followed
the same decoding procedure as with the MEG data, but instead used
subjects x,y eye-position as input to our classifier. We found that we
could indeed decode the presence of social interactions based on
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subjects’ eye position (Figure S4A). To address this alternative account of
our findings, in a second experiment (see below) we presented the images
at a smaller visual angle and for a shorter duration. While we were still
able to decode scenes with vs. without a social interaction based on
subjects’ MEG data, we could no longer do so based on eye position
(Figure S4B).

3.1.3. Distinct representation of two-way social interactions

We next asked what information is driving our ability to decode social
interactions. Is it sufficient for one agent to be aware of the other
(“perceptual access™), or is an actual two-way social interaction neces-
sary? To answer this question, we asked if we could decode one-way
“watch” images (in which one agent sees the other but not vice versa)
from two-way “mutual gaze” images. We found that we could decode
watch versus mutual gaze at similar latency to social interaction read out
(Fig. 3a, onset 330 ms), although this result was statistically less robust
than decoding of the presence of a social interaction (only reaching
significance for two brief time periods). Note that this decoding is based
on half as much data as the social interaction detection analysis above, so
the read out is necessarily noisier. Interestingly, we could not decode
watch images from independent action images (Fig. 3b). These findings
suggest that it is the presence versus absence of a two-way social inter-
action that is a distinct and spontaneously represented property of the
image, not the mere presence of one-way perceptual access from one
agent to the other.

3.1.4. Late readout of type of third-party social interaction

Finally, beyond simply detecting the presence of a social interaction,
we asked whether the MEG signal contained information about the
different types of social interactions in our dataset: joint attention vs.
mutual gaze. Mutual gaze is perhaps the most perceptually obvious form
of social interaction between two agents. But joint attention is also a
fundamental form of social interaction that arises early in infancy (Scaife
and Bruner, 1975) and may be critical in language learning (Tomasello
and Farrar, 1986). Do perceivers spontaneously distinguish between
these two forms of social interaction, and if so, when? We found that we
could distinguish joint attention vs. mutual gaze in a manner that
generalized across scenes, but only quite late, at 600 ms after image onset
(Fig. 3c). This analysis makes use of only half the data as the analysis of
social interaction detection and thus could fail to detect earlier
discriminative information (but see Experiment 2/Fig. 6 for a replication
of these results).

In sum, the results of Experiment 1 suggest that both the presence and
type of social interactions are spontaneously represented in the brain, but
this information comes online very late, well beyond the timescale of
primarily feedforward processes.

3.2. Experiment 2

3.2.1. Social interaction perception is slow even during an explicit task

In a second experiment we asked if there were any conditions under
which social interaction information could be extracted more quickly. In
particular, can these neural computations occur faster if the subject is
explicitly asked to behaviorally extract that information? This would be
consistent with prior studies showing rapid visual readout that also used
an explicit task (Thorpe et al., 1996). To test this hypothesis, we ran a
second experiment with 16 additional naive subjects who saw identical
images in the MEG, but now instead of performing the same versus
different gender task they performed an explicit social interaction task
(i.e., does this image contain a social interaction?). We removed the
“Watch” stimuli from this experiment because they are ambiguous in
terms of whether they should or should not count as a social interaction,
based on subject ratings in Experiment 1 (Fig. 1D). Further, since the
latency for differentiating between social interactions and watch was the
same as social interactions and independent actions (the main question of
interest), we decided to leave this condition out to shorten experimental
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in Fig. 2.
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time. The button order was flipped halfway through the study so that
explicit motor responses could not account for our decoding results (see
Methods). Subjects’ mean reaction time on the social interaction task was
1.0+0.25 s (mean+SD across subjects). As expected, we found no dif-
ference in the onset latency of image identity decoding (Fig. 4A).

Importantly, we found that even when subjects performed an explicit
social interaction detection task, information about the presence vs.
absence of a social interaction could again only be discriminated in MEG
response at relatively late latencies after stimulus onset (290 ms, Fig. 4B).
Could earlier social interaction signals exist that we did not have suffi-
cient power to see in either experiment? To answer this question, in an
exploratory analysis, we combined the data from Experiments 1 and 2
and re-ran our social interaction decoding analysis. Even with 32 sub-
jects, the onset latency of social interaction detection did not change
(Fig. 4C).

Next, we again asked if and when we could decode the type of social
interaction (mutual gaze vs. joint attention) in Experiment 2, as we could
in Experiment 1. While the latency moved slightly earlier, it was still
quite late, with an onset of 530 ms after stimulus onset (Fig. 5A). In
another exploratory analysis, we combined data across Experiments 1
and 2 and found that in all 32 subjects onset latency was 490 ms
(Fig. 5B).The results of Experiment 2 serve as an internal replication, and
confirm that even in the presence of task demands, social interaction
perception is computed well beyond the timescale of visual pattern
recognition.

Given the fact that mutual gaze images were rated as significantly
more social than joint attention images (Fig. 1D), in an exploratory
analysis we asked if there was any difference in each of their decoding
timelines versus non-interacting images. We found that the two time
courses looked very similar to each other and to our initial analysis where
the two conditions were collapsed. In addition, the onset latency for both
types of decoding was the same (320 ms) suggesting that social inter-
action detection occurs at this latency, no matter the type of social
interaction depicted.

3.2.2. MEG-behavioral correlation

As with all decoding studies, it is important to investigate whether the
neural information we extract is associated with perceptual judgements,
or whether it is merely epiphenomenal (Grootswagers et al., 2018; Wil-
liams et al., 2007). One way to address this concern is to test whether
readout performance is tied to subjects’ behavioral judgments and re-
action times. Because we had these measures in our second experiment,
we correlated each subject’s MEG and behavioral data using represen-
tational similarity analysis (RSA). Specifically, we computed the
time-resolved dissimilarity matrix for our MEG data (48 x 48 pairwise
image decoding accuracy) and a behavioral dissimilarity matrix (48 x 48
behavioral dissimilarity matrix), and correlated these measures within
subject. We found that there was indeed a significant correlation between
subjects’ behavioral responses and MEG data beginning 340 ms after
stimulus onset (Fig. 6). These results suggest that the MEG signals we
detected are behaviorally relevant to social interaction perception.

4. Discussion

Here we identified neural signals that contain information about the
presence and type of third-party social interactions in a visual scene.
These neural representations generalized across low-level visual features,
and arose spontaneously, even when participants performed an orthog-
onal task. Crucially though, they arose relatively late compared to pre-
viously reported latencies for other types of visual pattern classification:
300 ms after stimulus onset for detection and 600 ms for categorization.
These late latencies were found even when subjects performed an explicit
social interaction detection task. Importantly, this neural readout was
correlated with behavior, as measured through RSA. It is of course
difficult to rule out earlier social interaction signals that we could not
detect with MEG or with the size of our current sample, and there is no

Neurolmage 215 (2020) 116844

A) 0.25

Image ldentity

0.2} b

o
o
w
T
L

Classification Accuracy
e
T
.

-200 0 200 400 600 800 1000
Time from stimulus onset (ms)

B) Social interaction
07 , : :

o
o [
o a
T T
| .

Classification Accuracy
o
(9]
(4]
.

05

<

045 - . . . .
-200 0 200 400 600 800 1000

Time from stimulus onset (ms)

Social interaction - Exp 1 and 2 combined

C) o7

065 b

o
)
T
|

Classification Accuracy
=3
[9)]
[}
.

o LM,

v

-200 0 200 400 600 800 1000

Time from stimulus onset (ms)

Fig. 4. Image identity and social interaction decoding from MEG signals in
Experiment 2: Time series of (A) 48-way image identity (n=16, onset = 70 ms),
(B) social interaction vs. independent images generalizaing across scenes (n=16,
onset = 300 ms), (C) combined Exp 1 and 2 (n=32, onset = 290 ms). Error bars
and statistical tests are the same as in Fig. 2.

straightforward way to link multivariate decoding accuracies with stan-
dard effect size measures (Hebart and Baker, 2018). However,
converging evidence from our two experiments suggest that the
perception of social interactions in naturalistic real-world images is not
based on purely feed-forward processing, but instead relies on slower,
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presumably recurrent computations.

The latencies of social interaction detection and categorization (300
and 600 ms, respectively) are substantially later than those previously
reported for different types of pattern recognition problems, such as
invariant object recognition (Carlson et al., 2013a; Isik et al., 2014;
Yamins et al., 2014). Prior work with ERPs (Thorpe et al., 1996) and
physiology (Yamins et al., 2014) indicates that object recognition is quite
fast, occurring between 100 and 200 ms after stimulus onset, even when
the objects appear in complex backgrounds, like the natural images used
in our study. Natural scene information has been shown to arise on a
similarly fast time scale to object recognition (Cichy et al., 2016a; Greene
and Hansen, 2018). While many psychological studies of social interac-
tion detection have used minimalist displays (Papeo et al., 2017; Su et al.,
2016; Vestner et al., 2019), it can be difficult to unconfound the presence
of a social interaction from low-level visual properties in these stimuli. In
a related study, we found decoding of facing (interacting) versus
non-facing (independent) dyads occurred relatively quickly, however, we
found the same effect when these stimuli were inverted. Further, we
found that low-level image properties (pixels and early layers of a DNN)
could distinguish between facing and non-facing dyads, even in a manner
that generalized across agents and images (Isik et al., in prep).
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It is worth noting that while the present study used static stimuli to
aid in time locking, real-world social interactions are highly dynamic.
Since much social information is conveyed via dynamic information, it is
possible the use of static stimuli affected our onset latency. On the other
hand, information conveyed in successive frames of a video would
necessarily take longer to transmit and thus it seems unlikely that this
would speed up the onset latencies identified above. Further, Experiment
2 showed that subjects were extremely good at detecting social in-
teractions behaviorally even from brief presentations of static stimuli.
The role of dynamics however remains an important open area to
consider in future studies of social interaction perception.

In contrast to object and scene perception, there has been relatively
little M/EEG decoding work on aspects of social perception. The N170
response (Bentin et al., 1996) is a strongly face-selective univariate
response arising around 170 ms after image onset. However, recent
decoding studies have shown that many aspects of face information are
represented earlier than 170 ms. For example, age, gender and identity
are all decodable around 100 ms (Dobs et al., 2018). Even emotion
properties like expression (100 ms (Dima et al., 2018)) and valence and
arousal (150 ms (Grootswagers et al., 2017)) have been shown to come
online quickly. Beyond face properties, the emotional valence and
self-relevance of communicative gestures can be decoded within 100 ms
(Redcay and Carlson, 2015), and individual agents’ actions as early as
200 ms (Isik et al., 2018). Interestingly, like object and scene perception,
these social dimensions all fall within the rough timescale of feedforward
pattern recognition. The present study suggests that the detection of
third-party social interactions occurs substantially later, and thus may be
based on fundamentally different computations from these other visual
and social recognition processes. A critical difference may be that, unlike
face, emotion, action, and gesture recognition of individuals, social
interaction recognition involves taking into account relational informa-
tion between multiple agents.

Prior work has used ERPs to understand the dynamics of dis-
tinguishing different types of social interactions — intentional vs. unin-
tentional harm in adults (Decety and Cacioppo, 2012; Hesse et al., 2016)
and harm vs. help in infants (Jason M Cowell and Decety, 2015a, b) and
children (Jason M Cowell and Decety, 2015a, b). These categorizations
arise quite early, as early as 60 ms in adults and 100 ms in children, but
also appear to have later components that are more behaviorally relevant
in children, and line up with the timing of social interaction detection
and categorization found in this study (Jason M Cowell and Decety,
2015a, b). In this study we do not see any early signals related to the
different social interactions we tested. One possible explanation of this
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difference is that our stimuli, unlike those previously used, are largely
neutral in valence. It is possible that highly valenced stimuli are routed
faster to relevant brain regions (although it should be noted that the
above intentionality signals cannot be explained by valence). A
comprehensive comparison of social interactions depicting difference
valence and intentionality will be necessary to more thoroughly under-
stand the neural dynamics of social interaction perception.

Typically, visual perception problems, such as object recognition, are
broken down into two main components: detection and categorization
(de la Rosa et al., 2011; Grill-Spector and Kanwisher, 2005; Marr and
Nishihara, 1978), and we examined both those components here. In the
rich space of social perception however, there are many other aspects to
perception and understanding. Even social interaction categorization
includes many more complex types of interactions and dimensions (such
as valence, mentioned above) that we did not address here. Indeed, this
study takes just a first step toward understanding the time course and
computations underlying multi-agent social interaction perception. The
simplified stimuli and paradigm represent only a small part of real-world
social interaction perception, and many open questions remain. Beyond
detecting simple, dyadic social interactions and distinguishing between
different gaze events, what other social interaction information is spon-
taneously extracted by the brain? How do our brains code complex
real-world complex social events such as a party or sporting event? And
how fine-grained are the automatically-extracted representations of so-
cial interactions (positive vs. negative, different action categories, etc.)?
And perhaps most obviously, where in the brain do these social inter-
action representations originate? Our prior fMRI results indicate that a
region in the right posterior superior temporal sulcus is selectively
engaged in the perception of social interactions (Isik et al., 2017). If this
region does indeed underlie the decoding information we report here
with MEG, does it receive input from purely from visual regions, or from
higher level regions that code for information about individual social
agents (Grossman et al., 2000; Puce et al., 1998; Saxe and Kanwisher,
2003) or the physical world around them (Fischer et al., 2016)? While
future work combining fMRI and MEG will be needed to answer these
questions, this work provides important initial constraints on the neural
computations underlying multi-agent social interactions.
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