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One of the most important problems that can arise in the development of a pharma-
ceutical crystallization process is the control of polymorphism, in which there exist dif-
ferent crystal forms for the same chemical compound. Different polymorphs can have
very different properties, such as bioavailability, which motivates the design of con-
trolled processes to ensure consistent production of the desired polymorph to produce
reliable therapeutic benefits upon delivery. The optimal batch control of the polymor-
phic transformation of L-glutamic acid from the metastable a-form to the stable b-form
is studied, with the goal of optimizing batch productivity, while providing robustness
to variations in the physicochemical parameters that can occur in practice due to var-
iations in contaminant profiles in the feedstocks. A nonlinear state feedback controller
designed to follow an optimal setpoint trajectory defined in the crystallization phase
diagram simultaneously provided high-batch productivity and robustness, in contrast
to optimal temperature control strategies that were either nonrobust or resulted in
long-batch times. The results motivate the incorporation of the proposed approach into
the design of operating procedures for polymorphic batch crystallizations. � 2007
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Introduction

Polymorphism, in which multiple crystal forms exist for the
same chemical compound, is of significant interest to the phar-
maceutical industry.1–5 According to Ostwald’s Rule of Stages,
in a polymorphic system, the most soluble metastable form
appears first, followed by more stable polymorphs. This rule

holds for most polymorphic systems, which implies that care
must be taken to avoid the formation of metastable crystals
when trying to crystallize the most stable crystal form. Some-
times a relatively small shift in the operating conditions can
result in the appearance of crystals of an undesired polymorph.

Metastable crystals have appeared during the production of
specialty chemicals, such as pharmaceuticals, dyestuffs, and
pesticides. The variation in physical properties, such as crys-
tal shape, solubility, hardness, color, melting point, and
chemical reactivity makes polymorphism an important issue
for the food, specialty chemical, and pharmaceutical indus-
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tries, where products are specified not by chemical com-
position only, but also by their performance.2 As a result,
controlling polymorphism to ensure consistent production of
the desired polymorph is important in those industries, includ-
ing the drug manufacturing industry where safety is paramount.
Deliberate isolation of metastable phases is sometimes desired
when they have advantageous processing or application proper-
ties, such as increased dissolution rate. In most cases, however,
the formulation of a product as a metastable phase is undesired
due to potential subsequent phase transformation during drying
or storage, which would change product characteristics.6

Although the crystallization control literature is vast, to
the authors’ knowledge there are no articles on the optimal
control of crystallization processes in which more than one
polymorph occurs. The vast majority of articles on nonpoly-
morph crystallization have considered the optimal control of
only one or two characteristics of the crystal-size distribu-
tion, such as weight mean size. The most widely studied
approach is to determine a temperature profile (T-control)
that optimizes an objective function based on an offline nom-
inal model.7–11 Although T-control is simple to implement, it
has become well-known in recent years that T-control can be
very sensitive to variations in the kinetic parameters.12,13

This motivated the development of robust T-control, which
explicitly includes the impact of uncertainties in the objec-
tive, while determining the optimal temperature-time trajec-
tory to be followed during batch operation.14–16 With advan-
ces in sensor technologies, another control strategy developed
to provide improved robustness to model uncertainty is C-
control, which follows an optimal or nearly optimal concen-
tration-temperature trajectory.3,13,17–19

Motivated by the industrial need to control polymor-
phism,2,20 this article evaluates and compares the perform-
ance of these optimal control strategies for the polymorphic
transformation of L-glutamic acid from the metastable a-
form to the stable b-form. The Process Description section
describes the process model for the polymorphic transforma-
tion of L-glutamic acid. The T-control, robust T-control, and
C-control sections discuss the three control strategies investi-
gated in this article. The simulation results in the Results
section are followed by the conclusions.

Process Description

The population balance equations for the polymorphic
transformation of L-glutamic acid from the metastable a-
form to the stable b-form are21:
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fi is the number density for the i-form crystals. The initial
crystal-size distributions of polymorph i, Yi(L,0), is described
by the sum of three log-normal distributions, the nth moment
of the i-form crystals is

li;n ¼
Z 1

0

LnfidL; (9)

and the nucleation rate for b-form crystals is
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Applying the method of characteristics to Eq. 1, and
method of moments to Eq. 2, gives
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where G0
b 5 Gb/L. The aforementioned equations are aug-

mented by the solute mass balance:
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where qc is the crystal density, msolution is the mass of solution,
Vslurry is the total volume of crystals and solution, kv,i is the vol-
umetric shape factor for polymorphic form i, and L0 is the size
of the nucleated crystals. The parameter values are in Ref. 21.
In this study, the following uncertain parameters are assumed:

k0g;b ¼ kg;bð1þ h1Þ exp � 10900

8:314T
h2

� �
; �0:2 � h1; h2 � 0:2

(15)

k0d;a ¼ kd;að1þ h3Þ; �0:2 � h3 � 0:2 (16)

C0
sat;a ¼ Csat;að1þ h4Þ; �0:05 � h4 � 0:05 (17)

C0
sat;b ¼ Csat;bð1þ h5Þ; �0:05 � h5 � 0:05 (18)

where y1 and y2 are the uncertainties in the growth parame-
ters for the b-form crystals, y3 is the uncertainty in the disso-
lution kinetics of the a-form crystals, and y4 and y5 are the
uncertainties in the solubility curves of the a and b forms,
respectively. The nominal model corresponds to yi 5 0, i 5
1, . . . , 5. While uncertainties in parameters quantified from
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experimental data are typically correlated,22,23 uncorrelated
uncertainties were used here so as to separately assess the
robustness to different types of uncertainties.

T-control

The first journal articles on the control of batch polymor-
phic crystallization implemented temperature control (e.g.,
see21). The most widely studied approach for the optimal
control of nonpolymorphic crystallization processes has uti-
lized T-control, in which the temperature trajectory has been
computed from the optimization of an objective function,
based on an offline model with nominal parameters.9 In this
study, the objective function that is maximized is the yield
of the b-form minus a penalty on the time required for the
mass of the a-form to be below some tolerance

Inominal ¼ mbðtf Þ � wntaðcÞ
¼ qckv;bVslurrylb;3ðtf Þ � wntaðcÞ (19)

where tf is the batch time, mb(tf) is the yield of b-form at the
end of the batch, ta(c) is the time taken to reduce the mass
of a-form below c, and wn is a weighting parameter. The val-
ues of tf, wn, and c are 7 h, 1 3 1023, and 5 3 1024 g,
respectively. The second term ta(c) is included to increase
the productivity of the batch crystallizer (shorter batch times
lead to more batches per day).

To implement this strategy, the temperature-time trajectory
is parameterized as a first-order spline with 64 time intervals
(6.56 min). Examination of the temperature trajectories indi-
cated that this temporal resolution is fine enough for this
crystallization process. The temperature trajectory was con-
strained to be within the region where crystals of the a-form
dissolve, while crystals of the b-form grow, that is, the tem-
perature is constrained to be between the saturation tempera-
tures of the a- and b-forms (Tsat,a � T � Tsat,b).* In addition,
the minimum and maximum temperature can be achieved by
cooling and heating are 258C and 508C. These constraints
were handled by parameterizing the temperature-time trajec-
tory, such that the decision variables were fractions between
0 and 1, with 0 and 1 indicating the lower and upper bounds
on the temperature at each time instance, respectively. A
genetic algorithm was used to determine an initial tempera-
ture trajectory, which was further optimized using sequential
quadratic programming. The resulting concentration-tempera-
ture trajectory for nominal model is shown in Figure 1. There
are two sections in the trajectory (heating followed by cool-
ing) where the supersaturation of b-form is maximized due
to its growth kinetics being the rate-limiting step.

Robust T-control

The solubility curves and nucleation and growth kinetics
can vary somewhat from batch to batch due to impurities in
the feed. Further, any model parameters obtained from
experiments have uncertainties due to measurement noise
and unmeasured disturbances that occur during the collection
of the experimental data used to estimate parameters. Assum-
ing all the uncertainties are independent from each other,

hmin;i � hi � hmax;i; (20)

the uncertain parameters may be expressed as:

eh ¼
n
h : h ¼ ĥþ dh; kWhdhk1 � 1

o
; (21)

ĥ ¼ hmin þ hmax
2

; (22)

ðWhÞjj ¼
2

hmax;j � hmin;j
; (23)

where y 5 [y1, y2, . . . ,yn]
T, ĥ ¼ ½ĥ1; ĥ2; . . . ; ĥn�T , ymin 5

[ymin,1, ymin,2, . . . ,ymin,n]
T, and ymax 5 [ymax,1, ymax,2, . . . ,

ymax,n]
T are the actual, nominal, minimum, and maximum

values of the uncertain model parameters, respectively, Wy is
a weight matrix quantifying the magnitude of the uncertainty
in each parameter, and k � k? is the vector ?-norm.

In robust T-control the objective function to be maxi-
mized appends a term to include the impact of uncertain
parameters14–16

Irobust ¼ Inominal � wrdIw:c (24)

where wr [ [0,1] is a weighting parameter and dIw.c. is the
worst-case deviation in the objective due to model uncertain-
ties. If wr 5 1, Irobust is the objective function obtained for
the worst-case perturbation at the cost of potential degrada-
tion in nominal performance. The value of wr can be selected
to be smaller than one depending on the desired trade-off
between the nominal and worst-case performance. In this
paper, wr 5 0.6 provided the best balance between nominal
and worst-case performance. In robust T-control the objective
(24) is maximized subject to the condition that the con-
straints in the previous section hold for all parameters within
the uncertainty description.

Figure 1. Solubility curves and concentration-tempera-
ture trajectories of T-control and C-control
with parameters p1 5 36.56, p2 5 11.5, p3 5
0.4340, and p4 5 0.03656.

*Note that a slight violation of this constraint occurs initially due to the initial
concentration being outside this range. According to Ref. 21 the a-form crystals
grow for a short time before crossing the a solubility curve.
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With the widely-used approximation22,24,25

dI ¼ @I

@h
dh ¼ Ldh; (25)

where L is the objective function sensitivity row vector, the
worst-case deviation in the objective function is15,23

max
kWhdhk1�1

jdIj ¼ kLW�1
h k1 (26)

and a worst-case parameter uncertainty vector is
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where k � k1 is the vector 1-norm and the objective function
sensitivity vector can be computed from
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where x 5 [x1, x2, . . . , xn]
T is the vector of the states

involved in the simulation; for this study,

x ¼ ½la;0; la;1; la;2; la;3; la;4; lb;0; lb;1; lb;2; lb;3; lb;4;C; h�T
(29)

with h 5 $t0 Da(s)ds.
The system Eqs. 9, 12, 13, and 14 can be represented as a

system of differential-algebraic equations (DAE):

M _x ¼ fðt; x; hÞ (30)

where M is an n 3 n mass matrix of constant coefficients of
the form

M ¼ IðsÞ 0

0 0ðn�sÞ

� �
(31)

and I
(s) is the s 3 s identity matrix, and 0

(n2s) is the (n 2 s)
3 (n2 s) matrix of zeroes. In this study, s5 7 and n5 12.

Differentiating the system equation with respect to y gives
the sensitivity equation

M
@ _x

@h
¼ @f

@x

@x

@h
þ @f

@h
: (32)

The following steps were used to compute the robust tem-
perature profile:

(1) The first iteration (j 5 1) was initialized with random
parameters for the temperature profile. For j[ 1, the temper-
ature parameters were determined from a genetic algorithm

applied to the optimization of the robust objective function
subject to all operating constraints for the full range of
uncertain parameters.

(2) The temperature profile from Step 1 was applied to
the nominal model (yi 5 0 for i 5 1, . . . , 5) by integrating
the system Eq. 30, and the sensitivity Eq. 32. At the final
batch time (tf), the nominal objective function (Inominal) was
obtained from Eq. 19.

(3) The objective function sensitivity vector (L) was com-
puted from Eq. 28, and the worst-case parameter uncertain-
ties obtained from Eq. 27.

(4) The temperature profile from Step 1 was applied to the
model with the worst-case model parameters calculated in
Step 3. Irobust was calculated from Eq. 24 at the batch time tf.

(5) Steps 1 to 4 were repeated until there was no signifi-
cant change in the temperature profile.
This algorithm uses Eq. 25 only for estimating the worst-

case parameters Eq. 27 with the full dynamic simulation
used to compute Irobust (Step 4).

C-control

In many experimental and simulation studies of nonpolymor-
phic batch crystallizations, the C-control strategy (Figure 2) has
resulted in low-sensitivity of the product quality to most practi-
cal disturbances and variations in kinetic parameters.3,13,17–19,26

In the last two years, the C-control strategy has been applied
experimentally to several polymorphic crystallizations, to pro-
duce large crystals of any selected polymorph.27 C-control can
be interpreted as nonlinear state feedback control,26,28 in which
the nonlinear master controller acts on the concentration C as a
measured state29 to produce the setpoint temperature Tset as its
manipulated variable.† The difference between the calculated
Tset, and the measured temperature T is used by the slave con-
troller to manipulate the jacket temperature Tj, so that the devia-
tion between Tset and T is reduced. Because the slave controller
is just temperature control of a mixed tank, and the batch dy-
namics are relatively slow, any reasonably tuned proportional-
integral controller will result in accurate following of Tset.

The setpoint concentration-temperature trajectory was
parameterized as follows:

(1) Heating section:
(a) This time-dependent relation forces the temperature into

the region between both solubility curves in the first 5.25 mins.

Figure 2. Prefered implementation of C-control for a
batch cooling crystallizer.26

†
For this application, the nonlinear master controller is given by Eqs. 35–38.
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T0 ¼ To þ p1 � To
ð5:25Þð60Þ t (33)

Tset ¼ maxfTmin;minfT0; Tmaxgg (34)

where p1 (8C) is the first decision variable, To 5 258C is the
initial temperature, Tmin 5 258C and Tmax 5 508C are the
minimum and maximum temperatures achievable by cooling
and heating the water bath, respectively, Tset is the setpoint
temperature to a lower level controller, and t is time in sec-
onds.

(b) Assuming a linear concentration-temperature trajectory
when heating

T0 ¼ Tp þ p2ðC� CpÞ (35)

Tset ¼ maxðTmin;minðT0; TmaxÞÞ (36)

where p2
�C

g solute=100 g solution

� �
is the second decision

variable, and Tp (8C) and Cp (g solute/100 g solution) are the
temperature and concentration at time equal to 5.25 mins;

(2) Cooling section:
After the mass of a-form decreases below a certain

value (chosen to be 0.5 g), the assumed trajectory is fol-
lowed

T0 ¼ lnðC=p3Þ
p4

(37)

Tset ¼ maxðTmin;minðT0; TmaxÞÞ (38)

where p3 (g solute/100 g solution), and p4 (1/8C) are the third
and fourth decision variables, respectively.

The rationale behind the structure of Eqs. 33 to 38 is to
obtain the best fit to the concentration-temperature trajectory
obtained by applying the optimal temperature-time trajectory
from T-control to the nominal model. Then, the values for p1
to p4 were fitted accordingly. The lower level controllers for
all control strategies are assumed to have very fast response
compared to the overall batch time, which is a good assump-
tion for this process, which has a relatively long batch time.

Results

This section compares the performance and robustness of
the three control strategies to the parameter perturbations
shown in Table 1. The yields and purities of b-form at
the end of batch for all control strategies are tabulated in Ta-
ble 2. The concentration-temperature trajectories in Figure 1
for T-control applied to the nominal model and the corre-
sponding C-control obtained from Eqs. 33 to 38 are coinci-
dent, indicating that the parameterization of Eqs. 33 to 38, is
suitable for representing the C vs. T setpoint used in C-con-
trol. The growth kinetics of the b crystals are relatively slow,
which results in the optimal control trajectories being very
close to the solubility curve for the a-form, to maximize the
supersaturation with respect to the solubility of the b-form
while operating between the two solubility curves.

The nominal temperature trajectory produced by T-control
is highly nonrobust to perturbations in the physicochemical
parameters, as seen in Figure 3b–d, with the temperature
constraints violated for parameter sets 2 and 3. The tempera-

ture trajectories reoptimized for the perturbed model parame-
ters indicate that the optimal temperature trajectory is very
sensitive to shifts in the model parameters. The mass profiles
in Figure 3e,f indicate that the crystals of the a-form com-
pletely dissolve within 2 h for the two feasible parameter
sets, whereas crystals of the b-form continue to grow for 5 h,
which is consistent with the notion that the growth rate of
crystals of the b-form is rate-limiting for the design of the
batch temperature trajectory for this polymorph transforma-
tion.

The temperature trajectories produced by robust T-control
are robust in terms of satisfying the operating constraints for
the whole set of perturbed parameters, but are very conserva-
tive in terms of having very long batch times, and poor pro-
ductivity for all values of the physicochemical parameters
(see Figure 4a–d). Comparing the reoptimized T-control and
robust T-control mass profiles in Figure 4e,h indicates that
robust T-control leads to unnecessarily long batch times for
some values of the physicochemical parameters. Designing a
batch control trajectory to satisfy the operating constraints
for the whole set of potential perturbed model parameters
can result in very sluggish performance irrespective of what
the actual physicochemical parameters happen to be in a par-
ticular batch run. While such approaches have been heavily
studied in the batch design and batch control literature (for
example, see articles cited in16), these approaches can result
in very poor performance when applied to practical batch
processes.

Although C-control does not explicitly include robustness
in its formulation, C-control nearly satisfies all of the operat-
ing constraints for all sets of model parameters (see Figure
5a–d), demonstrating nearly the same robustness as robust T-
control.{ Further, C-control results in much faster batch times
and higher productivity than robust T-control for some sets
of physicochemical parameters (see Figure 5a and d). In
addition, C-control results in the batch productivity similar to
that obtained by T-control reoptimized for each parameter
set, as seen by the closeness of the C-control and reoptimized
T-control trajectories in Figure 5a–d. C-control has nearly
the same performance as that of the best T-control trajectory,
with the batch times obtained by C-control are large only
when necessitated by the particular values of the physico-
chemical parameters. This performance is obtained by C-con-

Table 1. Case 1 has no Uncertainties (the Nominal Model),
Case 2 has the Worst-case Parameter Values, Case 3 is the
same as Case 2, but only Includes Variations in the Kinetic
Parameters, and Case 4 are Parameter Variations with Fast

Growth Rate for Crystals of the b-form (Which is the
Rate-limiting Step)

Cases y1 y2 y3 y4 y5

1 0.0 0.0 0.0 0.0 0.0
2 20.2 0.2 0.2 20.05 0.05
3 20.2 0.2 0.2 0.0 0.0
4 0.2 20.2 0.2 20.05 0.05

{
There is a slight violation of the lower bound on temperature bound for the pa-

rameter set for Case 4, which is due to the shift in the solubility curve of the a-
form. This violation can be removed by shifting the nominal concentration-temper-
ature trajectory slightly away from the a-solubility curve (see Figure 6).
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Table 2. The Yields and Purities of b-form at the End of Batch for Different Control Strategies

Cases

Optimal T-control Robust T-control C-control

b-yield (g) b-purity (%) b-yield (g) b-purity (%) b-yield (g) b-purity (%) b-yield (g) b-purity (%)

1 24.15 100.0 24.15 100.0 16.86 100.0 24.15 100.0
2 9.68 97.50 n.a.^ n.a.^ 9.02 69.80 9.65 95.10
3 13.70 100.0 n.a.^ n.a.^ 13.21 100.0 13.41 100.0
4 23.88 100.0 23.88* 100.0 16.42 100.0 n.a.† n.a.†

^These values would be meaningless for comparison purposes due to temperature constraint violations.
*From Figure 3f, this value is approached at a much later time (4.67 h) compared to the optimal one (3 h).
†The constraint violation can be removed as mentioned in the text and Figure 6, and the resulting b-yield and purity are 23.86 g and 99.9%, respectively, for
this case.

Figure 3. Temperature profiles applied to: (a) case 1,
(b) case 2, (c) case 3, and (d) case 4, for T-
control (2), the temperature trajectory reop-
timized for the perturbed model parameters
(2 � 2 �), and the shaded region showing the
constraints on the temperature for T-control.

Mass profiles for: (e) case 1 and (f) case 4, for T-control
(Ma, 2; Mb, 2 � 2 �), and for the temperature trajectory
reoptimized for the perturbed model parameters (Ma, *;
Mb, 1). (The mass profiles for cases 2 and 3 are not shown
since the temperature trajectories do not satisfy the operat-
ing constraints).

Figure 4. Temperature profiles applied to: (a) case 1,
(b) case 2, (c) case 3, and (d) case 4, for ro-
bust T-control (2), the temperature trajectory
reoptimized for the perturbed model parame-
ters (2 � 2 �), and the shaded region showing
the constraints on the temperature for robust
T-control.

Mass profiles for: (e) case 1, (f) case 2, (g) case 3, and (h)
case 4, for robust T-control (Ma, 2; Mb, 2 � 2 �), and for
the temperature trajectory reoptimized for the perturbed
model parameters (Ma, *; Mb, 1).
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trol without having the poor robustness of T-control com-
puted from the nominal model. In summary, C-control has
all the respective advantages of T-control and robust T-con-
trol, without any of their respective disadvantages.

C-control uses nonlinear state feedback control of the con-
centration measurement to follow a desired path in the phase
diagram.26 This article, for the first time, demonstrates the
improved robustness of C-control for the solvent-mediated
transformation from one polymorph to another. There is the-
oretical and simulation support that relatively simple nonlin-
ear state feedback controllers can be derived that provide
nearly optimal performance and robustness for batch pro-

cesses.16 For a polymorphic crystallization, this paper derives
such a nonlinear state feedback controller, motivated by and
interpreted within the context of the crystallization phase dia-
gram, which has the desired performance and robustness
properties.

Conclusions

The robustness and performance of T-control, robust T-
control, and C-control strategies were compared for maxi-
mizing the batch productivity during the solvent-mediated
polymorphic transformation of L-glutamic acid from the
metastable a-form to the stable b-form crystals. Operating a
batch polymorphic crystallization using the existing
approach based on control along a temperature vs. time tra-
jectory21 is shown to be very sensitive to variations in the
nucleation and growth kinetics and shifts in the solubility
curve, resulting in violations of the operating constraints.
For the polymorphic transformation from a-form to b-form
crystals, these constraint violations can result in the nuclea-
tion and re-growth of undesired a-form crystals. Robust T-
control resulted in satisfaction of the operating constraints
for a full range of variations in the physicochemical param-
eters for the kinetics and thermodynamics of the polymor-
phic transformation, but resulted in very poor batch produc-
tivity (long batch times) for parameters in which short batch
times are possible.

A nonlinear state feedback controller designed to follow
an optimal trajectory in the concentration-vs-temperature-

Figure 5. Temperature profiles applied to (a) case 1, (b)
case 2, (c) case 3, and (d) case 4, for C-con-
trol (2), the temperature trajectory reopti-
mized for the perturbed model parameters
(2 � 2 �), and the shaded region showing the
constraints on the temperature for C-control.

Mass profiles for: (e) case 1, (f) case 2, and (g) case 3, for
C-control (Ma, 2; Mb, 2 � 2 �), and for the temperature
trajectory reoptimized for the perturbed model parameters
(Ma, *; Mb, 1). (The mass profiles for case 4 are not
shown since the temperature trajectory (slightly) violates
the T lower limit).

Figure 6. (a) Temperature profile applied to case 4 for
C-control with parameters p1 5 36.56, p2 5
11.5, p3 5 0.4185, and p4 5 0.03656 (2), the
temperature trajectory reoptimized for the
perturbed model parameters (2 � 2 �), and
the shaded region showing the constraints
on the temperature for C-control; (b) the cor-
responding mass profiles for C-control (Ma,
2; Mb, 2 � 2 �), and for the temperature tra-
jectory reoptimized for the perturbed model
parameters (Ma, *; Mb, 1).
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phase diagram was highly robust to variations in the kinetic
parameters, while providing batch productivity nearly as high
as optimal control applied to batch crystallization with known
parameters, as illustrated in Figure 5c,g and many simulation
studies (not shown here) with variations in y1 to y3 (while
maintaining y4 5 y5 5 0). Although not explicitly included in
the optimization formulation, the operating constraints were
satisfied for the entire range of physicochemical parameters
(see Figure 5), except for a small constraint violation due to
variation in the solubility of a-form crystals that was removed
by slightly shifting the concentration setpoint trajectory away
from the a-solubility curve (Figure 6). Alternatively, shifts in
any solubility curve can be accounted for by updating meas-
urements of the solubility curve whenever there are significant
changes in feedstocks between batch runs. Automated systems
exist for measuring such solubility curves.17,19,26

Published results,2,20 as well as one of the author’s experi-
ence consulting with industry on their polymorphic crystalli-
zations suggest that the solubility curves of most polymorphs
are typically much closer together than for the a and b poly-
morphs of L-glutamic acid (Figure 1).§ If this is true, then
the desired operating region for most polymorphic crystalli-
zations is typically much smaller than for the system investi-
gated in this study, making the robustness of batch control
strategies of much greater importance for most polymorphic
crystallizations. The results in this article indicate that the
design of operating procedures for future polymorphic crys-
tallizations should implement C-control.
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§
This is especially true for enantiomeric polymorphs, in which the solubility

curves intersect.
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