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SVD Controllers for Hz-, Ho3- and p-optimal Control* 
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Ahstraet-Plant structure is utilized for the simplification of 
system analysis and controller synthesis. For plants where the 
directionality is independent of frequency, the singular-value 
decompositioin (SVD) is used to decouple the system into 
nominally independent subsystems of lower dimension. In 
Hz- and H,-optimal control, the controller synthesis can then 
be performed for each of these subsystems independently, 
and the resulting overall SVD controller will be optimal (the 
same will hold for any norm that is invariant under unitary 
transformations). In H,-optimal control the resulting 
controller is also super-optimal, since a controller of 
dimension n X n will minimize the norm in n directions. For 
robust control in terms of the structured singular value ~1, the 
SVD controller is optimal for a practically relevant class of 
block-diagonal structures and uncertainty and performance 
weights. 0 1997 Elsevier Science Ltd. 

Nomenclature 
block-diagonal scaling matrix; 
lower linear fractional transformation (see (5)); 
= U&(s)VH: transfer-function matrix for the plant; 
transfer-function matrix for the controller; 
matrix whose norm is to be minimized in the 
controller synthesis; 
matrix M(s) with the weights removed; 
plant dimension (n X n); 
interconnection matrix for the synthesis problem; 
‘real Fourier matrix’; real, unitary eigenvector 
matrix for symmetric circulant matrices; 
Laplace variable; 
output singular vector matrix of the plant G(s); 
output singular vector matrix for output weight i; 
input singular vector matrix of the plant G(s); 
input singular vector matrix for input weight i; 
= diag {W,,(s)}: block-diagonal matrix of weights for 
the inputs to M(s); 
= diag {W,(s)}: block-diagonal matrix of weights for 
the outputs from M(s); 
block-diagonal matrix of perturbations; 
ith block on the diagonal of A (of the same size as 
G(s)); 
structured singular value; 
singular value; 
largest singular value; 
matrix of singular values; 
frequency. 
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Subscripts 
I input to synthesis problem; 

0 output from synthesis problem; 
i block i on the diagonal of a block-diagonal matrix, 
j singular value j. 

Superscripts 
H Hermiatian (complex-conjugate transpose); 

denotes that the matrix has been transformed by 
pre- and postmultiplication with unitary matrices. 

1. Introduction 
In this paper we study SVD controllers, which we define to 
have the form 

K(s) = VZ,(s)P, (1) 

where Z,(s) is a diagonal matrix with real rational transfer 
functions on the diagonal, and U and V are real unitary (e.g. 
orthogonal) singular vector matrices that are derived from a 
singular-value decomposition (SVD) of the plant G(s). Here 
H indicates the Hermitian (complex conjugate transpose), 
which for real matrices is equal to the transpose, i.e. 
iJn=UT. 

SVD controllers have been studied previously by Hung 
and MacFarlane (1982) and Lau et al. (1985). In both these 
references the SV‘D structure is essentiahy used to counteract 
interactions at one given frequency, since the problems 
considered are such that U and V change with frequency. 
However, in this paper we consider a class of problems for 
which U and V are constant at ail frequencies and can be 
chosen to be real. Restricting our attention to these cases 
allows us to address the optimality of the SVD controller for 
Hz-, H,- and p-optimal control. To be more specific, we 
consider plants G(s) of dimension n X n that can be 
decomposed into 

G(s) = UZ,(s)V “, k(s) = diag hi(s)}, (2) 

where the output and input rotation matrices U and V are 
constant real unitary matrices, and &(s) is a diagonal matrix 
with real rational transfer functions on the diagonal. The 
requirement for KG(s) to have rational transfer-function 
elements arises because we use state-space-based controller 
synthesis methods, and need the elements to be realizable. 
Restricting U and V to be real implies that the controller 
K(s) will always be realizable, provided that Z,(s) is 
realizable. 

Equation (2) is the singular-value decomposition of the 
plant G(s), with the slight modification that the diagonal 
elements of Z,(s), which we shall refer to as singular values, 
have phase, and without necessarily requiring that the 
singular values in Z,(s) are ordered according to their 
magnitudes. At a given frequency, any transfer function can 
be decomposed into its singular-value decomposition, but we 
are here assuming that the rotation matrices U and V are 
independent of frequency. In this case the singular-value 
decomposition can be used to decompose the plant into n 
‘subplants’ u&s) (the diagonal elements of Z&-(S)). To 
simplify the presentation, in this paper we consider only 
SISO subplants, but it is straightforward to generalize the 
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results to cases where unitary transformations decompose the 
plant into MIMO subplants; that is, Z,(s) is block-diagonal 
(for details see Hovd and Skogestad, 1994a). 

The two main contributions of this paper are to show that, 
under certain mild conditions on the control problem 
weights, there exists an optimal SVD controller for a plant of 
the form in (2) and that the controller design can be 
simplified for such problems. The basis for these results is 
that the Hz and H, norms 

Trace [M”( ju)M( jw)] dw. 

are invariant under unitary scalings. To make use of this 
property, we must have that not only the plant but the 
control problem as a whole (including the weights) can be 
‘diagonalized’ by unitary matrices. For the diagonalized 
problem we show that there exists a diagonal controller that 
is optimal, from which an optimal SVD controller for the 
original problem can be constructed. Furthermore, controller 
design is simplified. since the elements of the diagonal 
controller can be obtained by performing controller synthesis 
on n independenr subsystems involving Z,(s). We show that 
in the H, case the resulting controller is super-optimal, since 
the norm is minimized in the worst direction for each of 
these subsystems. 

These results have not to our knowledge been presented 
before in the literature, at least not in this genera1 form. This 
is somewhat surprising, since plants of the form in (2) are 
common in practical applications. This paper extends the 
results of Hovd and Skogestad (1994a), by proving that, 
under certain conditions, an SVD controller is optimal when 
we consider robust H, performance (i.e. F-optimal control) 
and have model uncertainty, which allows for plants that may 
not be of the form in (2) (although the nominal plant is of 
this form). In particular, we find that. with some mild 
conditions on the weights, the results holds for any 
combination of full-block (unstructured) and repeated 
diagonal complex uncertainty. 

2. Examples of plants described by SVD 
In this section we provide examples of plants that can be 

expressed in the form given in (2). The multivariable 
directionality of these plants, as expressed by the two 
singular vector matrices U and V. does not change with 
frequency, and U and V are real. The following two classes of 
plants are of special interest in applications: 

A. Plants with scalar dynamics multiplied by a constant 

matrix. Let 
G(s) = k(s)A. (3) 

where A is a constant real matrix. Plant models of this form 
occur frequently in practice, at least in the chemical process 
industries, where the control engineer often chooses to work 
with very crude models. 

B. Symmetric circulant plants. Plants with symmetric circul- 
ant transfer matrices are common in practice, and include a 
large number of processes with come symmetric spatial 
arrangement. Examples include paper machines where edge 
effects are neelected (Lauehlin et al.. 1993; Wilhelm and 
Fjeld, 1983), dies for’ plastic films (Martino, 1991). and 
multizone crystal growth furnaces (Abraham and Lunze, 
1991). In general, all symmetric circulant matrices can be 
diagonalized by the same unitary matrix: that is 

C(s) = R7Ac(s)R, (4) 

where R is the real Fourier matrix (for details see Hovd and 
Skogestad, 1994a). This is of the form in (2). with 
U=V=RT. 

A subset of circulant symmetric matrices are called parallel 
matrices, and are described by P = al + bE, where I is the 
identity matrix, E is a matrix with each element equal to one. 
and a and b are real scalars. Parallel transfer function 

matrices occur frequently in the process industries, and arise 
whenever there are identical units in parallel that interact 
with each other. Examples are found in distribution 
networks, when there are parallel units (e.g. reactors, 
compressors, pumps and heat exchangers) in a chemical plant 
(Shinskev. 1979. 1984: Hovd and Skoeestad. 1994a). in 

v 

electric power systems (Lunze, 1986, 1991) in adhesive 
coating provesses (Braatz et al., 1992) and in communication 
between ships (Hazewinkel and Martin, 1983). 

Remark. The set of plants given by (2) is more general than 
the two classes A and B given above, since the first class only 
includes plants for which the diagonal elements of Z&(s) 
have the same dynamic behavior, and the second class only 
includes plants for which U = V. 

3. SVD control problem 
In this section we consider plants that can be decomposed 

into G(s) = UZ,;(s)V” (as shown in (2)) and define more 
exactly the class of control problems covered by the results of 
this paper. For a general control problem, M(s) is the 
closed-loop transfer function between external input signals 
(e.g. disturbances, noise and references) and external output 
signals (e.g. control error and error signals), which we want 
to keep small. The closed-loop transfer function M(s) 
depends on the controller K(s). and the controller synthesis 
problem is to minimize l/Ml1 over the set of all stabilizing 
controllers K. Typical choices of norm include the Hz and the 
H, norms (this is generalized to the structural singular value 
for the case with model uncertainty). The genera1 class of 
SVD problems covered by the results of this paper are 
described below. 

De&C/ion 1. (SVD problem.) Consider an II X n plant 
G(s) = UX,;(s)V H. where U and V are real orthogonal 
matrices and Z&(s) is a diagonal transfer-function matrix. 
Consider a control problem where the objective is to design a 
feedback controller K(s) that minimizes a unitary invariant 
norm of 

M(s) = w,,(s)&(s)N), 
where 

M(s) = F,(N(s). K(s)) 

= N,,(s) + N,,(s)K(s)[l - N&W(S)1 ‘N*,(s). C.5) 

The interconnection matrix N(s) is a function of the plant 
model and the weights, but is independent of the controller 
K. 

The weighting matrices W,(s) and W,(s) are defined to be 
block-diagonal, with each block having dimensions com- 
patible with the dimensions of the subblocks containing G(s) 
and K(s) in M,,(s): 

t%(s) = diag {W,,,(s)), l%,(s) = &&&)l%. 

W,(s) = diag{Wi,(s)l, K(s) = Li,,&,,(.r)V!. 

with V(,, and U,, sattstymg 

l t’,,, = 0 when W,,,(s) premultiplies G(s) in subblocks ot 
M,,(s): 

l V,,, = V when W,,,(s) premultiplies K(s) in subblocks of 
M&s ): 

l U,, = V when W,,(s) postmultiplies G(s) in subblocks of 
M,,(s): 

l U,, = U when W,,(s) postmultiplies K(s) in subblocks of 
M,,(s). 

In the above definition the terms ‘premultiply’ and 
‘postmultiply’ are used in a general sense: for instance, in the 
formula W&I + GK)-‘W, the weight W, premultiplies G 
and W, postmultiplies K. There are no requirements on the 
other matrices in the weights, other than UO, and V,, being 
unitary and B,+,,(s) and X,,(s) being diagonal. 

Remark 1. The definition of an SVD control problem may 
seem restrictive and complicated. but the conditions on the 
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weights are satisfied for most problems with a plant of the 
form G(s) = z/&(s)V”. 

Remark 2. Essentially, the weights must be consistent with 
the plant G(s), such that, after substituting G(s) = 
.!I&-(s)V” and K(s) = V&(s)U” into Me(s), the unitary 
matrices U and V are cancelled by the weights when forming 
M(s), in the sense that we can write M(s) = U,fi(s)V~, 
where all the blocks of M(s) are diagonal. A similar 
transformation may be used to obtain a block-diagonal N(s), 
but, since N(s) is independent of the controller, we do not 
need to assume an SVD controller to achieve this. This is 
important when proving that the SVD controller is actually 
optimal (see the next section). 

Remark 3. Scalar-times-identity weights W;(s) = q(s)/ 
always satisfy the conditions of an SVD problem, since 
W,(S)f = Uw,(s)U” = Vw,(s)V”. 

4. Hz- and Hz-optimal control 
For an SVD problem, N(s) will be such that there exist 

block-diagonal unitary matrices 

U, = diag {diag {Uoi}, U}, VW = diag {diag {Vu}, V} (6) 

such that 

A(s) = UH,N(s)V, (7) 

is a matrix consisting of diagonal subblocks. The rows and 
columns of N(s) can be rearranged to @ve a block-diagonal 
matrix, for which an optimal controller K can be constructed 
by solving n SISO independent optimal controller synthesis 
problems for each subblock (this is proved in Hovd et al., 
i996). An optimal SVD controller -for the original N is 
constructed from K = VRZJ”. The result also applies to any 
other norm that is invariant under unitary transformations. 

Theorem 1. (Hz- and H,-optimality.) Consider an SVD 
problem (Definition 1). Then 

0) 

(ii) 

There exists an SVD controller that is Hz 
( HZ)-optimal. 

(iii) 

The optimal controller can be computed by designing 
n independent SISO Hz (H,)-optimal controllers, one 
for each of the SISO subplants of the plant. 

For H,-optimal control, this controller is super- 
optimal; that is, the H, objective is optimized in n 
directions. 

Proof See Hovd et al. (1996) for a detailed proof and Hovd ..__. _ . _ 
and Skogestad (1994a) for a more general but less detailed 
proof. 0 

Remark 1. The number of states of the controller computed 
via Theorem 1 is equal to the number of states of a controller 
based on regular H, synthesis (Hovd et al., 1996). That is, for 
this class of problems, super-optimality does not require a 
controller with a higher number of states. 

Remark 2. In general, we solve n independent synthesis 
subproblems of low dimension. In some cases the problem is 
even further reduced in size, since some of these 
subproblems are identical. For example, for the case of 
symmetric circulant systems we need only solve $(n + 1) 
SISO problems for odd n and :n + 1 problem for even n. In 
the case of parallel processes we need only solve two 
independent subproblems (since n - 1 subproblems are 
identical). For details see Hovd and Skogestad (1994a). 

Remark 3. The theorem may be generalized to cases where 
the subplants uci(s) are matrices. For example, see Hovd 
and Skogestad (1994a), which considered the special case of 
symmetric circulant plants. 

5. p-optimal control 
In this section we shall generalize the H, problem studied 

above to the design of robust optimal controllers. This 

control problem results when we introduce model uncer- 
tainty and want to minimize the H, norm for robust 
performance, or alternatively want to optimize robust 
stability. 

5.1. The structured singular value. The structured singular 
value p takes uncertainty in a feedback system explicitly into 
account. Readers not familiar with the structured singular 
value are referred to Doyle (1982); only a very brief 
introduction will be. given here. The uncertainties in the 
system are modeled with H, norm-bounded perturbation 
blocks with weights to normalize the maximum singular value 
of each perturbation block to unity. The block diagram for 
the feedback system is then rearranged to give an 
interconnection matrix M(s) and a block-diagonal matrix A 
with the perturbation blocks along the diagonal (see Fig. 1). 
If A is a full matrix (i.e. A has no structure), the controller 
synthesis problem is a H, problem, and is covered by the 
results of the previous section. Otherwise, the structured 
singular value is needed to account for the uncertainty in a 
nonconservative manner. 

The structured singular value with respect to the 
uncertainty structure A is defined as 

f 0 if there does not exist A such 

CL(M) - 
that det (I + MA) = 0, 

[m?{*(A) 1 det (I + MA) =o)]-’ 
(8) 

otherwise. 

Currently no simple computational method exists for exactly 
calculating p in general, and recent work suggests that an 
efficient exact method is most likely not possible (Braatz er 
of., 1994). This motivates the common practice, which is to 
compute instead the upper bound 

p(M) 5 igf t?(DMD-I), (9) 

where D is an invertible matrix with a structure such that 
D-’ AD = A. For example, D = dl if A is a full matrix, and D 
is a full matrix if A is repeated-diagonal (A = 81). For 
complex uncertainties the upper bound (9) is equal to p for 
three or fewer full blocks (Doyle, 1982), and usually within 
l-2% when there are no repeated blocks (Balas et al., 1991). 
A controller that minimizes the upper bound for p in (9) will 
be said to be DMD-‘-optimal. 

Another reason for using the upper bound is that the goal 
of the most popular procedure for designing robust 
controllers, called DK iteration, is to minimize the upper 
bound. Also, when all the uncertainties are full and complex, 
the upper bound is a necessary and sufficient condition for 
robustness to arbitrarily slow time-varying linear uncertainty 
(for details see Poolla and Tikku, 1995). It can be argued that 
this uncertainty description may be more useful for practical 
control problems. 

The standard DK-iteration procedure (Doyle and Chu, 
1985) attempts to find the DMD-‘-optimal controller. DK 
iteration involves alternating between the following two steps 
until the upper bound is no longer minimized. 

D Step. Find D(s) to minimize frequency-by-frequency the 
upper bound on p in (9). 

K Step. Scale the controller design problem with D(s), and 
design an H,-optimal controher for the scaled design 
problem DMD-‘. 

Although convergence to the global optimum is not 
guaranteed, DK iteration appears to work well for processes 
of low dimensionality (Doyle and Chu, 1985). 

Fig. 1. Equivalent representations of system M with. 
perturbation A. 
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5.2. Strucfure of rhe uncertainty. It is important to note that 
A often has two levels of structure. First, A is often composed 
of subblocks A, of the same size as G: 

A = diag {A,}. (10) 

These subblocks may represent different sources of 
uncertainty in the system. For example, actuator uncertainty 
is located at the input of the plant, and is commonly modeled 
as multiplicative input uncertainty, i.e. A, = A,. Second, each 
subblock A, may have structure to reduce conservatism. For 
example, actuators may not influence each other. so 
uncertainty associated with these actuators would be 
described by a diagonal A,. The most common (and useful 
structures for the subblocks A, are 

l full block uncertainty, where A, is a full matrix: 

l independent diagonal uncertainty, A, = diag {a,,}. j = 
1, , n, is a diagonal matrix, 

l repeated diagonal uncertainty, where A, = 6,/, i.e. a scalar 
uncertainty 6, multiplied with an identity matrix. 

5.3. p-optimality of SVD controllers. The uncertainty 
weights must satisfy certain conditions to ensure CL-optimality 
of the SVD controllers. 

Definition 2: Robust SVD problems. Consider an SVD 
problem with M(s) = W,,(s)M,(s)W,(s) as in Definition 1. 
and multiple sources of uncertainty A = diag{A,}, as 
illustrated in Fig. 1. In addition to the requirements of 
Definition 1 the weights W,, = UCJwO,(s)V&(s) and 
W,, = ~!&&,js)V~(s) related to each A, should fulfill the 
following: 

(i) UC,, = V,, for all repeated diagonal uncertainty. 
A, = ?&I: 

(ii) V,,, = V,, = I for all independent diagonal uncertainty. 
A,=diag{&}. k=l,..., n. 

Remark 1. For a ‘full’ (unstructured) uncertainty block A, no 
further requirements on the weights are needed. 

Remark 2. Requirement (i) for repeated diagonal blocks 
holds regardless of the uncertainty’s location when the plant 
is described by a normal transfer-function matrix (e.g. 
symmetric circulant plants) and the weights are repeated- 
diagonal. 

Remark 3. Requirement (ii) on the weights for independent 
diagonal uncertainty is very restrictive. For example, it allows 
for scalar-times-identity weights only for cases when I/ or V 
are equal to the identity matrix (that is, the inputs or outputs 
to the plant are naturally aligned in the direction of the 
singular values). 

Now we show that for this class of problems the 
interconnection matrix N can be pre- and postmultiplied by 
block-diagonal unitary -matrices to arrive at an equivalent 
interconnection matrix N consisting of diagonal subblocks. 

Lemma 1. Let k be defined as in (6) and (7). For 
p-optimality and DMD-‘-optimality of robust SVD 
problems (Definition 2). the ‘diagonalized’ control problem is 
equivalent to the original problem. in the sense that 

min p(F,(N, K)) = mp ~(h(fi, R)), (11) 
K 

rnin in,f [DF,(N. K)D ~‘I= m$n i;f [DF,(&‘. R)D -‘]. (12) 

where both fl problems are with respect to the uncertainty in 
the original control problem, and the structure of the D 
matrices in both DMD-’ problems is compatible with this 
uncertainty. 

Proof In the block diagram for the system, replace G with 
U&(s)VH, and substitute in the weights W,,(s) and y<;,,(s). 
Rearranging the block diagram (see Fig. 1) gives N with 

diagonal subblocks, with the subblocks of d given by 
A, = VyA,U,,. Note that. under the assumptions on U,, 
and VI, in Definition 2, 

(i) A, is full if and only if A, is full; 

(ii) & is repeated-diagonal if and only if A, is 
repeated-diagonal; 

(iii) A, is independent-diagonal if and only if A, is 
independent-diagonal. 

Thus in Fig. 1 the middle block diagram is equivalent to the 
rightmost block diagram. 

A similar argument holds with regard to the upper bound 
of I*. Under the assumptions on U,, and VOi, for each 
diagonal or full block A, the corresponding D, and its inverse 
commute with (I,, and V,,. For repeated diagonal blocks the 
V,, and VO, can be absorbed into the 0,. 0 

The following results on the optimality of the SVD 
controller follow from Theorem 1 and Lemma 1. 

Theorem 2. (DMD .~ ‘-opfimality). Consider an SVD problem 
where the objective is to minimize supw min, llDMD~‘/~,, 
where D-’ AD = A. Assume that all uncertainty blocks A, 
are full blocks. Then 

(i) there exists an SVD controller that is optimal; 

(ii) if DK iteration is used to obtain the optimal controller, 
the K step (with fixed D) consists of n independent 
SISO K-optimal control problems, one for each of 
the SISO subplants gG;, of G(s). 

Prooj Let N denote the interconnection matrix correspond- 
ing to M. where N has a block structure corresponding to the 
uncertainties A,. With fixed D scales, we may absorb D and 
D ’ into N to get 

^ ^ 
N,, = DND -‘, b = diag {D, I}. 

We are then left with an H, problem in terms of No. Since 
all uncertainty blocks A, are full, the D scales are of the form 
D = diag {D,}, D, = d,l,. Then the only difference between N 
and No will be that of the off-diagonal blocks are multiplied 
by scalars. Thus the structure of each block in ND will be the 
same as in N, and we can use the transformation 
ND(s) = UHwiy(s)V, to obtain an hD with diagonal blocks. 
Subsequent permutations yield a block-diagonal I%‘~. This 
implies that for a fixed D there exists an optimal SVD 
controller that can be obtained by solving n independent 
SISO H, problems. Since an SVD controller is optimal for 
any fixed D, this structure must also be optimal for the 
optimal D. 0 

Theorem 3. (p-optimaliry.) Consider a robust SVD problem 
where the objective is to minimize sup, p(M). Assume that 
all uncertainty blocks A, are diagonal (repeated or 
independent) except possibly one full block. Then 

(i) there exists an SVD controller that is optimal; 

(ii) the p-optimal control problem decouples into n 
independent SISO p-optimal control problems, one 
for each of the SISO subplants of the plant. 

(iii) For the case in which one of the uncertainties is a full 
block, the full block can be replaced by a diagonal 
(repeated or independent) block without affecting the 
value of the p objective. 

Proof: If all uncertainty blocks A, are diagonal (including 
repeated diagonal uncertainty) then the system consists of 
independent subsystems. If one uncertainty block is full then 
the diagonal uncertainty blocks can be absorbed into the 
interconnection matrix to get a ‘reduced’ fi that still consists 
of diagonal subblocks after absorbing the diagonal 
uncertainty blocks. Whatever the values of the diagonal 
blocks, Theorem 1 implies that an SVD controller is optimal 
for this ‘reduced’ control problem. Thus an SVD controller is 
optimal for the original or. problem. Since the M matrix for 
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the ‘reduced’ control problem is diagonal, the full-block 
uncertainty block can be replaced with repeated scalar blocks 
without affecting the value of the worst-case performance 
objective. Hence all of the uncertainty can be taken to be 
diagonal, and the p-otpimal control problem decouples into 
n independent SISO p-optimal control problems. 0 

The above results complement each other in that Theorem 
2 handles one form of uncertainty (full) and Theorem 3 
handles the other (diagonal). Both types of uncertainty can 
be handled by assuming that p is equal to its upper bound. 

Theorem 4. (u and DMD-’ optimality.) Consider a robust 
SVD control problem (Definition 2), and assume that p is 
equal to its upper bound (9). Then 

(i) there exists an SVD controller that is p-optimal; 
(ii) for the DK iteration procedure, the K step consists of 

n independent SISO &optimal control problems, 
one for each of the SISO subplants of the plant; 

(iii) for repeated diagonal uncertainty, D, can be taken to 
be diagonal rather than full in the D step. 

Proof All diagonal blocks (repeated or independent) can be 
absorbed into the interconnection matrix N without changing 
its structure. By Theorem 2 an SVD controller is optimal for 
this ‘reduced’ control problem for all values of the diagonal 
blocks. Thus an SVD controller is optimal for the original /.L 
problem. 

For independent-diagonal and full-block Ai, Di is diagonal 
and cannot induce interaction between individual subprob- 
lems. This also holds for Di corresponding to repeated- 
diagonal Ai = &I. To see this, again consider the ‘reduced’ 
control problem. If the Di corresponding to the repeated 
diagonal blocks introduced interaction between subproblems, 
they would effectively allow for a larger class of uncertainty 
than the original uncertainty description. 

Scalings Di that do not cause interactions between 
subproblems are parameterized by unitary-times-diagonal 
matrices. The unitary matrices do not affect the value of the 
H, norm, so can be ignored. 0 

The assumption that p is equal to its upper bound is not 
restrictive (see Section 5.1). 

Theorems l-4 state that there exists an optimal SVD 
controller for classes of problems of engineering interest. 
Hovd et al. (1996) consider other classes of problems for 
which an SVD controller may not be optimal, but where a 
substantial simplification in system analysis and controller 
synthesis results in selecting the controller to be of SVD 
form. In particular, conditions are given on the weights and 

Table 1. Algorithm for p-optimal SVD controllers using DK 
iteration 

1. Test whether the problem is a robust SVD problem as 
given by Definitions 1 and 2. If the structure of an 
uncertainty Ai and its corresponding weights W;(s) do not 
satisfv Definition 2. then an SVD controller may not be 
optimal. To use the design procedure, treat the 
uncertainty as a full block, realizing that this is potentially 
conservative. 

2. Form R(s) as given by (7) and rearrange it such that it is 
block-diagonal. 

3. Delete all identical subproblems in N. 
4. K step. Design an H,-optimal controller for each 

@dependent unique subproblem, and collect the optimal 
Ki(s) (without repetitions) into a diagonal matrix. 

5. D step: Calculate the tight upper bound on p in (9) and 
obtain D(s). Return to Step 4 until DK iteration 
converges. 

6. Collect the optimal K,(s) (including repetitions for 
identical subproblems) into a diagonal matrix Z,(s). 
Form K(s) = V&(s)UH. 

7. If the DK-iteration procedure converged to the global 
minimum then this would be the p-optimal controller 
under the assumptions of Theorem 4, for the uncertainty 
assumed in Step 1 of this algorithm. 

on the source of uncertainty for which an H,-optimal 
controller is p-optimal irrespective of the structure of the 
uncertainty block. 
5.4. DK iteration: reduction of computational effort. The 
above results can be used to reduce. the computational effort 
involved in the K step of the DK-iteration procedure in two 
ways. First, instead of solving one large H,-synthesis 
problem, one may solve n smaller Hz-synthesis subproblems. 
Second, some of these n subproblems may be repeated 
(identical); for example, this occurs for the important case 
when both the plant and weights are symmetric circulant (or 
parallel). In general, the computational effort is not reduced 
in the D step where the upper bound to p is computed, since 
for the case of full block uncertainty we have D = dl, so d 
should be the same for all subproblems. This restriction is 
difficult to incorporate unless a simultaneous approach is 
used. However, all repeated subproblems need only be 
considered once in computing the Di (see (iii) in Theorem 4). 
Thus repeated subproblems can be deleted before starting 
the DK-iteration design procedure, and for a large number 
of subsystems the size of the DK-iteration and p-analysis 
problems can be reduced dramatically. 

When all uncertainty blocks are diagonal except possibly 
one full block, and the weights for the diagonal blocks satisfy 
Definition 2, the subproblems can be considered indepen- 
dently for the D step, since the 0, corresponding to the full 
block can be normalized to be the identity matrix. The 
general DK-iteration procedure for designing SVD controller 
for SVD problems is summarized in Table 1. Performing DK 
iteration on the transformed system will converge faster and 
is numerically better conditioned than on the original system. 
This is both because the H, subproblems are smaller than the 
original problem, and because the algorithm will be 
initialized with a controller that has the correct (optimal) 
directionality. This will be illustrated in the examples. 

6. Examples 
The following examples illustrate the computational 

usefulness of the results of this paper. 

Example 1: Distillation column. Consider the robust con- 
troller design problem for the simplified distillation column 
introduced by Skogestad et al. (1988), which has been used as 
a benchmark problem for comparing methods for robust 
controller design (Freudenberg, 1989, Chen and Freuden- 
berg, 1990, Yaniv and Barlev, 1990; Limebeer, 1991; 
Lundstrom et al., 1991; Lin, 1992). Theorem 4 implies that 
(at least for the case with full block uncertainty) there exists 
an SVD controller that is p-optimal for this design problem 
(for details see Hovd et al., 19%). This knowledge can be 
used to design an SVD controller that is nearly p-optimal 
that has only four states (Hovd et al., 1996). 

Example 2: Parallel reactors with combined precooling. A 
simplified model G(s) of four parallel reactors with 
combined precooling (Skogestad et al., 1989) is 

rl 0.7 0.7 a.77 

(13) 

Lo.7 0.7 0.7 1 J 

The real Fourier matrix diagonalixes the plant (Hovd et al., 
19%); that is, G(s) = RH&(s)R, where the plant singular 
values are 1)1 

UGGI(S) =J.I 
1oas+l 

c&(s) = flG&) = u&s) = & 

Consider the process with input and output uncertainty as 
shown in Fig. 2. The input uncertainty A, and output 

Fig. 2. Block diagram for plant with uncertainties in 
Example 2. 
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uncertainty A, are both assumed to be independent-diagonal, 
with uncertainty weights W,(s) = diag{0.2(% + l)/(OSs + l)} 
and W,(s) = diag {0.2(2.5s + 1)/(0.25s + l)}. To reject distur- 
bances at the plant output, we include the performance 
specification c( W&J < 1 VW, with W&) = diag {O.S(loS + 
l)/lCb}. The overall problem (before SVD reduction) has 
two diagonal 4 X 4 uncertainty blocks and one full1 4 x 4 
performance block, and we get a 12 X 12 interconnection 
matrix: 

-W,KG(I + KG))’ -W,K(I + GK) ’ 
M= 

i 

W,G(I + KG) ’ - W,GK(I + GK)-’ 

-N’,G(I + KG)-’ -W,(I + GK)-~’ 

W,K(I+GK)-’ 

XW,GK(I+GK) ’ 
W3(I + GK)-’ 1 

(14) 

In order to make this a robust SVD problem (see Definition 
2), we need to assume that all the uncertainty blocks are full. 
Then there are three full blocks and p is equal to its upper 
bound. Theorem 4 implies that there exists an SVD 
controller that is p-optimal for this potentially conservative 
case. In addition, three of the four subproblems in fi are 
identical in the algorithm for p-optimal SVD controllers 
(Table 1). Thus in DK iteration we may solve two 3 X 3 
independent H, problems in the K step, and obtain the 
scalings d,(s) and d2(s) from a 6 X 6 matrix M in the D step. 
Using this procedure, we were able to find a controller 
resulting in a p value of 0.93. For brevity, the state space 
representation of the eigenvalues of this controller is given 
elsewhere (Hovd ef al., 1996). 

Thereafter we attempted to use DK iteration to improve 
the controller design by using the true diagonal structure for 
the uncertainties A, and AZ, the original 12 x 12 interconnec- 
tion matrix (14), and the above controller as a starting point. 
However, we found that this increased the complexity of the 
controller synthesis problem so much that we were unable to 
improve the design using DK iteration. The best controller 
the software was able to obtain had a fi value of 0.96, which 
is larger than the fi value for the controller the algorithm was 
initialized with. This result shows that there are numerical 
inaccuracies with the off-the-shelf software. It also 
demonstrates the important advantage of reduced problem 
size that results from applying our method. 

I. Discussion 
The SVD structure can be used for designing controllers 

with a low number of states. Using V as a precompensator 
and LI” as a postcompensator, we are left with n SISO 
controllers to design for a plant of dimension n X n. This 
design problem is similar to the conventional decentralized 
control problem (e.g. Hovd and Skogestad, 1994b), and may 
be solved by sequential design, independent design or 
simultaneous design (parameter optimization). The last 
approach was used in Example 1. 

Several authors have proposed to design controllers with 
the SVD structure based on the SVD of the plant at some 
important frequency (Lau et al., 1985: Hung and 
MacFarlane. 1982). The results of this paper imply that the 
SVD structure is optimal at that fixed frequency (with some 
restrictions on the structures of the perturbation blocks given 
in Definition 2) thus providing a theoretical justification for 
such design procedures. These design methods should 
perform well for process control problems that do not have U 
and V varying rapidly as a function frequency, but may 
perform poorly for other processes such as flexible structures. 

A simple lower bound on the achievable value for the 
upper bound to r.~ can be computed by applying the 
algorithm to minimize the upper bound at each frequency 
(Lee et al., 1995). Because each design subproblem at a fixed 
frequency only involves finding one complex scalar, the 
synthesis part is very simple (the state-space algorithm need 
not be used). This frequency-by frequency approach will not 
yield a realizable controller, since issues such as causality and 
phase-gain relationships are ignored. However, this is a valid 
lower bound on the achievable performance by a realizable 

controller, and can be a useful controllability measure (Lee er 
al.. 1995). 

The results of this paper are easily generalized to cases 
with multivariable, possibly nonsquare subplants. Synthesis 
problems similar to class B in Section 2 arise naturally 
whenever identical multivariable plants are arranged in 
parallel or in a symmetric manner. 

8. Conclusions 
For plants where the directionality is independent of 

frequency, the singular-value decomposition (SVD) is used 
to decouple the system into nominally independent 
subsystems of lower dimension. In Hz- and H,-optimal 
control, the controller synthesis can then be performed for 
each of these subsystems independently, and the resulting 
overall SVD controller will be optimal (the same will hold 
for any norm that is invariant under unitary transformations). 
In H,-optimal control the resulting controller is also 
super-optimal, since a controller of dimension n x n will 
minimize the norm in n directions. 

For robust control in terms of the structured singular value 
p, the SVD controller is optimal for a wide class of systems 
with full-block and repeated-diagonal complex uncertainty. 
Substantial computational savings can be achieved in the 
controller synthesis step of the DK-iteration scheme. The 
results of this paper provide a theoretical justification of 
controller synthesis methods proposed by other authors. 
Other applications of the SVD controller were described, 
including its use for low-order controller design, and in 
efficiently computing controllability measures. 

An extended version of this paper is available as a 
technical report (Hovd er al., 1996). 
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