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SUMMARY

The well-known scaled small gain condition guarantees stability for a linear time invariant system subject to
bounded complex nonlinear and/or time-varying perturbations. A polynomial time computable condition is
derived that can be substantially less conservative for gain scheduled and other multivariable systems with
repeated real time-varying parameters. The proof is a generalization of the purely-complex case given in
Andrew Packard’s thesis.
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1. INTRODUCTION

Many nonlinear and/or time-varying phenomena encountered in chemical and mechanical
processes can be treated as bounded nonlinear and/or time-varying perturbations to a linear time
invariant system.2~4 The optimally scaled small gain theorem provides a sufficient condition for
the closed-loop stability of such systems.2,4, 5 Although this condition is also necessary for
various sets of complex norm-bounded operators,6~9 it is well known that it can be an extremely
conservative stability condition for other perturbations.

Numerous researchers have exploited additional information to reduce the conservatism in the
scaled small gain theorem. The early work focused on systems with a single nonlinearity or
time-varying parameter.2,10~19 Boyd and Yang20 developed a stability condition for systems
with general linear fractional dependence on non-repeated real and complex time-varying
parameters in terms of a number of linear matrix inequalities that grow exponentially as
a function of the number of real parameters. Becker et al.21 explicitly took into account the real
nature of time-varying parameters for multivariable systems with affine parameter dependence.
Jönsson and Rantzer22 and Megretski23 have derived conditions for system stability for multi-
variable systems with linear fractional dependence on non-repeated real time-varying parameters
with bounded gain and bounded time variation.

This note derives a sufficient stability condition for multivariable systems with general linear
fractional dependence on repeated and full block, real and complex, time-varying parameters.
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The condition is computable in polynomial time as a function of the number of parameters and
states, and is derived with a minimum of mathematical machinery. The condition is shown to be
substantially less conservative for multivariable systems with repeated real time-varying para-
meters, as occurs in the linear fractional approach to gain scheduling.3

The proof of the condition does not require the use of positivity/multiplier theory,13,24,25
integral quadratic constraints,22 or the explicit construction of a quadratic Lyaponov func-
tion21, 26, 27 but follows only from basic properties of the structured singular value. Although the
proof does not rely on notions of quadratic stability, the results are closely related, in a similar
manner as for the purely-complex case.27 Packard and Doyle27 used the quadratic stability
approach to derive the condition for the case where all the parameters are complex (the ‘real’ in the
title of Reference 27 refers only to a counter-example that shows that whether a time-varying
parameter is real or complex may affect the stability of the system). This note generalizes an
alternative proof that appears in Packard’s thesis1 to the case with mixed real and complex real
time-varying parameters. This generalization is much more straightforward than directly generaliz-
ing the quadratic stability approach taken in Reference 27. To the author’s knowledge the results
and the method of proof have not before appeared in either proceedings or journal publication.

2. MATHEMATICAL PRELIMINARIES

Below we provide definitions and review prior results.

Linear fractional transformations

System interconnections are characterized using linear fractional transformations (see Figure 1).
With
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Structured singular value

Doyle28 and Safonov29 defined the structured singular value, k, as a tool for analysing the
robustness of uncertain systems. Without loss of generality we assume that each *

i
and M is

square.1,30 The definition of k for mixed real and complex perturbations follows.

Definition 2.1

Let M3Cn]n be a square complex matrix and define the set D by
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Figure 1. Linear fractional transformations and the M—* block structures

whereR is the set of real numbers,C is the set of complex numbers,Cr]r is the set of complex r]r
matrices, and I

r
is the identity matrix of rank r. Then k*(M) (the structured singular value with

respect to the uncertainty structure D) is defined by

k*(M)"G
0 if there does not exist *3D such that det(I!M*)"0

Cmin
*3D
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~1

otherwise
(4)

The following result has proven useful for relating various kinds of robustness problems.1,31

Theorem 2.2. (Main loop theorem)

Consider the block diagrams in Figure 1, where M is a complex matrix and *
1

has block
structure as shown in (3). The following equivalence holds:
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Upper bound of k

Define two subsets of Cn]n
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where O
r
is the r]r zero matrix, and D* is the complex conjugate transpose of D. Then
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where MI ,DMD~1, and jM (A) is the maximum eigenvalue of A (this result is from Fan, Tits and
Doyle32).
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The computation of the upper bound in (8) can be formulated in terms of a linear matrix
inequality, whose solution can be calculated in polynomial time using off-the-shelf software.33~35

Although a gap may exist between the upper bound and k, the gap is usually small for complex
*.1 The gap may be larger when some of the perturbations are real or repeated. The popular use
of the upper bound is motivated by the fact that k computation is NP-hard (see Reference 36 and
the references therein).

3. STABILITY WITH MIXED TIME-VARYING PARAMETERS

Consider the equivalent block diagrams in Figure 2, where the discrete-time nominal transfer
function M (z)"C(zI!A)~1B#D, and

N"C
A
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DD (9)

Provided that the parameters are bounded, weights can always be chosen so that the parameters
are norm bounded by one. Define the set of discrete-time norm-bounded time-varying parameters
with the structure of D (defined in (3)):

Dk,M*(k)3D, pN (* (k)))1, ∀k*0N (10)

Note that the parameters in Dk are allowed to vary arbitrarily fast with time, as long as the unity
norm bound is satisfied at each instance in time.

The discrete-time uncertain system x
k`1

"F
l
(N, *)x

k
is referred to as being exponentially
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Theorem 3.1. (Discrete-time stability with mixed time-varying parameters)

The discrete-time uncertain system x
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l
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k
is exponentially stable if kub*8 (N)(1,

where *3 "[dcIn*], dc3C, and *3D.

Figure 2. Equivalent block diagrams for discrete-time systems
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The stability condition can be formulated in terms of linear matrix inequalities, whose solution
can be computed in polynomial time using off-the-shelf software.33~35 The condition is intuitive,
in that the structure of the perturbation matrix in the upper bound to the k problem is the same as
if 1/z was treated as a complex parameter d

c
(see middle diagram in Figure 2). We will now

consider an example which shows a substantial reduction in conservatism when taking into
account the property that time-varying parameters are typically real.

4. NUMERICAL EXAMPLE

Consider the discrete-time 4]4 closed-loop system (N) given by the state space matrices in
Appendix B (this example is purely mathematical). The eigenvalues of A are M!0·1407, 0·3961,
0·3349, 0·1725N, which all have magnitude less than one, implying that M(z) is nominally stable.
The perturbation Dk consists of a real time-varying parameter repeated four times. If the
parameter is treated as being complex, then the computed stability margin is

kub*8 (N)"3·57'1 (11)

which does not imply the stability of the closed-loop system. If we take the real nature of the
parameter into account, then the stability margin is

kub*8 (N)"0·98(1 (12)

and exponential stability is guaranteed.

5. REVELANCE TO GAIN SCHEDULING

Theorem 3.1 is equivalent to the scaled small gain condition when the perturbation matrix D is
complex.1 Although these results can substantially reduce the conservatism by taking into
account the real nature of the time-varying parameters, the following lemma (which follows from
results in Reference 31) shows that there is no reduction in conservatism when all the subblocks of
* are independent scalars.

Lemma 5.1

Theorem 3.1 is no less conservative than the optimally scaled small gain theorem when all the
subblocks of * are independent scalars.

The example in Section 4 showed that the conservatism can be reduced when the para-
meters are repeated scalar. Many systems of practical interest have repeated time-varying
parameters. One example occurs in the linear fractional transformation approach to
gain scheduling.3 Both the plant and the gain-scheduling controller are treated as LFTs
of a linear time invariant system and the same time-varying parameters of the plant (which
are assumed to be measured or estimated, see Reference 3 for details). Because both the
controller and the plant depend on the parameters, Theorem 3.1 can be applied to analyse the
global stability for these systems with less conservatism than provided by the scaled small gain
theorem.
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6. CONCLUSIONS

Computable conditions were derived that can be substantially less conservative than the scaled
small gain theorem for gain scheduled and other multivariable systems with repeated time-
varying parameters. The proof is a direct generalization of a proof in Reference 1.

APPENDIX A. PROOF OF THEOREM 3.1

The proof is a direct generalization of arguments given in Chapter 6 of Andy Packard’s thesis.1 Consider the
rightmost of the equivalent block diagrams in Figure 3. The system is described by the difference equation
x
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APPENDIX B. EXAMPLE

A"A
!1·6662 !3·2066 0·2522 4·6348

!3·5907 !6·5803 0·5290 9·3770

!10·0332 !20·5300 1·7744 27·3046

!2·7552 !4·9830 0·3936 7·2349 B (18)

B"A
!1·0801 !0·3601 !0·7408 2·0288

!2·4983 !0·4873 !2·0047 3·8125

!8·2313 !2·7842 !7·3722 11·1384

!1·9733 !0·4020 !1·5071 3·1886 B (19)
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C"A
!6·0014 !11·6816 1·0568 17·1462

!9·0589 !18·0075 1·8934 24·7326

!5·3812 !10·7738 1·1081 14·9160

!8·5404 !16·9704 1·7568 23·4685 B (20)

D"A
!4·5765 !1·1854 !3·6748 7·0926

!7·2120 !2·2428 !6·2854 10·1094

!4·2841 !1·3153 !3·6850 6·1183

!6·7764 !2·0757 !5·8558 9·6079B (21)
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