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We propose the use of pseudo-singular values, which are closely related to singular values but
are allowed to have sign, as a convenient approach for developing techniques for the identification
and control of large-scale processes. Steady-state controllability can be assessed directly in terms
of the pseudo-singular values. It is shown that to control an output disturbance direction with
zero steady-state error it is necessary to correctly identify the sign of the corresponding pseudo-
singular value. At the identification stage, this motivates the estimation of confidence intervals
for the pseudo-singular values from input—output data. A controller with integral action should
not attempt to manipulate in process input directions corresponding to output disturbance
directions that cannot be controlled with confidence. These principles motivate a controller
structure appropriate for providing the robust control of poorly conditioned large-scale processes.
Any controller design technique can be applied to produce a controller with the proposed controller
structure. The controllability results and the integrated identification/controller design procedure

are illustrated using an industrial paper machine example.

1. Introduction

Needs for increased product quality, reduced pollu-
tion, and reduced energy and material consumption are
driving enhanced process integration. This increases
the number of manipulated, measured, and controlled
variables that must be jointly handled by the control
system. Using a combination of theoretical results and
numerical experiments, Braatz (Braatz, 1997) showed
that large-scale processes are almost always poorly
conditioned; that is, the condition number of the plant
transfer function matrix is large. It is well-known that
poorly conditioned processes can be difficult to control.
Note that the condition number by itself does not provide
a meaningful measure of the difficulty in controlling a
multivariable process, since the controllability of the
process based on the model depends also on the quantity
of input—output data and the variance of the stochastic
disturbance/noise signals (other weaknesses in using a
naive condition number analysis are described in the
literature (Braatz and Lee, 1996; Skogestad et al., 1990).

Eigenvalues and singular values have been used to
study the identification of poorly conditioned processes
(Koung and MacGregor, 1993, 1994; Li and Lee, 1994).
It was recently shown that pseudo-singular values,
which are closely related to singular values but are
allowed to have sign, provide a more convenient ap-
proach for developing techniques for the identification
and control of large-scale sheet and film processes
(Braatz and Featherstone, 1995; Featherstone and
Braatz, 1995). Here we extend the definition of pseudo-
singular values for application to general processes and
show these tools are useful for both understanding and
guantifying steady-state controllability. In terms of
understanding, the pseudo-singular values provide a
more natural multivariable generalization of the single-
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input single-output (SISO) concept of the requirement
to “correctly identify the sign of the steady-state gain”
than provided by singular values. In particular, it is
shown that to control an output disturbance direction
with zero steady-state error it is necessary to correctly
identify the sign of the corresponding pseudo-singular
value. In terms of quantifying steady-state controllabil-
ity, an expression is derived for calculating confidence
intervals for the estimated pseudo-singular values. This
assessment of controllability is computed directly from
the input—output data and is not an explicit function
of the condition number.

The importance of correctly identifying the signs of
the pseudo-singular values leads to the development of
a novel additive uncertainty description, with the input
weight being the nominal input rotation matrix, the
output weight being the nominal output rotation matrix,
and additional diagonal weights being defined by the
confidence intervals for the pseudo-singular values. It
is argued that this uncertainty description is not
conservative—this is in sharp contrast to other multi-
variable uncertainty descriptions. Also, the weights for
this uncertainty description are directly specified from
the input—output data.

Any controller with integral action should not ma-
nipulate in process input directions corresponding to
output disturbance directions that cannot be controlled
with confidence—otherwise instability or poor perfor-
mance will result. The extent that a controller can
manipulate in an output disturbance direction whose
sign of the corresponding pseudo-singular value is
known with confidence is defined by the size of the
confidence interval. These principles motivate a con-
troller structure appropriate for providing robust control
of poorly conditioned large-scale processes. Any mul-
tivariable controller design technique can be applied to
produce a controller with the proposed controller struc-
ture. The controllability results and the integrated
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Figure 1. Standard feedback control system. The manipulated
variable is u, the process output is y, the setpoint is r, the
measurement noise is n, and the disturbances are d and I.

identification/controller design procedure are illustrated
using an industrial paper machine example.

2. Pseudo-Singular Values

Consider a general n x n transfer function matrix P(s)
that relates the manipulated variables u to the con-
trolled variables y. Manipulated variables, controlled
variables, and disturbances are assumed to be scaled
as described in the literature (Skogestad and Postleth-
waite, 1996). All of the poles of P(s) will be assumed to
be in the open left half-plane; that is, P(s) is strictly
stable. The matrix P(s) is assumed to be square for
simplicity in notation only; all definitions and results
in the manuscript are generalized to nonsquare P(s) by
appending either extra rows or columns of zeros to the
transfer function matrix. The real singular value
decomposition of the steady-state gain matrix is defined
by (Golub and van Loan, 1983)

P0) = UzV' 1)

where U and V are constant real orthogonal matrices,
and X is a constant real diagonal matrix whose diagonal
elements are referred to as singular values. The
singular values are ordered and nonnegative; that is,
S = oo = > 3.n = 0. The singular values (and
hence X) are unique for a given matrix P(0), while the
U and V matrices are nonunique. For example, mul-
tiplying the ith columns of U and V by —1 results in an
additional pair of matrices (U, V) that satisfy (1). The
singular value decomposition of the transfer function
matrix, both at steady state and as a function of
frequency, has been applied to chemical process control
problems for more than 10 years (Downs and Moore,
1981; Kaspar and Ray 1993; Lau et al., 1985; Moore
1986; Ogunnaike and Ray, 1994; Skogestad et al., 1988).

A well-known controllability result for stable single-
input single-output (SISO) processes is as follows (this
is a variation on a result in the literature (Morari,
1985)).

Lemma 1. Assume that the true plant (P;) and the
model of the plant (Py) are strictly stable proper SISO
transfer functions. Then there exists a controller with
integral action that stabilizes both Py (s) and Py(s) if and
only if P¢(0)/P,(0) > O.

An integral controller will refer to a controller with
integral action (K(s) = (1/s)C(s) in Figure 1, where
det(C(0)) = 0). Lemma 1 indicates that it is necessary
for the sign of the steady-state gain to be correct for a
model-based integral controller to stabilize a stable
linear process. Garcia and Morari (1985a) provided a
generalization of Lemma 1 appropriate for multivariable
controllers that are required to maintain stability with
detuning. The conditions were in terms of eigenvalues
and were further studied by Koung and MacGregor

(1993, 1994). The main weakness of the eigenvalue
conditions is that they consisted of a coupling between
the plant model and the true plant which is highly
cumbersome for use in robust control analysis and
design. An additional concern is that eigenvalue condi-
tions can lead to misleading indications of stability
robustness, as discussed in Doyle and Stein’s classic
paper (Doyle and Stein, 1981). While the singular value
decomposition is a powerful tool in any control engi-
neer’s toolbox, there is no convenient way to use
singular values to generalize Lemma 1 to multivariable
processes since the singular values are always nonneg-
ative. This motivates the definition of the pseudo-
singular values.

Define the diagonal matrix Dy which has each
diagonal element either +1 or —1, with the (i,i)th
element being —1 if the dot product (V)TU' is negative
(matrices U and V are defined in (1), and A refers to
the ith column of the matrix A). Then

P(0) = ULV = (UD, ) (D Z)(V)" = UAQQ) V" (2)

where A(0) = DyX is a constant real diagonal matrix
whose diagonal elements will be referred to as pseudo-
singular values. The pseudo-singular values can be of
any sign (including zero) and are defined such that the
angle between the corresponding U' and V' is not greater
than 90°. The right-hand side of (2) will be referred to
as the pseudo-singular value decomposition (pseudo-
SVD).

The unique matrix A(0) is the steady-state matrix for
a transfer function matrix A(s) defined by

A(S) = U'P(s) V (3)

which will be referred to as the pseudo-singular value
matrix. While A(s) is diagonal at steady state, in
general it is not diagonal for other values of s. Each
off-diagonal element is a transfer function whose steady-
state value is zero.

The term “pseudo-singular values” was first proposed
by Featherstone and Braatz (1995) in reference to a
class of industrially-relevant processes referred to as
pseudo-SVD processes, which are defined as those
processes which have A(s) diagonal for all values of s.
These processes include paper machines, adhesive coat-
ers, polymer film extruders, and certain classes of
distribution networks, such as those used in electric
power systems and ship communication systems (Feath-
erstone, 1995). The pseudo-SVD process structure was
first most clearly defined by Hovd et al. (1993, 1996),
who showed that controllers of the form K(s) = VTAk(s),
U provided optimal stability and performance robust-
ness for a wide variety of uncertainty structures. A list
of manuscripts describing related approaches are cited
by Hovd et al. (1993, 1996), the most closely related of
which are discussed in sections 3.3 and 5.

In this next section, Lemma 1 is generalized to the
multivariable case in terms of pseudo-singular values.

3. Model Requirements

In the following it is shown that to control a process
with zero steady-state error it is necessary to correctly
identify the signs of the pseudo-singular values. This
result is shown using two approaches, each of which
provides its own insights.



3.1. Steady-State Controllability and Integral
Stability. Internal model control (IMC) is based on the
Youla parametrization and for stable processes is a
convenient framework for studying the limitations on
achievable performance posed by time delays and right
half-plane zeros (Braatz, 1995; Brosilow and Markale,
1992; Brosilow, 1979; Garcia and Morari, 1982, 1985a,b;
Morari and Zafiriou, 1989). An IMC controller with a
type | filter is a model-based controller with integral
action. Controllers which maintain closed-loop stability
with arbitrary detuning can be tuned on-line to com-
pensate for time-varying disturbances without drastic
consequences. The following lemma (proof in Appendix)
indicates that the signs of all the pseudo-singular values
must be correctly identified for a model-based integral
IMC controller that maintains stability with arbitrary
detuning to stabilize the true process.

Lemma 2. Assume that the true plant P¢(s) and the
plant model Pn(s) are strictly stable proper rational
transfer functions that have the same steady-state rota-
tion matrices (Py(0) = UA¢0) VT and P,(0) = UAL(0)
VT). Then Anii(0)/Ai(0) > 0, for all i, if and only if
there exists an IMC controller with a type I filter which
stabilizes both P, (s) and P(s) and maintains stability
with arbitrary detuning.

Lemma 2 generalizes Lemma 1 by assuming that the
model has the same input rotation matrix U and output
rotation matrix V as the true plant. This will only be
true for special classes of processes, such as circulant
symmetric processes (Featherstone and Braatz, 1995;
Hovd et al., 1993). For general processes, Lemma 2
provides a necessary condition that a model-based
integral IMC controller will stabilize the true process
with some reliability. More specifically, if the sign of
any pseudo-singular value is not known with confidence,
then Lemma 2 implies that a stabilizing integral IMC
controller cannot be designed even if there were no errors
in U and V and the controller was arbitrarily tuned.
Since there will in general be errors in U and V, an
integral IMC controller designed based on a model with
pseudo-singular values of incorrect sign would only
stabilize the process by chance.

Section 3.2 shows that incorrectly identifying the sign
of any pseudo-singular will lead to poor closed-loop
performance, irrespective of the controller design. Also,
section 3.2 delineates exactly which process input and
output directions are controllable.

3.2. Controllability and Steady-State Perfor-
mance. The importance of correctly identifying the
sign of each pseudo-singular value is illustrated by
considering the steady-state performance of a quiescent
control system.

The true steady-state process gain matrix P¢(0) can
be written in terms of the pseudo-singular values (via

(2)):

n

P(0) = Y A i(OU'(V)T 4)

Since the columns of V form a basis, the steady-state
value of the manipulated variable u can be written as

u=Y oV (5)
;J

where the real scalar oj = (V)T u quantifies the extent
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of manipulated variable movement u in the direction
of V1. Similarly, the effect of the disturbances d on the
output (see Figure 1) can be written as

d=SaU (6)
;J

where the real scalar g; = (U)T d quantifies the extent
of the steady-state disturbance d in the direction of UJ.
Thus the steady-state controlled output y is given by

y=Pu+d (7)

nAt"o UiviTn .v"+n U 8
ii(0) ()]ZOLJ ;ﬁ, )

=Zm¢mq+ww ©)
£

The projection of y in the direction of Ui is given by
U)y= Agji0) oy + B (10)

A conclusion of (6) and (10) is that no controller can
suppress steady-state output disturbances that are in
the directions of the Uj corresponding to zero pseudo-
singular values (Aj(0) = 0). Since the analysis is in
terms of the control action (rather than the controller),
this argument holds for any controller, no matter how
advanced (including model predictive, adaptive, and/or
nonlinear). A conclusion of (5) and (10) is that manipu-
lated variable movements in the directions of the
corresponding Vi have no effect on the process output.
For a controller to provide zero steady-state error in the
projection of y in the direction of UJ, it must provide a
u such that oj = —fj/A¢j(0). If the controller uses the
incorrect sign of the pseudo-singular value Ayj;(0) in its
control calculations, then (U)T y in (10) will be greater
than g;, that is, closed-loop performance of y in the
direction of Ul which is worse than the open-loop
performance.

An interesting point concerning the ability to identify
pseudo-singular values also follows directly from (6), (9),
and (10), where d is now treated as being stochastic
measurement noise rather than the effect of the steady-
state disturbances on the output. When Ay;;(0) is small,
then the response of y to the projection of u in the
direction of Vi is small, so that the signal-to-noise ratio
(the ratio of (U))T y to ;) is small. It is these small
signal-to-noise ratios associated with the small pseudo-
singular values that make the identification of large-
scale processes challenging.

3.3. Comparison to Singular Values and Eigen-
values. The results in section 3.2 are related to results
derived for singular values (Lau et al., 1985; Morari,
1983; Skogestad and Morari, 1987). The main point in
these papers was that processes with small singular
values require large manipulated variable moves for
adequate disturbance suppression. As the pseudo-
singular values have the same magnitude as the sin-
gular values, this point also holds for pseudo-singular
values that are small in magnitude. On the other hand,
the pseudo-singular values provide a more convenient
multivariable generalization of the SISO concept of the
need to “correctly identify the sign of the steady-state
gain” than provided by singular values.
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Figure 2. Block diagram of the process with input, output, and pseudo-singular values uncertainties.

Table 1.

Data-Driven Multivariable Uncertainty Identification Algorithm

1. Perform least-squares identification of P(0).
2. Compute the pseudo-SVD of P(0).

3. Compute confidence intervals on the pseudo-singular values, assuming that U and V are fixed, and use these to define

an additive uncertainty description.

4. Determine the number of plant directions that cannot be controlled with confidence by either (a) using the confidence
intervals computed in step 3 or (b) applying a Monte Carlo approach.
5. Take errors in U and V into account using a multiplicative input and output norm-bounded uncertainty description.

Lemma 2 is closely related to a result derived for
eigenvalues of the steady-state plant gain matrix mul-
tiplied by the inverse of the steady-state plant model
(Garcia and Morari, 1985a; Koung and MacGregor,
1993, 1994). The main point of these papers was that
the sign of these eigenvalues must be correctly identified
before the process can be controlled with integral action.
Since the true plant is never known, a major weakness
of the eigenvalue conditions is that their coupling of the
model and the plant makes it cumbersome to construct
a data-driven uncertainty identification procedure for
use in robust control. The weakness of eigenvalue
conditions in general is that such conditions can lead
to misleading indications of stability robustness (Doyle
and Stein, 1981). A more appropriate framework for
robustness analysis is in terms of singular values
(Doyle, 1982; Doyle and Stein, 1981; Morari and Zafir-
iou, 1989; Skogestad and Postlethwaite, 1996), for which
the pseudo-singular values are equivalently suited as
their magnitudes are the same as those for the singular
values. The pseudo-singular values blend the strengths
of both singular value and eigenvalue analyses.

4. Multivariable Uncertainty Identification

It was shown in section 3 that a model-based control-
ler implemented on a process for which the sign of any
of the pseudo-singular values is incorrectly identified
will provide poor performance, irrespective of how the
controller is designed. Lemma 2 provides strong evi-
dence that such a controller, if no constraints were
present, would likely provide an unstable closed-loop
response. Due to the constraints on the manipulated
variables which always exist in practice, the controller
either will cause the manipulated variables to drift until
the constraints are hit or will induce bounded oscilla-
tions. Both behaviors have been observed in simula-
tions (Featherstone, 1997) and would pose a significant
problem in an industrial control system. In either case,
there is an amplification of disturbances in directions
associated with the misidentified pseudo-singular val-
ues.

This motivates the development of algorithms to
quantify the accuracy of the pseudo-singular values
from input—output data, which can be used to define a
nonconservative uncertainty description that incorpo-
rates the inaccuracies in the pseudo-singular values as
well as represent inaccuracies in the input and output
rotation matrices (see Figure 2). This is most closely
related to an uncertainty description proposed by Koung
and MacGregor (1994). The most significant difference

is that we propose to use norm-bounded uncertainty
descriptions (for details on robust control, see the
literature (Doyle, 1982; Morari and Zafiriou, 1989;
Safonov, 1982; Skogestad and Postlethwaite, 1996)) for
the input and output rotation matrices rather than the
element-by-element uncertainty descriptions described
by Koung and MacGregor (1994). Norm-bounded un-
certainty descriptions are more accepted in the robust
control community while element-by-element descrip-
tions are too conservative for use in quantitative worst-
case robustness analysis (Morari and Zafiriou, 1989).

The proposed data-driven multivariable uncertainty
identification algorithm consists of the five steps de-
scribed in Table 1. Each step of the algorithm is
described in more detail below.

Computation of Confidence Intervals (Steps 1-3
in Table 1). For step 1, it is assumed that P(0) is linear
in the parameter vector 8. This is always true for black-
box models. For phenomenological models which may
have P(0) nonlinear in the parameters, use the linear-
ization of P(0) with respect to 8, which is an accepted
approximation in the parameter estimation literature
(Beck and Arnold, 1977). For brevity, we will treat only
the case where the steady-state matrix is computed from
step response experiments, as the generalization for
arbitrary input—output experiments is straightforward
(see Ljung (1987)).

At the kth experiment with input uX, the measured
output is

v = P(0) Uk + €= X(U") g+ & (11)

where ¥ is the effect of unmeasured disturbances on
the measured output and X(uK) is referred to as the
input matrix (Beck and Arnold, 1977), since it depends
on the experimental inputs as well as the model
structure. For brevity, €< is assumed to be independent
in time and location with known variance o2 (general-
izing to the case of temporally-correlated disturbances
and unknown variance is straightforward, e.g., see
Appendix Il of (Ljung, 1987)).

For N experiments, the measurements can be stacked
to give
X(ub) el
. R
X(uN) eN

Then the least-squares estimate and the covariance

=XB+e (12)
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Table 2. Monte Carlo Algorithm To Compute the Number of g Directions That Are Uncontrollable®

1. Treat the steady-state plant matrix from step 1 in Table 1 as equal to the true plant matrix and use the assumed level of noise
(the noise model can also be computed directly from the data (Beck and Arnold, 1977)) and the manipulated variable moves
used to construct a large number of k of simulated output data files.

2. For each of the k data files, apply least squares to compute a steady-state model gain matrix Pmjq), j = 1, ..., k.

3. For each of the data files j, compute y;; = Re{ii(Pt(O)Pn’qﬂ(O))} foralli=1, .., n.

4. Record the number of y;; less than zero for each plant model j (called this number q;) and collectively use this to define a discrete

probability distribution function for g.

5. Select q based on the discrete probability distribution function so that there is 100(1 — p)% confidence that n — g directions are

controllable.

a8 The criterion in step 3 is based on Theorem 2 of (Garcia and Morari, 1985a).

matrix of the parameters are

B=X"X)X"Y.:  cov(B) =4 XX)t (13)
From the model of the steady-state interaction matrix
Pm(0) obtained from (3, step 2 consists of computing the
pseudo-SVD as described in section 2.

From the computed U and V via (2), the ith pseudo-
singular value is

Ami(0) = (UNTPL0) V' = (UYX\V) B (14)

where X(V) has the same form as X(uy) in (11) but is
now calculated with V'. The An,;i(0) can be stacked into
a vector Am(0) which is given by

Am(0) = X\ B (15)

where Xy v is the linear transformation between 8 and
Am(0). With this transformation, the covariance matrix
for Am(0) is given by

COV(2m(0)) = Xy yCOV(B)XGy = 0" Xy (XTX) Xy
(16)

where X is from (12). With the covariance matrix for
Am(0), @ 100(1 — p)% confidence interval for each pseudo-
singular value An;i(0), with variance o, is given by

(Am,ii(0) = 2,501, A i(0) + 2,,07) (17)

where values of the standard normal deviate z,», at
various levels of significance can be calculated or
referenced from statistical tables (Beck and Arnold,
1977; Devore, 1982). These confidence intervals are
used to define a worst-case additive uncertainty de-
scription (see Figure 2). The uncertainty matrix A for
the pseudo-singular value estimates is diagonal, with
the weighting matrix Xy defined by the radii of the
confidence intervals.

Determining the Number of Controllable Direc-
tions (Step 4 in Table 1). Steps 4a and 4b provide
alternative approaches for determining the number of
plant directions that can be controlled with confidence.
Step 4a is based on the confidence intervals computed
in step 3. If step 3 provides a confidence interval for a
pseudo-singular value that includes zero, then the linear
statistics indicates that the sign is not known with
confidence (although not shown here for brevity, this
can be posed rigorously in terms of hypothesis testing,
as discussed in detail in Chapter 5 of (Featherstone,
1997)). While step 4a provides a simple analytical
approach for computing the controllable directions, step
4b uses a Monte Carlo approach to provide an improved
estimate on the number of controllable directions. The

Monte Carlo method described in Table 2 accounts for
errors in U and V when determining the number g of
plant directions that cannot be controlled with confi-
dence. Since the signal-to-noise ratios are the poorest
for the smallest pseudo-singular values (as discussed
in section 3), this suggests that the smallest g pseudo-
singular values should not be controlled.

Theoretically, both steps 4a and 4b provide optimistic
(that is, underestimated) estimates on the number of
controlled directions. Step 4a is optimistic because the
bounds on the pseudo-singular values from step 3 are
underestimated, since errors in U and V are not
explicitly taken into account. Step 4b is optimistic
because it uses the steady-state plant model in place of
the true plant in its computations (this must be done
because the true plant is not known in practice). In our
experience (see section 6 and (Featherstone, 1997)), step
4b is less optimistic than step 4a.

Theoretically, these optimistic estimates would result
in too few pseudo-singular values being classified as
being uncontrollable. These optimistic estimates do not
pose any problems as long as a high level of confidence
is selected for definition of the confidence interval in
(17). This is illustrated in section 6.

Uncertainty Description for Input and Output
Rotation Matrices (Step 5 in Table 1). Steps 1-4
(in Table 1) are sufficient for computing the number of
controllable directions and estimating the inaccuracies
associated with these directions but does not account
for inaccuracies in the input and output rotation ma-
trices. Here we provide some guidelines for constructing
input and output uncertainty descriptions that are
intended to be helpful for industrial practitioners.

The number of independent degrees of freedom in U
and V is n2 — n. ldentifying these elements to the high
level of accuracy required for an element-by-element
uncertainty description to be nonconservative (Morari
and Zafiriou, 1989) would require a large quantity of
high-quality experimental data, typically much more
than what would be available in practice. Hence,
statistics on the individual elements of U and V are not
suitable for developing a worst-case multivariable un-
certainty description for the input and output rotation
matrices. Instead, we suggest using a norm-bounded
uncertainty description (Morari and Zafiriou, 1989;
Skogestad and Postlethwaite, 1996) for U and V.

The uncertainty associated with each manipulated
variable (which could be either an actuator or the
setpoint to a lower level control loop, such as a flow
control loop (Ogunnaike and Ray, 1994)) is normally
assumed to be independent of the other manipulated
variables, which corresponds to a diagonal perturbation
block A; (Morari and Zafiriou, 1989; Skogestad and
Postlethwaite, 1996). Representing A, as being full,
however, accounts for arbitrary (though bounded)
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Figure 3. M—A block structure.

rotational inaccuracies in the input rotation matrix V.
An appropriate uncertainty weight would typically allow
for 10% steady-state error in manipulated variable
movements and 150—200% error at high frequencies
(Morari and Zafiriou, 1989; Skogestad and Postleth-
waite, 1996); this leaves only 1 degree of freedom in the
uncertainty weight, which is the turning point. The
turning point indicates the smallest frequency at which
the steady-state uncertainty description in no longer
adequate for representing the plant/model mismatch.
A simple way to select this is based on the frequency at
which each manipulated variable’s frequency response
starts to become less reproducible (this could be quanti-
fied by performing several frequency response identifi-
cation tests on each manipulated variable).

If an estimate of typical sensor biases are available,
then these can be used to define the weights on the
output uncertainty. Since the robustness of closed-loop
multivariable systems is much less sensitive to output
uncertainties than input uncertainties (Koung and
MacGregor, 1993; Skogestad et al., 1988; Skogestad and
Postlethwaite, 1996), the selection of this weight is
usually not critical. Assuming the output uncertainty
to be full-block accounts for arbitrary (though bounded)
rotational inaccuracies in U.

Robustness Analysis. The robust stability require-
ment corresponds to the block diagram for the process
with uncertainty blocks as shown in Figure 2 (see
(Morari and Zafiriou, 1989; Skogestad and Postleth-
waite, 1996) for background on the use of u for robust-
ness analysis). To analyze the robust stability of the
uncertain process under feedback control, compute u of
the following M(s) matrix (as shown in Figure 3)
constructed from the block diagram of the process
(Figure 2) in a closed loop:

M(s) =

—SWVTK( + PK)"1U —SWVTK(I + PK)™1 SwVT(1 + KP)-1
Wo(l + PK)-U —WoPK(I + PK)™1  WoP(l + KP)1
~WK(I +PK)"lU  —WK(I +PK)™?  —W,KP(l + KP)~1

(18)

with A = diag{AA, Ao, A|}

5. An Appropriate Robust Controller Structure

In section 3 it was shown that the controller must not
manipulate in directions associated with a pseudo-
singular value whose sign is not reliably known, as such
manipulations would lead to poor performance. This
motivates the development of a controller structure that
cannot perform manipulations in these directions. De-
fine A(s) as the (n — q) x (n — q) upper left submatrix
of the pseudo-singular value matrix A(s) defined in (3).
The input directions of this portion of the plant are

controllable. Define the pseudo-SVD controller structure
as

AK(S) 0

0 0 u' (19)

K(s) = V[

where U and V are defined in (2), and Ak(s) isa (n — q)
x (n — q) transfer function matrix (not necessarily
diagonal). An additional motivation for this controller
structure is that, when the process has a diagonal A(s)
in (3), the controller structure (19) provides optimal
stability and performance robustness for a wide variety
of uncertainty structures, including the one in Figure
2 (Hovd et al., 1993, 1996). Several control engineers
over the past 20 years have proposed controllers of a
related form based on the singular value decomposition
of the steady-state gain matrix (Downs and Moore, 1981;
Lau et al., 1985; MacFarlane and Kouvaritakis, 1977,
Moore, 1986). A significant difference here is that the
purpose of the controller structure in (19) is to prevent
the controller K(s) from manipulating in uncontrollable
directions, while the objective of earlier work was to
design decouplers (Downs and Moore, 1981; Hung and
MacFarlane, 1982; Lau et al., 1985; MacFarlane and
Kouvaritakis, 1977; Moore, 1986). As such, while Ak(s)
is restricted to be diagonal as in earlier work (Downs
and Moore, 1981; Hung and MacFarlane, 1982; Lau et
al., 1985; MacFarlane and Kouvaritakis, 1977; Moore,
1986), Ax(s) is not restricted to be diagonal in (19). In
fact, the matrix Ak(s) can be designed to control A(s)
using any multivariable controller design technique,
e.g., linear quadratic control, u-optimal control (Morari
and Zafiriou, 1989; Skogestad and Postlethwaite, 1996).

By allowing Ak(s) to be nondiagonal, there is no
restriction that the input and output rotation matrices
of the process be constant (or approximately constant),
as is implicitly assumed when Ak(s) is restricted to be
diagonal (Downs and Moore, 1981; Hung and MacFar-
lane, 1982; Lau et al., 1985; MacFarlane and Kouvari-
takis, 1977; Moore, 1986). Our proposed controller
structure makes the much less severe restriction that
the controller should not manipulate in directions that
are uncontrollable at steady state. This does not provide
a performance limitation for most processes, since a
plant direction that is uncontrollable at steady state is
most likely to be uncontrollable at higher frequencies
as well. On the other hand, the proposed controller
structure may reduce the achievable performance for
process models that are significantly more accurate at
intermediate frequencies than at low frequencies.

Regardless of the desired controller design procedure,
either weights or filter parameters in the design pro-
cedure can be selected so that the controller is robustly
stable to the uncertainty in the pseudo-singular values
as well as in the input and output rotation matrices U
and V (using (18)). The application of the uncertainty
identification procedure of section 4 and the controller
structure (19) is demonstrated next.

6. Simulation Example for an Industrial Paper
Machine

The key concepts are illustrated using a problem
description patterned after a paper machine model
reported in the industrial process control literature. The
interaction matrix for a paper machine without edge
effects is given by (the superscript stands for “without
edge effects”)
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~
101 x 101
with

p,=1,p,=0.9; p;=0.7;, p,=0.8; p; = 1;
ps = 0.6; p; = —0.5; pg = —0.4; py = —0.2;
P —0.2;0=71=1 (21)

These interaction parameters are for a paper board
machine described by Karlsson and Haglund (1983).

The actuators near the edges are assumed to have a
reduced effect on all corresponding downstream sensor
lanes (the superscript stands for “edge effects”):

PS(i,1) = 0.5P"(i,1); Oi=1,..,n

P(i,2) = 0.75P"%(i,2); Oi=1,..,n
P%(i,100) = 0.75P"%(i,100); Oi=1, .., n
P(i,101) = 0.5P"(i,101); Oi=1,..n (22)

where A(i,j) refers to the ith row and jth column of A.
Identification. During identification, the measured
process output at steady state yy, is assumed to be given

by

Ym =PyO)u + € (23)
where u is the actuator input move and e represents
zero-mean Gaussian measurement noise. In the stan-
dard industrial experiment (called a “bump test”), the
open-loop response is measured for a step in several
manipulated variables across the machine (Heaven et
al., 1993). This defines the process input as u = ejp +
ess + ego 1+ €ss, Where

ee=[0 .. 010 .. 0] (24)
with the 1 in the kth position.

The measurement noise in each sensing location is
considered to be independent and to have a variance of
0.04 (this is a reasonable value for many paper grades).
Since it is industrial practice to repeat the bump tests
several times to reduce the effects of noise, the simu-
lated identification experiments consisted of five step
input tests. The process model interaction matrix was
assumed to have the structure of P"e in (20), while the
true process interaction matrix P¢ is defined by (21) and
(22). The estimated parameters p; were calculated from
the input—output data using least squares (step 1 in
Table 1).

The next step is to determine which signs of the
identified pseudo-singular values are known with con-
fidence, based on the experimental data. The confidence
interval of each pseudo-singular value is calculated
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Figure 5. Fraction of estimated plant models that have a specified
number of misidentified pseudo-singular values Am;i(0), where the
first nominal model is used in place of the true plant. Five hundred
experimental data sets were used in the Monte Carlo simulation.

o

using the estimated noise variance (this is known in
practice or can be estimated from the data (Beck and
Arnold, 1977)), the number of bump tests, the known
input u, and the measured output yn, (steps 2 and 3 in
Table 1). Figure 4 shows the 95% confidence interval
for each pseudo-singular value of the estimated model
(this corresponds to a 97.5% hypothesis test). The
intervals for the last three pseudo-singular value esti-
mates include zero, indicating that these signs are not
known with 97.5% confidence (step 4a). In fact, one of
the signs of the pseudo-singular values was identified
incorrectly.

On the other hand, step 4b estimates that there is
77% confidence that less than four pseudo-singular
values have incorrect signs (see Figure 5). Recall from
section 4 that both steps provide optimistic estimates
on the number of controllable directions, with step 4b
being less optimistic than step 4a. To determine how
optimistic each step is, Monte Carlo simulations were
performed using the true plant (see Figure 6). There
is 59% confidence that less than four pseudo-singular
values have incorrect signs, with 85% confidence that
less than six pseudo-singular values have incorrect
signs.

Another interesting point can be made from Figure
6. The probability that a single nominal model has all
of its directions controllable is less than 3%. Based on
the results of section 3, this implies that a model-based
controller that attempts to control all of the plant
directions has only a 3% probability of providing ac-
ceptable closed-loop performance.

The uncertainty description was constructed as de-
scribed in section 4. The additive uncertainty weights
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were based on the confidence intervals in Figure 4. The
input uncertainty weight W,(s) = 0.3[(0.1s + 1)/(0.02s
+ 3)]1 allows for 10% steady-state error in manipulated
variable movements and 150% error at high frequencies,
with turning points at w = 10 and w = 150. The output
uncertainty was selected to be the same weight: Wp =
W,. These weights also account for uncertainties in the
scalar dynamics.

Controller Synthesis. The control objective mini-
mizes the effect of output disturbances d on the con-
trolled variable y (see Figure 1), while being robustly
stable to input, output, and pseudo-singular value
uncertainties. For this process, it is natural to select
Ak(s) in (19) as being diagonal. Each diagonal element
Aii(S) of the pseudo-SVD controller (19) can be designed
by any controller method; we decided to use multiloop
IMC-PID tuning (Morari and Zafiriou, 1989):

(1 + 158 + i)
A (S) = 1 TS| 21+ 0
K1l Ami0)  Teist1 o 204+ 6)
Oi=1,...,n—q (25
with
_ . 10 _ 40
T, =1+ 0/2; 5 = T——! Tei = 20 + 0) (26)

where A; is the IMC tuning parameter. The SISO
controllers A i(s) are stacked up as the diagonal
elements of a matrix A(s), with the overall controller
computed from (19).

Based on the identification results, nonzero SISO
controllers Ax,i(s) are designed based on the reliably
identified pseudo-singular values. The IMC parameter
Ai for each SISO controller Ak i(s) was tuned as fast as
possible while achieving robust stability (u(M) < 1);
thus, the closed-loop system is stable to input, output,
and pseudo-singular value variations.

Time Domain Solutions. The controller with IMC
tuning parameters is compared to a model-inverse-based
controller, which has been implemented on many paper
machines (as surveyed by (Braatz et al., 1996)):

K(s) = KPS " = k() VAL (5) UT  (27)

with

0
; ‘L'|=‘L‘+§ (28)

k(s)=kc(1+1) _ 21+ 0
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Figure 7. Profile response using the pseudo-SVD controller.
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Figure 9. Initial disturbance profile (--+), profile at t = 3 for
pseudo-SVD controller (— —), and profile at t = 3 for model-inverse-
based controller (—).
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Figure 10. Initial disturbance profile (— —) and the steady-state
profile response using the pseudo-SVD controller (—).

and A = 26, which is within the common recommenda-
tion (Morari and Zafiriou, 1989).

Figures 7 and 8 show the closed-loop response to the
initial disturbance profile shown in Figure 9 using the
pseudo-SVD and model-inverse-based controllers, re-
spectively. Figures 7 and 10 reveal that, although the
response for the pseudo-SVD controller nearly goes to
zero, some offset remains at steady state due to the
projection of the disturbance in the uncontrolled direc-
tions. In comparison, the response using the model-
inverse-based controller reveals that, while a portion of
the disturbance is initially reduced, the directions
corresponding to misidentified pseudo-singular values
eventually take over, causing the controlled variables
to drift. Figure 9 shows the profiles across the machine
for the pseudo-SVD and model-inverse-based controllers
at time t = 3. In terms of average variation across the
paper machine, the profile for the model-inverse-based
controller at this time step is already worse than if the



process had been left in open loop. Such closed-loop
behavior has been observed in a large number of
industrial paper machines (Bialkowski, 1986).

7. Interaction between Design and Control

The focus of this paper was the application of the
pseudo-singular values to the integrated robust identi-
fication and control of large-scale processes. The pseudo-
singular values can also be used to assess controllability
at the process design stage (this is the most common
use of controllability analysis measures). A promising
approach would be to incorporate their use into the
methodology of Perkins and co-workers (Narraway et
al., 1991; Narraway and Perkins, 1993, 1994; Perkins
and Walsh, 1994; Walsh and Perkins, 1994), which
assesses the effect of disturbances on the overall process
economics. For each design, the identification procedure
(in section 4) would produce the model uncertainty
description for use in the Perkins procedure (Perkins
and Walsh, 1994; Walsh and Perkins, 1994), with the
cost of the identification experiments added to their
economic cost function. If only a steady-state simulation
model was available, then (10) could be applied to
compute the effect of the disturbances on the process
output, which would be used by the Perkins procedure
to quantify the economic losses due to the disturbances.

8. Conclusions

One of the main limitations of robust control has been
the lack of identification techniques that provide non-
conservative uncertainty descriptions for multivariable
processes. We have shown that it is absolutely critical
that the signs of the pseudo-singular values of the model
be known with confidence, as only the associated process
directions can be reliably controlled. A practically-
motivated uncertainty structure was proposed that
takes into account uncertainty in the pseudo-singular
values, the plant input rotation matrix, and the plant
output rotation matrix. Some guidelines were given for
guantifying the accuracy of the input and output rota-
tion matrices. The accuracy of the pseudo-singular
values was quantified from input—output data, and two
algorithms were proposed for determining the number
of controllable plant directions.

A robust controller structure was proposed which
manipulates only in the controllable plant directions.
Any reasonable controller design technique can be
applied within the proposed controller structure to
provide robust stability to inaccuracies in the controlled
pseudo-singular values and in the input and output
rotation matrices. The applicability of the proposed
robust identification and control algorithms was dem-
onstrated on a simulation example patterned after an
industrial paper machine. Poor behavior similar to that
seen in industry was observed when attempting to
control in all plant directions. The proposed controller
structure provided reliable performance.

Acknowledgment

Support from the DuPont Young Faculty Award is
gratefully acknowledged.
Appendix

Proof of Lemma 2. By Theorem 2 of Garcia and
Morari (Garcia and Morari, 1985a), a stabilizing integral
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IMC controller exists if and only if Re{1i(P(0)P,,*(0))}
> 0, for all i = 1, ..., n. With the steady-state decom-
positions of P; and Pp, this is equivalent to
Re{i(A«0)A}(0))} > 0, which is equivalent to
Re{Am,ii(0)/A+;i(0)} > 0, Oi =1, ..., n. This is equivalent
to Amii(0)/A¢i(0) > 0, Oi = 1, ..., n since the pseudo-
singular values are real. O

Literature Cited

Beck, J. V.; Arnold, K. J. Parameter Estimation in Engineering
and Science; Wiley: New York, 1977.

Bialkowski, W. L. Control systems engineering: have we gone
wrong? InTech 1986, 33, 27.

Braatz, R. D. Internal model control. In The Control Handbook;
Levine, W. S., Ed.; CRC Press: Boca Raton, FL, 1995; p 215.

Braatz, R. D. The average-case identifiability of large scale
systems. AIChE Annual Meeting, Los Angeles, CA, Nov 1997;
Paper 215a.

Braatz, R. D.; Featherstone, A. P. ldentification and control of
large scale paper machines. Weyerhaeuser Workshop on Model-
ing and Control of Kamyr Digesters and Paper Machines,
Tacoma, WA, June 1995.

Braatz, R. D.; Lee, J. H. Physical consistency in control structure
selection and the integration of design and control. AIChE
Spring National Meeting, New Orleans, LA, April 1996; Paper
79d.

Braatz, R. D.; Ogunnaike, B. A.; Featherstone, A. P. Identification,
estimation, and control of sheet and film processes. Proceedings
of the IFAC World Congress; IEEE Press: Piscataway, NJ, 1996;
p 319.

Brosilow, C. B. The structure and design of Smith predictors from
the viewpoint of inferential control. In Proceedings of the Joint
Automatic Control Conference; IEEE Press: Piscataway, NJ,
1979; p 288.

Brosilow, C.; Markale, N. Model predictive cascade control and
its implications for classical and IMC cascade control. AIChE
Annual Meeting, Miami Beach, FL, Nov 1992.

Devore, J. L. Probability and Statistics for Engineering and the
Sciences; Brooks/Cole Publishing: Monterey, CA, 1982.

Downs, J. J.; Moore, C. F. Steady-state gain analysis for azeotropic
distillation. Proceedings of the Joint Automatic Control Confer-
ence; IEEE Press: Piscataway, NJ, 1981; p WP7.

Doyle, J. C. Analysis of feedback systems with structured uncer-
tainties. IEE Proc., Part D 1982, 129, 242.

Doyle, J. C.; Stein, G. Multivariable feedback design: Concepts
for a classical/modern synthesis. IEEE Trans. Autom. Control
1981, 26, 4.

Featherstone, A. P. Control Relevant Identification of Structured
Large Scale Systems. M.S. Thesis, University of Illinois, Ur-
bana, IL, 1995.

Featherstone, A. P. Control Relevant Identification of Large Scale
Sheet and Film Processes. Ph.D. Dissertation, University of
Ilinois, Urbana, IL, 1997.

Featherstone, A. P.; Braatz, R. D. Control relevant identification
of sheet and film processes. Proceedings of the American Control
Conference; IEEE Press: Piscataway, NJ, 1995; p 2692.

Garcia, C. E.; Morari, M. Internal model control—1. a unifying
review and some new results. Ind. Eng. Chem. Process Des. Dev.
1982, 21, 308.

Garcia, C. E.; Morari, M. Internal model control—2. design
procedure for multivariable systems. Ind. Eng. Chem. Process
Des. Dev. 1985a, 24, 472.

Garcia, C. E.; Morari, M. Internal model control—3. multivariable
control law computation and tuning guidelines. Ind. Eng. Chem.
Process Des. Dev. 1985b, 24, 484.

Golub, G. H.; van Loan, C. F. Matrix Computations; Johns Hopkins
University Press: Baltimore, MD, 1983.

Heaven, E. M.; Kean, T. M.; Jonsson, I. M.; Manness, M. A.; Vu,
K. M.; Vyse, R. N. Applications of system identification to paper
machine model development and controller design. In Second
IEEE Conference on Control Applications; IEEE Press: Piscat-
away, NJ, 1993; p 227.



106 Ind. Eng. Chem. Res., Vol. 37, No. 1, 1998

Hovd, M.; Braatz, R. D.; Skogestad, S. On the structure of the
robust optimal controller for a class of problems. Proceedings
of the IFAC World Congress; Pergammon Press: Oxford, 1993;
Vol. 1V, p 27.

Hovd, M.; Braatz, R. D.; Skogestad, S. SVD controllers for Hj-,
H-, and u-optimal control. Automatica 1996, 33, 433.

Hung, Y. S.; MacFarlane, A. G. J. Multivariable Control: A Quasi-
classical Approach; Springer Verlag: Berlin, 1982.

Karlsson, H.; Haglund, L. Optimal cross-direction basis weight and
moisture profile control on paper machines. 3rd International
Pulp and Paper Process Control Symposium, Vancouver, B.C.,
Canada, May 1983.

Kaspar, M. H.; Ray, W. H. Partial least squares modelling as
successive singular value decompositions. Comput. Chem. Eng.
1993, 17, 985.

Koung, C. W.; MacGregor, J. F. Design of identification experi-
ments for robust control—a geometric approach for bivariate
processes. Ind. Eng. Chem. Res. 1993, 32, 1658.

Koung, C. W.; MacGregor, J. F. Identification for robust multi-
variable control—the design of experiments. Automatica 1994,
30, 1541.

Lau, H.; Alvarez, J.; Jensen, K. F. Synthesis of control structures
by singular value analysis: Dynamic measures of sensitivity
and interaction. AIChE J. 1985, 31, 427.

Li, W.; Lee, J. H. Control relevant identification of ill-conditioned
systems: estimation of gain directionality. Comput. Chem. Eng.
1996, 20, 1023.

Ljung, L. System lIdentification: Theory for the User; Prentice-
Hall: Englewood Cliffs, NJ, 1987.

MacFarlane, A. G. J.; Kouvaritakis, B. A design technique for
linear multivariable feedback systems. Int. J. Control 1977, 25,
837.

Moore, C. Application of singular value decomposition to the
design, analysis, and control of industrial processes. Proceedings
of the American Control Conference; IEEE Press: Piscataway,
NJ, 1986; p 643.

Morari, M. Flexibility and resiliency of process systems. Comput.
Chem. Eng. 1983, 7, 423.

Morari, M. Robust stability of systems with integral control. IEEE
Trans. Autom. Control 1985, 30, 574.

Morari, M.; Zafiriou, E. Robust Process Control; Prentice-Hall:
Englewood Cliffs, NJ, 1989.

Narraway, L.; Perkins, J. Selection of process control structure
based on linear dynamic economics. Ind. Eng. Chem. Res. 1993,
32, 2681.

Narraway, L.; Perkins, J. Selection of process control structure
based on economics. Comput. Chem. Eng. 1994, 18, S511.

Narraway, L. T.; Perkins, J. D.; Barton, G. W. Interaction between
process design and process control: economic analysis of process
dynamics. J. Process Control 1991, 1, 243.

Ogunnaike, B. A.; Ray, W. H. Process Dynamics, Modeling, and
Control; Oxford University Press: New York, 1994.

Perkins, J. D.; Walsh, S. P. K. Optimization as a tool in design/
control integration. In Integration of Process Design and Control;
Zafiriou, E., Ed.; Pergamon Press: Oxford, 1994; p 1.

Safonov, M. G. Stability margins of diagonally perturbed multi-
variable feedback systems. IEE Proc., Part D 1982, 129, 251.

Skogestad, S.; Morari, M. Effect of disturbance directions on closed-
loop performance. Ind. Eng. Chem. Res. 1987, 26, 2029.

Skogestad, S.; Postlethwaite, I. Multivariable Feedback Control:
Analysis and Design; Wiley: New York, 1996.

Skogestad, S.; Morari, M.; Doyle, J. C. Robust control of ill-
conditioned plants: High purity distillation. IEEE Trans.
Autom. Control 1988, 33, 1092.

Skogestad, S.; Jacobsen, E. W.; Morari, M. Inadequacy of steady-
state analysis for feedback-control—distillate-bottom control of
distillation-columns. Ind. Eng. Chem. Res. 1990, 29, 2339.

Walsh, S. P. K.; Perkins, J. D. Integrated design of waste water
neutralization systems. In Proceedings of the ESCAPE 4—4th
European Symposium on Computer-aided Process Engineering;
IChemE Publications: Rugby, Great Britain, 1994; p 135.

Received for review May 19, 1997
Revised manuscript received September 26, 1997
Accepted September 26, 1997°

IE970356S

® Abstract published in Advance ACS Abstracts, November
15, 1997.



