Available online at www.sciencedirect.com

ScienceDirect

JOURNAL OF
PROCESS
CONTROL

ELSEVIER Journal of Process Control 17 (2007) 229-240

www.elsevier.com/locate/jprocont

Distributional uncertainty analysis using power series
and polynomial chaos expansions

Z K. Nagy ** R.D. Braatz °

& Loughborough University, Department of Chemical Engineering, Loughborough, Leics LEIl 3TU, United Kingdom
® Department of Chemical and Biomolecular Engineering, University of Hlinois at Urbana-Champaign, 600 South Mathews Avenue,
Urbana, IL 6180, United States

Received 23 July 2006; accepted 3 October 2006

Abstract

This paper provides an overview of computationally efficient approaches for quantifying the influence of parameter uncertainties on
the states and outputs of nonlinear dynamical systems with finite-time control trajectories, focusing primarily on computing probability
distributions. The advantages and disadvantages of various uncertainty analysis approaches, which use approximate representations of
the full nonlinear model using power series or polynomial chaos expansions, are discussed in terms of computational cost and accuracy in
computing the shape and tails of the state and output distributions. Application of the uncertainty analysis methods to a simulation
study is used to provide advice as to which uncertainty analysis methods to select for a particular application. In particular, the results
indicate that first-order series analysis can be accurate enough for the design of real-time robust feedback controllers for batch processes,
although it is cautioned that the accuracy of such analysis should be confirmed « posteriori using a more accurate uncertainty analysis
method. The polynomial chaos expansion is well suited to robust design and control when the objectives are strongly dependent on the

shape or tails of the distributions of product quality or economic objectives.

© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

A comprehensive uncertainty analysis of mechanistic
models is crucial, especially when these models are used
in the optimal control of processes, which normally occurs
close to safety and performance constraints. The model-
based computation of optimal control policies for batch
and semibatch processes is of increasing importance due
to the industrial interest in increasing productivity in the
specialty chemicals, polymers, pharmaceuticals, and other
industries [1-3]. However, uncertainty almost always exists
in chemical systems and its disregard can lead to the loss
of all of the benefits of using optimal control [4]. This
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motivates the development of techniques to quantify the
influence of parameter uncertainties on the process states
and outputs, or take uncertainties into account in the
design of processes or control systems [5]. There is an
increasing need to develop generic formalisms that facili-
tate the quantification of uncertainty and its effect on
model-based predictions. Quantitative estimates obtained
from robustness analysis can be used to evaluate the prob-
ability of extreme events such as failures, to estimate the
confidence in model predictions, or to design efficient
schemes for model or data refinement, for example by
deciding whether more laboratory experiments are needed
to provide better parameter [6,7]. Uncertainty propagation
has a key role in robust optimization where appropriate
back-off terms, which guarantee that important constraints,
such as those that arise from safety or environmental con-
siderations, are satisfied under uncertain conditions.
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Uncertainty analysis consists of the characterization of
uncertainty in model parameters or inputs based on their
probability density functions (pdfs) and then propagating
these pdfs through the model equations to obtain the pdfs
of the model outputs. A number of techniques developed
by various communities (including climate modelling, hur-
ricane prediction, and batch process control) are available
for uncertainty propagation. The propagation of uncer-
tainties via traditional Monte Carlo methods based on
standard or Latin Hypercube sampling is valid for a wide
range of problems, however, it is very computationally
expensive since it requires a large number of simulations
using the full model. Although this caveat is becoming less
significant for analysis purposes, it still can be prohibitive if
the propagation has to be performed in real-time, such as
in robust optimizing control. Another more intrinsic disad-
vantage of the classical Monte Carlo method is that it does
not provide a manageable representation of the predicted
process. Therefore there is a need to investigate computa-
tionally-efficient alternative techniques for uncertainty
propagation, which also provide a simplified mathematical
representation of the process. One alternative approach to
the Monte Carlo procedure is the perturbation method, or
sensitivity analysis [8]. This method represents the predic-
tion as a perturbation around its nominal value, usually
associated with the mean or expected value of the uncertain
deterministic problem. Sensitivity analysis usually provides
reliable predictions only when the associated perturbations
are small, and it is not used to predict the shape of the
whole distribution. An alternative way of considering the
uncertainty propagation problem is based on probability
theory, and consists of representing the random variables
and model in terms of convergent expansions according
to a framework, which is similar to the deterministic
approximation approaches.

The paper investigates computationally-efficient meth-
ods for estimating the entire distribution of states and out-
puts of generic batch processes. One class of methods is
based on first- and second-order power series [9] and can
be considered as a combination of the sensitivity analysis
and probability theory techniques. The first-order method
is a very computationally efficient way to propagate uncer-
tainties but does not capture the shape and tails of nonG-
aussian distributions; for strongly nonlinear processes the
number of terms in the power series expansion has to be
increased, requiring higher computational cost. An alterna-
tive approach, belonging to the category of probability the-
ory methods, is based on the stochastic response surface
approach (SRS), which models the performance function/
model output, as a sum of elementary functions (bases)
of stochastic input parameters. The efficient application
of the SRS approach requires the proper choice of the ele-
mentary functions and the number and location of the sam-
pling points. This paper will consider a variant of the SRS
approach based on the polynomial chaos expansion (PCE)
[10-13], which uses Hermite polynomial bases and provides
a closed-form functional approximation of the mathemati-

cal model from a significantly lower number of model sim-
ulations than those required by conventional methods. The
power series and polynomial chaos expansion are suitable
for studying the uncertainty propagation in open-loop or
closed-loop systems, and can be applied for uncertainties
in model parameters, initial conditions, or inputs. The tech-
niques are compared with the Monte Carlo method and
applied to compute the distributions of the states and out-
puts for the batch crystallization of an inorganic chemical
subject to uncertainties in the nucleation and growth kinet-
ics. The simulation study is used to draw some more gen-
eral recommendations about which uncertainty analysis
methods to select for a particular application.

2. Distributional uncertainty analysis
2.1. Uncertainty description

Consider the class of finite time (batch) processes
described by the generic ODE:

(1) = f(x(2), u(); 0) (1)

with the state vector x € R™ with initial values x,, the vec-
tor of control inputs # € R"™, the uncertain parameter vec-
tor 0 € R™, and the vector function f which is continuous
with respect to its elements. This paper considers the quan-
tification of the effect of parametric uncertainties on the
accuracy of the model predictions, which can be used to as-
sess whether more experimental data are needed to further
refine the parameters. It is assumed that model develop-
ment is detailed enough to capture the main structural
characteristics of the system, so that uncertainties in the
model structure can be neglected.

Uncertainty quantification can be decomposed in three
main steps: (i) characterisation of the parameter uncertainty,
(ii) propagation of uncertainty, and (iii) uncertainty man-
agement or evaluation and exploitation of the information
obtained. The uncertainties in the parameters can be repre-
sented in terms of standard normal variables or hard bounds
on the parameters. Define 0 as the nominal model parameter
vector of dimension (n X 1), 60 as the perturbation about 0,
and the model parameter vector for the real system as

0=0+30. )

Hard bounds on the uncertainty in the parameter is
characterized by the generalized ball

» 2 {eenw HGJ)H < 1} (3)
defined by using an appropriate norm || - || in R" such as a
scaled Holder p-norm (1 <p < o0), given by |0|| =
W, 0| ,» Wwith  the invertible weighting matrix

W, € R"*" This generalized description of the uncertainty
set includes the case of a confidence hyper-ellipsoid

&) = {9 : (0 — Q)TV(;I (0 — @) < 7% (a) ¢, [14], for a Gauss-

ian random variable vector 0 with expécted value &(0) = 0,
the (ng X ng) positive-definite variance—covariance matrix
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Vo, and the scalar r which is the chi-squared distribution
function with ny degrees of freedom (y; («)) for a chosen
confidence level o:

gellipsoid(a) = {9 S R

‘(l/r(a))V;m (9 - @)) H2 < 1}.
(4)
The generalized ball described by (2) also includes the case

of known lower and upper bounds 6,, 6, on the uncertain
parameters, leading to an uncertainty hyper-box:

Poox = {0 € R"[0; < 0 < 0,}
< 1}.

ding(,— 09030, +0))
)

Although the focus on this manuscript is on uncertain-
ties in parameters, any generic method for analyzing uncer-
tainties in parameters can be extended, with minor
modifications, to analyze the effects of simultaneous uncer-
tainties in parameters, initial conditions, and inputs (as dis-
cussed by [6]).

= {0 € R™

2.2. Power series expansion based approaches for
worst-case and distributional robustness analysis

Define i as a state or output of a process with the nom-
inal model parameters 0, Y as its value for the perturbed
model parameter vector 6, and the difference oy = — .
The worst-case robustness approach [4,9] writes oy as a
power series in 60:

oy :L60+%60TM80+-~, (6)
where the jacobian L € R, and hessian M € R"*" are:
O (1)
L(t) = | ——= 7
a%m))
M(¢t) = . 8
0= (%), 8

The elements of the time-varying sensitivity vector L(¢) and
matrix M(¢) can be computed using finite differences or by
integrating the model’s differential-algebraic equations
augmented with an additional set of differential equations
known as sensitivity equations [15]

L= J.L+Jy (9)

with the matrixes J, = df/dx € R™*™ and Jy=df/df €
RHYX’I(}.

When a first-order series expansion is used, analytical
expressions of the worst-case deviation in the performance
index (8 ) can be computed and the analysis can be per-
formed with low computational cost [16]. In the case of an
ellipsoidal uncertainty description, the worst-case deviation
is defined by
oy, . (1) = max |L(¢)d0) (10)

[Wod0][<1

which has an analytical solution

1/2

Wy (1) = (r(@)L(6) VoL (1)) (11)

(r(=)"” T
(L(1)VoL (1))
A probability density function (pdf) for the model param-
eters is needed to compute the pdf of the performance in-
dex. More than 90% of the available algorithms to
estimate parameters from experimental data [14] produce
a multivariate normal distribution:

foa 0= c:et(Vg)m P G {(9 ~0) Vi (0~ 9)} ) '
(13)

When a first-order series expansion is used to relate 6y and
86, then the estimated pdf of  is

1 N2
o) =3 e (-(w-0)rern). 0
where the variance of  is
Vy=LVyL". (15)

The distribution is a function of time since the nominal
value for  and the vector of sensitivities L are functions
of time.

2.2.1. Propagation of probability distribution using the
Monte Carlo method or by contour mapping

In the Monte Carlo method for uncertainty analysis, a
large number of parameters are generated based on the
multidimensional probability distribution function of the
parameter space and are propagated through the nonlinear
model, and the probability distribution functions of the
performance index or model states/outputs are constructed
from the histograms resulted from the nonlinear dynamic
simulations. This approach is illustrated schematically in
Fig. 1 for a system with three uncertain parameters in
which the uncertainty is given by a multivariate normal dis-
tribution with confidence hyper-ellipsoid shown. Points are
taken randomly form the hyper-ellipsoid and propagated
through the nonlinear model, which can be any system of
ordinary differential equations (ODE), differential alge-
braic equations (DAE), partial differential equations
(PDE), or the combination of such equations. The main
disadvantage of the classical Monte Carlo techniques is
that an accurate construction of the output distribution
requires a very large number of parameter samples and
computer-intensive simulations, to accurately model the
tails of the distribution, which correspond to parameters
with low probability of occurrence. In the case illustrated
in Fig. 1, although 10,000 sets of parameters were simula-
tion, a significant portion of the parameter ellipsoid was
not well sampled, leading to errors in representing the tails
of the output distribution. Although these parameter
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Fig. 1. Schematic representation of the uncertainty propagation through the full nonlinear model using the Monte Carlo method.

values have a low probability to occur, such parameters
may have significant effects on the performance index, with
large economic or safety consequences if their effect is not
taken into consideration during process or controller
design based on a model with uncertainties.

An approach that has much lower computational
expense than performing exhaustive Monte Carlo simula-
tions is to map only the contours of the uncertainty
hyper-ellipsoid obtained for different « levels, from the solu-
tion of the worst-case analysis problem (10), based on the
power series expansion representation of the model. This
approach is illustrated schematically in Fig. 2 for a case with
three uncertain parameters. With this approach the map-
ping of the o levels is performed from the ny dimensional
space characterized by a chi-squared distribution of ny
degrees of freedom (x,zm(oc)) to an n, dimensional space in
which the same o-levels are characterized by a chi-squared
distribution with ny, degrees of freedom (Xﬁw (o)), with usu-
ally n, = 1. Hence the probability mapping between the
two spaces characterized by different degrees of freedom
can be captured by multiplying the obtained worst-case
deviations (8.) with the ratio (x;, (oc)/xﬁﬁ(cx))]/ ?. This
method is exact for models that are first-order in the param-
eters. For higher-order power series expansions the contour

mapping approach is less accurate but much less computa-
tionally expensive than the approach described next.

2.2.2. Uncertainty propagation using the Monte Carlo
method with second-order power series expansion

For increased accuracy of the estimated shape of the
pdf, the second-order series expansion can also be used in
a classical or Latin Hypercube type Monte Carlo simula-
tion. In this approach the model is approximated by the
second-order power series expansion given by (6) where
the first- and second-order sensitivities are calculated along
the time-varying control trajectory. The second-order sen-
sitivities, M, can be calculated using a finite difference
approximation from the first-order sensitivities, requiring
only one or two simulations (per parameter) using the non-
linear model augmented with first-order sensitivity equa-
tions. In the next step, the Monte Carlo method is
applied to the second-order power series expansion with
fixed (but time-varying) L and M. This revised Monte
Carlo method is orders-of-magnitude computationally
more efficient than applying the brute-force Monte Carlo
method to the original nonlinear model. The computa-
tional cost of this second-order approximate Monte Carlo
method is higher than using the analytic pdf for the first-

4 pdf

PSE, PCE

& = max | §'q’1|

O fwall < '

e

- 5 V/ we

Fig. 2. Distributional robustness analysis based on the contour mapping technique.



Z.K. Nagy, R.D. Braatz | Journal of Process Control 17 (2007) 229-240 233

order power series approximation but provides a much bet-
ter estimate of the shape of the output distribution.

2.3. Uncertainty analysis using polynomial chaos
expansions

An alternative to the power series based techniques is to
use polynomial chaos expansions (PCEs). If the parameter
uncertainties are described in terms of standard normal
random variables, the PCE [17] can describe the model out-
put Y as an expansion of multidimensional Hermite poly-
nomial functions of the uncertain parameters 6. For
other types of random variables, either different polyno-
mial bases (e.g., Laguerre for the gamma distribution,
Legendre for the uniform distribution, etc.) or an appropri-
ate transformation can be used [18]. Using the Hermite
bases in the PCE, the output can be expressed in terms of
the standard random normal variables {6;} using an expan-
sion of order d:

d n d
Wd) = a(() )FO + Zil(;lal('l )Fl (0:,)
T ————

constant
first order terms

+ ZZO IZ” =1 Eizrz 911701‘:)

second order terms

+Z:'110 lzu IZ =1 111213[‘2 6117017’(_)12) o, (16)

third order terms

where ng is the number of parameters, the a , fﬁl , afl“?m,

are deterministic coefficients in R to be estlmated and the

multidimensional Hermite polynomials of degree m = iy, iy,
yings T(0y, ..., 0,) are

amefl/zeTe
a0, ---00,,

The polynomial chaos terms are random variables, since
they are functions of the random variables, and terms of
different order are orthogonal to each other (with respect
to an inner product defined in Gaussian measures as the ex-
pected value of the product of the two random variable,
ie., &[I'T;] =0 for I'; # I'j). In addition, polynomial
chaos terms of the same order but with a different argu-
ment list are also orthogonal (&[I',({0},)I,({0}))] =
0, i # j). In PCE any form of polynomial could be used
but the properties of orthogonal polynomials make the
uncertainty analysis more efficient. For example, calculat-
ing the expected value of both sides of (16) results in the ex-
pected value of y being simply &[] = a(()d)F 0. The
calculation of other statistical measures is also significantly
simplified using the properties of orthogonality. The
orthogonal polynomials are derived from the probability
distribution of the parameters using the orthogonality
condition:

/fdf()

Fm(gil,. . ,Qm) — (_1)mel/2()TU (17)

r;(0) = oy
=0if i #]. (18)

Where 5,1 - 1 lf l :j, 51]

Since I'g(0) =1 the first-order Hermite polynomial can
be calculated from fﬁlf 0)I'1(0,)(1) =0, and the proce-
dure can be repeated to obtain all terms in the PCE.
The number of coefficients in the PCE depends on the
number of uncertain parameters and the order of expan-
sion (e.g., there are 6 coefficients for two parameters
and a second-order PCE and 15 coefficients for a
fourth-order PCE, whereas for four uncertain parameters
there are 15 coefficients for a second-order PCE and 70
for a fourth-order PCE), however, for most engineering
applications it is not necessary to use higher order than
three or four. The polynomial chaos expansion is conver-
gent in the mean-square sense [18], therefore the coeffi-
cients in the PCE are calculated using least-squares
minimization considering sample input/output pairs from
the model, so that the best fit is achieved between the
PCE and the nonlinear model (or experimental data).
Because all parameters are considered as standard ran-
dom variables, for a more accurate determination of the
coefficients a,(:j),agf[il, El‘?ﬂz,... the probability distribution
of {0;} has to be considered in the selection of the sam-
pling points. In principle there are two main methods
for computing the coefficients of the PCE: (i) the probabi-
listic collocation method (PCM) [12,13], and (ii) the
regression method with improved sampling (RMIS) [11].
Both methods are weighted residual schemes, which differ
in the way in which the sampling points are chosen. The
methods use the principle of collocation, which imposes
that y is exact at a set of chosen collocation points, thus
making the residual between the output of PCE and com-
plex nonlinear model at those points equal to zero. In
PCM, the number of collocation points is set equal to
the number of unknown coefficients, which are found by
solving a set of linear equations generated from the out-
puts from the original simulation model. In RMIS, addi-
tional collocation points are selected to improve the
accuracy of the computed coefficients. The two methods
also differ in how the collocation points are chosen. In
PCM, the collocation points are selected from the roots
of the orthogonal polynomial of a degree one higher than
the order of the PCE [19,20]. Which roots are selected
affects the accuracy of the approximation. In this work
the probability collocation method was used to calculate
the coefficients. An iterative approach to select the order
of the PCE was implemented (see Fig. 3), with automatic
derivation of the Hermite polynomials using an algorithm
based on ORTHPOL [21].

Generally, the approaches based on PCE are similar to
the power series expansion-based techniques, since they
also utilize a simpler representation of the simulation
model, which can be used to compute the pdf of the out-
puts (either directly via the Monte Carlo method or via
the contour mapping approach based on the solution of
the worst-case optimization). The PCE and PSE can be
used to analytically compute statistical measures, such
as the mean, variance, or higher order moments of the
outputs.
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Fig. 3. Flowchart of the algorithm used to obtain the PCE approximation
of the nonlinear model for distributional robustness analysis.

3. Application to a simulated batch crystallization process

Crystallization from solution is an industrially impor-
tant unit operation due to its ability to provide high purity
separation. The control of the crystal size distribution
(CSD) can be critically important for efficient downstream
operations (such as filtration or drying) and product qual-
ity (e.g., bioavailability, tablet stability, dissolution rate).
Most studies on the optimal control of batch crystallizers
focus on computing the temperature profile that optimizes
some property of the CSD [22]. The problem of computing
the optimal temperature profile can be formulated as a
nonlinear optimization problem, which is then solved using
general-purpose optimization algorithms. The commonly
used approach to describe the temperature trajectory is to
discretize the batch time and consider the temperatures at
every discrete time k as the optimization variables. In this
case the optimal control problem can be written in the fol-
lowing form:

optimize J (19)
(k)
subject to:
- B -
Guy
2Gu
3G,
4G, (20)
—pky3Gu,
Gliseed
2G geea,
L 3Gleear

Tmin (k)

VA
ﬂ

(k) < Timax(k),
T(k)
dr

Ctinal < Ctinalmax» (21)

o

Rmin (k) < < Rmax (k)v

where the objective function J is a function of the states,
and usually is a representative property of the final CSD.
The equality constraints (20) are the model equations, with
initial conditions given in [23], where y; is the ith moment
(i=0,...,4) of the total crystal phase (resulted from
growth from seed and nucleation), fiscq,, is the jth moment
(j=0,...,3) corresponding to the crystals grown from
seed, C is the solute concentration, T is the temperature,
ro 1s the crystal size at nucleation, k, is the volumetric shape
factor, and p, is the density of the crystal. The rate of crys-
tal growth (G) and the nucleation rate (B), respectively, are
given by [24]:

G = kyS8, (22)
B = kyS® 3, (23)
where S = (C — Cyu)/Csaq is the relative supersaturation,
and Cg, = Cg(T) is the saturation concentration. The

model parameter vector consists of the kinetic parameters
of growth and nucleation:

eT = [ga kgabakb]v (24)
with nominal values [16]:
0" = [1.31,exp(8.79), 1.84, exp(17.38)], (25)

with the uncertainty description of the form (4) character-
ized by the covariance matrix [7]:

102873 —21960 —7509 1445
| —21960 4714 1809 —354
v, = . (26)
~7509 1809 24225 —5198
1445 —354  —5198 1116

In the inequality constraints (21), Tiin, Tmax> Rmin, and
R.x are the minimum and maximum temperatures and
temperature ramp rates, respectively, during the batch.
The first two inequality constraints ensure that the temper-
ature profile stays within the operating range of the crystal-
lizer. The last inequality constraint ensures that the solute
concentration at the end of the batch Cg,,; is smaller than
a certain maximum value Cepamax S€t by the minimum
yield required by economic considerations.

Typical crystal size distribution (CSD) parameters of
interest are the nucleation to seed mass ratio (J,, ), coef-
ficient of variation (/. ), and weight mean size of the crys-
tals (Jw.m.s.):

JnAsAr. = (/13 - :useed.&)/:useedj (27)
Jex. = (batto/ () = D' (28)
Jwms. = tu4/:u3 (29)
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The optimal temperature trajectory in Fig. 4 used to
compare the uncertainty analysis methods was computed
by solving the optimal control problem (19)-(21) for
J = Jysr. With the nominal parameter 0, which led to a
decrease of more than 20% in the nucleation to seed mass
ratio compared to the linear cooling profile. The distribu-
tional uncertainty analysis approaches based on the power
series approximation and polynomial chaos expansion,
respectively, were evaluated in comparison to Monte Carlo
(MC) simulations based on the full nonlinear model.
80,000 random parameter sets with mean 6; and covariance
Vo were generated from the multivariate distribution using
the Cholesky decomposition of the covariance matrix.
With the random parameter vectors, Monte Carlo simula-
tion was performed using the full dynamic model. Then,
the frequency that the simulation output from the Monte
Carlo simulation fell in the confidence interval obtained
for a certain o level with the power series approach was
computed for all states and outputs. The results obtained
with the first-order analysis approach for the output vari-
ables are shown in Fig. 5. The accuracy of the first-order
approach is very good with a slightly decreasing tendency
for large o values. This can be explained by the cumulative
effect of the truncation error due to the first-order

32

31f

< 30

291

28
0 40 80 120 160
Time (min)

Fig. 4. Linear cooling and optimal temperature profile for J = J; ..
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Fig. 5. Comparison between first-order power series analysis and the
Monte Carlo method applied to the full nonlinear model. The dashed line
corresponds to the ideal case.

approach (which increases when o increases) and the tail
effect of the Monte Carlo simulation (as seen on Fig. 1).
Although there is a slight decrease in the accuracy of the
first-order approach for large o, in the case of certain pro-
cess outputs the first-order expansion was quite accurate
for estimating the size of confidence intervals on the CSD
objectives. As seen next, the first-order expansion is not
accurate for estimating the shape of the pdfs on the CSD
objectives.

For a better comparison of the uncertainty analysis
methods, the entire pdfs of the states and outputs are com-
puted based on the frequency histograms for all model
states and outputs at the end of the batch. The histograms
were obtained by splitting the range of the values in equal-
sized bins (called classes), and then counting the number of
points that fall into each bin. The probability distribution
functions were calculated from the frequency histograms
of the simulations, as the count in the class divided by
the number of observations times the class width. For this
normalization, the area (or integral) under the histogram is
equal to one, and the resulted normalized histogram resem-
bles the real pdf. Fig. 6 shows the histograms obtained via
the Monte Carlo method applied to the full nonlinear
model, using 80,000 parameter sets. The resulted distribu-
tions are not Gaussian, showing the effect of the nonlinear-
ity on the uncertainty propagation. Some of the states are
closer to the form of the normal distribution, e.g., us,
whereas others, e.g., po, show large deviations from a
Gaussian distribution. Although the Monte Carlo method
provides a good estimate for the shape of the nonlinear dis-
tributions, it requires a large number of sampling points
and very high computational cost (see Table 1), which
makes it inappropriate for on-line applications such as
real-time robust feedback control and inconvenient for
off-line applications such as robust batch recipe design.

The first-order PSE approach estimates the output dis-
tributions (Fig. 7) at very low computational cost (Table
1). Since the first-order PSE approach uses a linear approx-
imation of the nonlinear model, the output distributions
are Gaussian, but still provide a good approximation of
the real distributions for most of the states and outputs.
This approximation is accurate enough, for example, for
robust controller design, or minimum variance control,
where the objective is to design a controller that decreases
the variations around the nominal performance index. It is
an acceptable approximation that, if the variance of the
Gaussian approximation of the nonlinear distribution is
decreased, a similar effect will be achieved for the real
distribution.

There certainly exist some finite-time processes in which
first-order analysis will not be accurate enough. Also, accu-
rate quantification of the risk of producing batches with
poor product characteristics and accurate assessment of
the performance of fault diagnostic systems requires a
more accurate quantification of the output pdfs. In this
case the higher order power series expansion or polynomial
chaos expansion give more accuracy while keeping the
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Fig. 6. Probability distribution functions at the end of the batch obtained via the Monte Carlo method applied to the full nonlinear model.

Table 1

Computational cost of the various approaches to compute the distribution
for all process outputs during the entire batch (on a P4-1.4 GHz
computer)

Method Computational
time
Monte Carlo simulation with full dynamic model 8h
(80,000 points)
First-order approach (50 o levels) 1s
Monte Carlo applied to second-order series expansion 4 min
model (80,000 points)
Second-order polynomial chaos expansion 20s

computational cost low. Applying the Monte Carlo
method to the second-order PSE results in a more accurate
approximation of the nonGaussian distribution (Fig. 8)
with relatively low computational cost (Table 1). In our
simulations the sensitivity jacobian L was calculated by
integrating the sensitivity Eq. (9) which were 32 (n, X ng)
ODE:s. The computational cost was reduced by computing
the matrices J, = df/dx and Jy = df/d0 analytically (con-
sidering ry = 0):

00 0  B/u 0 bB/(C - Cy) 0 0 0]

G 0 0 0 0  gGu/(C—Cy) 0 0 0
026 0 0 0 2gGuw/(C—C) 0 0 0

0 0 3G 0 0 3gGwm/(C—C) 0 0 0
A=10 0 0 4G 0 4gGu/(C—C) 0 0 0
0 0 —3pkG 0 0 —3pkgGu,/(C—C)) 0 0 0

0 0 0 0 0 gGugo/(C—C) 0 0 0

0 0 0 0 0 2¢Gu.q,/(C—C) 2G 0 0

0 0 0 0 0 3¢Gue./(C—C) 0 3G 0]
(30)

[ 0 0 BIn(S) B/ky]
oG In(S) oG/ kg 0 0
21, G1In(S) 2u,G/k, 0 0
31, GIn(S) 31,G/k, 0 0
Jy = 41u;G In(S) 413Gk, 0 0
=3pkyu,GIn(S) —3p ey, Gk, 0 0
:useed,OGln( ) .useed,OG/ kg 0 0
2leeq 1 G10(S) 2igeeq 1 G/ kg 0 0
3lseea 2G I(S) 3lseean G/ ke 0 0 |
(31)

To obtain the matrix of second-order sensitivities, M, for-
ward finite differences was used, which requires only one
additional simulation with the augmented model for each
parameter. For the Monte Carlo simulations for a fixed
control trajectory, L and M are computed off-line and
Monte Carlo simulations are performed using the PSE,
which is computationally much more efficient than using
the full integration of the nonlinear model expressed by
the set of ODEs.

As with the PSE, the PCE can be used with the Monte
Carlo method, or contour mapping which solves of the
optimization
SWyo () = max §y"F, (32)

[Wod0]I<1

for different values of o, where 8y is calculated for the

PCE. The order of the PCE was determined to be two using
the iterative approach in Fig. 3 (including third-order terms
did not increase the accuracy of the approximation signif-
icantly). Since there are four uncertain parameters, the sec-
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Fig. 8. Probability distribution functions at the end of the batch obtained via the Monte Carlo method applied to the second-order PSE.

ond-order PCE required the determination of 15 coeffi-
cients (according to N =1+ 2ny +ny(ny —1)/2). The
second-order four-dimensional PCE is

14

y0) = al;, (33)

i=0

where the Hermite polynomials are in Table 2. The coeffi-
cients «; were computed using the probabilistic collocation
method with the collocation points obtained from the roots

of the third-order Hermite polynomials [19,20]. The opti-
mization problem (32) was convex for the four-dimensional
second-order polynomial as the objective function and so
was easy to solve (see Fig. 9). The second-order PCE very
accurately captured the shape of the pdfs at the end of the
batch (compare Figs. 6 and 9), resulting in a more accurate
estimation of the effects of parameter uncertainties than the
second-order PSE at a lower computational cost.

The pdfs of the moment u,, which shows the strongest
deviation from the Gaussian distribution, are plotted for
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Table 2
The Hermite polynomials for the second-order four-dimensional PCE
ith Polynomial chaos r; Order of polynomial chaos
0 1 0
1 0, 1
2 0> 1
3 05 1
4 04 1
5 071 2
6 0,0, 2
7 0,05 2
8 0,04 2
9 051 2
10 0,05 2
11 0,04 2
12 0”1 2
13 0304 2
14 02 -1 2

the first-order PSE and second-order PCE in Fig. 10 with
the pdf from the Monte Carlo method applied to the full
nonlinear model. As noted before, while the first-order
PSE gave acceptable accuracy (which is even better for
the rest of the states and outputs) for most purposes, a
more accurate estimate of the tails of the distribution can
have significant economic or safety implications, especially
in the case of robust design. If the performance specifica-
tion was in terms of pg, Fig. 10 illustrates that, if there
was a high penalty on exceeding the specification limits,
then a design based on the first-order PSE would lead
to a more conservative result with respect to the lower
specification limit, whereas it underpredicts the probabil-
ity of events with large values of uo, which could have
safety implications in particular applications, such as
pharmaceutical crystallization. The second-order PCE

Z.K. Nagy, R.D. Braatz | Journal of Process Control 17 (2007) 229-240

based approach captures very well the shape and tails of
the distribution.

Unlike sensitivity analysis, these uncertainty analysis
approaches provide the variation of the whole distribution
for all states and outputs along the entire batch. This is
illustrated in Fig. 11, which shows the pdfs for the perfor-
mance index Jy ., With the various uncertainty analysis
methods. As noted before, the power series and PCE
robustness analysis methods have low computational costs,
therefore they can be used easily for the assessment and
efficient design of robust control systems. The simplified
dependency of these expansions on the parameters lead
to simpler optimization of the parameters than obtained
by direct robust controller synthesis, which usually leads
to nonconvex problem formulations. Robust controller
design can be formulated as a classical minmax optimiza-
tion or as a multiobjective optimization problem where
one objective accounts for the nominal performance and
the other (usually a measure of the variance of the distribu-
tion) accounts for robustness [25,26]. Both uncertainty
analysis methods can be used to efficiently calculate the
robustness term. Additionally, since the PCE approach
provides a means for accurate estimation of the shape of
distribution, it can form the basis of a procedure for
designing controllers to shape the distribution, which
would provide more flexibility in addressing uncertainty
than worst-case or minimum variance control. This is espe-
cially motivated by the asymmetry in the economic cost
functionals of processes operated near safety, environmen-
tal, and quality constraints; for example, designing a con-
troller to shape the distribution in relation to the cost
functional rather than merely reducing variance would
more closely map controller design to economic objectives.
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Fig. 9. Probability distribution functions at the end of the batch obtained via the Monte Carlo method applied to the second-order polynomial chaos

expansion.
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and second-order polynomial chaos expansion (PCE) methods.
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Fig. 11. Variation of the distribution of the weight mean size along the
batch, computed using various uncertainty analysis methods. The solid
line is for the Monte Carlo method applied to the full nonlinear model
with 80,000 sets of parameter, the dots are for the first-order power series
method, the circles are for the Monte Carlo method applied to the second-
order power series expansion, and the x-marks are for the polynomial
chaos expansion method.

4. Conclusions

This paper provides an overview of several computa-
tionally-efficient robustness analysis approaches, focusing
primarily on computing probability distributions on states
and outputs. The approaches are based on the approximate
representation of the full process model using power series
or polynomial chaos expansions, and provide a qualitative
and quantitative estimation of the effect of parameter
uncertainties on the states and output variables along a
batch. The computational cost of the robustness analysis
methods are significantly lower than the classical Monte

Carlo method applied to the full nonlinear model. Applica-
tion of the algorithms to a simulated batch cooling crystal-
lization process provided the recommendations: (1) for
some systems, the first-order series analysis is accurate
enough for the design of real-time robust feedback control-
lers, but the accuracy of the first-order expansion should be
confirmed a posteriori using Monte Carlo simulation or a
higher order PCE method, and (2) even with a relatively
low-order approximation, the polynomial chaos expan-
sions can provide a very good approximation of the shape
and tails of the output and states distribution for batch
processes, providing a generally applicable approach for
uncertainty propagation in robust batch control and
design.

References

[1] M.D. Barrera, L.B. Evans, Optimal design and operation of batch
processes, Chem. Eng. Commun. 82 (1989) 45-66.

[2] D.W.T. Rippin, Simulation of single- and multiproduct batch
chemical plants for optimal design and operation, Comput. Chem.
Eng. 7 (1983) 137-156.

[3] D. Bonvin, Optimal operation of batch reactors: a personal view, J.
Process Control 8 (1998) 355-368.

[4] D.L. Ma, S.H. Chung, R.D. Braatz, Worst-case performance analysis
of optimal batch control trajectories, AIChE J. 45 (1999) 1469-1476.

[5] B. Srinivasan, D. Bonvin, E. Visser, S. Palanki, Dynamic optimiza-
tion of batch processes: 1. Role of measurements in handling
uncertainty, Comput. Chem. Eng. 27 (2003) 27-44.

[6] D.L. Ma, R.D. Braatz, Worst-case analysis of finite-time control
policies, IEEE Trans. Control Syst. Technol. 9 (2001) 766-774.

[7]1 S.M. Miller, J.B. Rawlings, Model identification and control strat-
egies for batch cooling crystallizers, AIChE J. 40 (1994) 1312-1327.

[8] A. Saltelli, K. Chan, E.M. Scott, Sensitivity Analysis, Wiley, 2000.

[9] Z.K. Nagy, R.D. Braatz, Worst-case and distributional robustness
analysis of finite-time control trajectories for nonlinear distributed
parameter systems, IEEE Trans. Control Syst. Technol. 11 (2003)
694-704.

[10] S.S. Isukapalli, Uncertainty analysis of Transport-Transformation
Models, Ph.D. thesis, The State University of New Jersey, 1999.

[11] S.S. Isukapalli, A. Roy, P.G. Georgopoulos, Stochastic response
surface methods (SRSMs) for uncertainty propagation: application to
environmental and biological systems, Risk Anal. 18 (1998) 351-363.

[12] W. Pan, M.A. Tatang, G.J. McRae, R.G. Prinn, Uncertainty analysis
of indirect radiative forcing by anthropogenic sulfate aerosols, J.
Geophys. Res. 103 (1998) 3815-3823.

[13] W. Pan, M.A. Tatang, G.J. McRae, R.G. Prinn, Uncertainty analysis
of direct radiative forcing by anthropogenic sulfate aerosols, J.
Geophys. Res. 102 (1997) 21916-21924.

[14] J.V. Beck, K.J. Arnold, Parameter Estimation in Engineering and
Science, Wiley, New York, 1977.

[15] M. Caracotsios, W.E. Stewart, Sensitivity analysis of initial value
problems with mixed ODEs and algebraic equations, Comput. Chem.
Eng. 9 (1985) 359-365.

[16] J.B. Rawlings, S.M. Miller, W.R. Witkowski, Model identification
and control of solution crystallization processes: A review, Ind. Eng.
Chem. Res. 32 (1993) 1275-1296.

[17] N. Wiener, The homogeneous chaos, Am. J. Math. 60 (1938) 897-
936.

[18] R.G. Ghanem, P.D. Spanos, Stochastic Finite Elements: A Spectral
Approach, Springer-Verlag, New York, 1991.

[19] M.A. Tatang, P. Wenwei, R.G. Prinn, G.J. McRae, An efficient
method for parametric uncertainty analysis of numerical geophysical
models, J. Geophys. Res. 12 (1997) 21932-21952.



240 Z.K. Nagy, R.D. Braatz | Journal of Process Control 17 (2007) 229-240

[20] M. Webster, M.A. Tatang, G.J. McRae, Application of the Proba-
bilistic Collocation Method for an Uncertainty Analysis of a Simple
Ocean Model, MIT Joint Program on the Science and Policy of
Global Change, Massachusetts Institute of Technology, Cambridge,
<http://web.mit.edu/afs/athena.mit.edu/org/g/globalchange/www/
reports.html>, Report Series No. 4., 1996.

[21] W. Gautschi, Algorithm 726: ORTHPOL-A Package of routines for
generating orthogonal polynomials and gauss type quadrature rules,
ACM Trans. Math. Software 20 (1994) 21-62.

[22] R.D. Braatz, Advanced control of crystallization processes, Annu.
Rev. Control 26 (2002) 87-99.

[23] S.H. Chung, D.L. Ma, R.D. Braatz, Optimal seeding in batch
crystallization, Can. J. Chem. Eng. 77 (1999) 590-596.

[24] J. Nyvlt, O. Sohnel, M. Matuchova, M. Broul, The Kinetics of
Industrial CrystallizationChemical Engineering Monographs, vol. 19,
Elsevier, Amsterdam, 1985.

[25] Z.K. Nagy, R.D. Braatz, Open-loop and closed-loop robust optimal
control of batch processes using distributional worst-case analysis, J.
Process Control 14 (2004) 411-422.

[26] Z.K. Nagy, R.D. Braatz, Robust nonlinear model predictive control
of batch processes, AIChE J. 49 (2003) 1776-1786.


http://web.mit.edu/afs/athena.mit.edu/org/g/globalchange/www/reports.html
http://web.mit.edu/afs/athena.mit.edu/org/g/globalchange/www/reports.html

	Distributional uncertainty analysis using power series  and polynomial chaos expansions
	Introduction
	Distributional uncertainty analysis
	Uncertainty description
	Power series expansion based approaches forworst-case and distributional robustness analysis
	Propagation of probability distribution using the Monte Carlo method or by contour mapping
	Uncertainty propagation using the Monte Carlo method with second-order power series expansion

	Uncertainty analysis using polynomial chaosexpansions

	Application to a simulated batch crystallization process
	Conclusions
	References


