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On the “Identification and Control of
Dynamical Systems Using Neural Networks”

Ernesto Rios-Patron and Richard D. Braatz

Abstract—It is noted that [1, p. 15, Example 2] has a third equilibrium
state corresponding to the point (0.5, 0.5).

I. REMARKS

In [1], Narendra and Parthasarathy perform an admirable study
of the application of neural networks for identification and control.
We agree with the statement of the authors of [1, p. 15], that
for nonlinear processes, “Some prior information concerning the
input–output behavior of the plant is needed before identification can
be undertaken. This includes the number of equilibrium states of the
unforced system and their stability properties. . ..” The authors then
state that the equilibrium states of the unforced system

yp(k + 1) =
yp(k)yp(k � 1)(yp(k) + 2:5)

1 + y2p(k) + y2p(k � 1)
(1)

are (yp(k); yp(k � 1)) = (0; 0) and (2, 2).
We would like to note that this system has a third equilibrium state,

which corresponds to the point (0.5, 0.5). This equilibrium state is
an unstable saddle point, as can be seen by linearizing (1) around the
equilibrium state (0.5,0.5), and writing the system in state-space form
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The eigenvalues ofA are �1 = 4=3 and �2 = �1=2; giving
j�1j> 1 and j�2j< 1:

Input–output data must be collected around each of these equi-
librium states for the neural network model trained on the data to
adequately capture the fundamental physics of the process. Although
the authors did not describe the third steady state (0.5,0.5), their
identification data did adequately sample the region of state space near
the third steady state, so that the identification procedure produced
an adequate model for the process.
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Comments on “Stochastic Choice of Basis Functions
in Adaptive Function Approximation

and the Functional-Link Net”

Jin-Yan Li and Tommy W. S. Chow

Abstract—This paper includes some comments and amendments of the
above-mentioned paper. Subsequently, Theorem 1 in the above-mentioned
paper has been revised. The significant change of the original theorem is
the space of the thresholds in the hidden layer. The revised theorem says
that the thresholds of hidden units,b0, should be�w0 � y0 � u0, where
w0 = �ŵ0; ŵ0 = (ŵ01; � � � ; ŵ0d), y0 = (y01; � � � ; y0d), and u0 be
independent and uniformly distributed in Vd = [0; 
] � [�
; 
]d�1,
Id, and [�2d
; 2d
], respectively.

I. INTRODUCTION

The above-mentioned paper1 has introduced the random vector
version of the functional-link (RVFL) net. Igelnik and Pao show
the function approximation capability of RVFL by a stochastic
approach based on an limit-integral representation of the function
to be approximated with subsequent evaluation of the integral by
the Monte Carlo method. This stochastic approach is demonstrated
to be an efficient approximation method of multivariate functions
according to its theoretical justification and simulation results. The
most distinctive characteristic of RVFL is that parts of parameters of
RVFL, i.e., the weights and thresholds of hidden layer are selected
randomly, independently and uniformly in the specific spaces. These
parameters of RVFL are fixed and do not require the learning
procedure that conventional networks do. Such property of RVFL
results in a simple and efficient learning algorithm. In that paper,
however, there are several errors in the proof procedure of Theorem
1 such that the selection spaces of random parameters of RVFL are
given in a not exact form. Consequently, the thresholds of hidden
units are calculated incorrectly. Therefore, Theorem 1 of the above-
mentioned paper should be revised. The revised Theorem 1 in this
paper gives more exact selection space for the random parameters of
RVFL. Subsequently, the establishment and training for RVFL will
be subjected to a more appropriate guideline.

II. REVISIONS

First, we give the revised Theorem 1 of the above-mentioned paper.
The Revised Theorem 1:For any compactK, K � Id, K 6= Id

and any absolutely integrable activation functiong such that

R

g
2
(x)dx <1 (1)

there exist a sequence of RVFLff! g and a sequence of probability
measuresf�n
�g such that

�K(f; f! ) �!
n!1

0: (2)

The probability measures�n
�, can be specified as follows. Let
ŵ0 = (ŵ01; � � � ; ŵ0d) , y0 = (y01; � � � ; y0d) andu0 be independent
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