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PROCESS DESIGN AND CONTROL

Input Design for Large-Scale Sheet and Film Processes

Andrew P. Featherstone and Richard D. Braatz*

Department of Chemical Engineering, University of Illinois at Urbana—Champaign, 600 South Mathews

Avenue, Box C-3, Urbana, Illinois 61801

Manipulated variable moves are computed to maximize the information contained in experi-

mental data collected from sheet and film processes.

The experimental design procedure

minimizes the confidence ellipsoid of the critical model parameters over the manipulated
variables subject to their physical constraints. For a simulated blown film process, the model
is 1 order of magnitude more accurate than that identified from the industrial standard bump
test experiments. The improved accuracy results in a 37% reduction in closed-loop thickness
variations. This indicates that substantial benefits can be achieved by incorporating the optimal
experimental design algorithm into industrial sheet and film process control algorithms.

1. Introduction

Sheet and film processes constitute a class of pro-
cesses important to the polymer, pulp and paper, and
photographic industries (Braatz et al., 1996; Rawlings
and Chien, 1996; Smook, 1992). Such processes include
papermaking, polymer extrusion, and adhesive coating
(see Figure 1). Sheet and film processes are character-
ized by large dimensionalities (up to 200 manipulated
and 1000 controlled variables), tightly constrained input
moves (min—max and second-order spatial constraints),
poorly conditioned interaction matrices (condition num-
ber approaching infinity), poor signal-to-noise ratios
(which can be less than one for thin films), and a limited
number of experimental runs allowed for model iden-
tification purposes (sometimes no more than five)
(Braatz et al., 1996). The development of high-quality
models for such processes poses a challenging identifica-
tion problem (Campbell and Rawlings, 1996; Feather-
stone and Braatz, 1995, 1997b; Kjaer et al., 1994;
Kristinsson and Dumont, 1996).

In past work it was shown that the industrial bump
tests that are applied to sheet and film processes are
not sufficiently informative to adequately identify the
process directionality (Featherstone and Braatz, 1997b).
Here the main goal is to determine whether the optimal
experimental design can result in substantial control
benefits by providing experimental input—output data
as informative as possible. The experimental design
procedure minimizes the confidence ellipsoid of the most
critical model parameters over the manipulated vari-
ables subject to their physical constraints. A simulated
annealing algorithm computes a suboptimal solution of
the nonconvex optimization problem. This algorithm
appears to be the first to include the effect of constraints
in the experimental input design for processes with high
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Figure 1. Generic web forming process (not drawn to scale).

condition numbers (Andersen and Kummel, 1992a,b;
Koung and MacGregor, 1993, 1994; Li and Lee, 1996a,b).
The algorithm is applied to a simulated blown film
extruder and compared to the results from a standard
industrial input design. The new algorithm provides
an order-of-magnitude improvement in model quality,
which results in a 37% reduction in thickness vari-
ability.

2. Experimental Design—A Brief Review

The optimal design of experiments was extensively
studied in the 1970s—80s (Box and Draper, 1975;
Draper and Hunter, 1966; Federov, 1972; Goodwin and
Payne, 1977; Silvey, 1980; Titterington, 1975; Welch,
1984; Zarrop, 1979). Several experimental design objec-
tives have been studied, perhaps the most popular being
D-optimality, G-optimality, and A-optimality (Atkinson
and Donev, 1992; Silvey, 1980). D-optimality is the
criterion that best satisfies our purposes and was also
used by Koung and MacGregor (Koung and MacGregor,
1993, 1994) for the design of identification experiments
for the robust control of 2 x 2 processes.

A D-optimal experimental design minimizes the vol-
ume of the confidence ellipsoid of the parameter vector
subject to the physical constraints on the manipulated
variables. The optimization problem with the D-opti-
mality objective subject to constraints is nonconvex and
can be shown to be NP-hard (Welch, 1984). This means
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that the computational requirements to achieve the true
optimum become prohibitive as the dimension of the
problem increases. While several algorithms for the
construction of suboptimal designs have been proposed
(Draper and Hunter, 1966; Wynn, 1970; Cook and
Nachtscheim, 1980; Welch, 1982, 1984; Bates, 1983;
Snee, 1985; Bohachevsky et al., 1986; Haines, 1987),
these algorithms are computationally expensive and are
not guaranteed to converge to the globally optimal
experimental design.

Simulated annealing is a well-known algorithm for
computing good local optima (Bohachevsky et al., 1986;
Haines, 1987; Corana et al., 1987; Goffe et al., 1994).
Goffe et al. (1994) compared the simulated annealing
algorithm to three common optimization algorithms (a
simplex algorithm, a conjugate gradient algorithm with
numerical derivatives, and a quasi-Newton algorithm
with numerical derivatives) on four econometric param-
eter identification problems. They found that the
simulated annealing algorithm was able to find the
global optimum in several cases, and for difficult func-
tions, it performed better than the other algorithms.
They also found it to be a very robust algorithm and
not likely to fail or have numerical difficulties. The
largest problem they studied had 62 parameters. Bo-
hachevsky et al. (1986) reported that their generalized
simulated annealing method produced a better experi-
mental input design than the one found by Bates (1983).
Haines (1987) also reported favorable results when
applying the simulated annealing algorithm to the
construction of exact optimal designs. Although the
simulated annealing algorithm does not guarantee a
solution that is globally optimal, it allows the search to
move away from local optima and continue over a wider
area. The computational expense is less than an
exhaustive search and can incorporate a large number
of parameters (Bohachevsky et al., 1986; Corana et al.,
1987; Goffe et al., 1994). On the basis of these advan-
tages, we propose to use a modified version of the
simulated annealing algorithm to compute suboptimal
experimental designs for sheet and film processes.
Before the experimental design procedure is discussed,
we will summarize the model description and define
nomenclature commonly used in parameter estimation
and optimal design.

3. Process Gain Estimation

The interaction matrix for a sheet and film process
is the mapping from the manipulated variables to the
sheet/film profile (see Figure 1). The manipulated
variables are typically slice or die lip positions, while
the sheet/film profile measurements are typically in
terms of basis weight, thickness, or moisture content.
Detailed process descriptions with typical interaction
matrices are provided elsewhere (Braatz et al., 1996;
Featherstone and Braatz, 1997b).

Sheet and film process models can be written in the
form (Featherstone and Braatz, 1997b):

P(s) = UA(s) V' 1)

where the matrices U and V are unitary. The elements
of the diagonal matrix A(s) are transfer functions, and
their values at steady state (s = 0) are referred to as
the gains of the sheet/film process (Featherstone and
Braatz, 1997b). Featherstone and Braatz (Featherstone

and Braatz, 1997b) showed that the accuracy of the
gains directly specifies the closed-loop performance
achievable by a model-based controller. More specifi-
cally, the sign of a process gain must be accurately
known for the controller to reliably suppress distur-
bances in the direction of the column of V associated
with the process gain.

Here we will focus only on the steady-state model
because the scalar dynamics for sheet and film processes
are trivial to identify in practice. The measured process
output at steady state for the ith experiment is assumed
to be described by

Yi =Pu;+ ¢ (2

where P is the n x n steady-state process interaction
matrix, and the measurement noise ¢ has a normal
distribution, an expected value of zero (E(¢j) = 0), and
a positive-definite covariance matrix cov(¢j) = S. The
noise covariance matrix takes into account potential
spatial correlation of noise processes across the machine
(Rawlings and Chien, 1996).

Substituting (1) into (2), rearranging, stacking vec-
tors, and taking the expected value gives

E(Y) = X1 ©)

where ¥ = [y1, ..., Ynl", AT = [A4, ..., 44]7, and the input
matrix X is a function of u;. The least-squares estimate
of A is A = (XTX)"IXTy with cov(y) = (XTX)"IXTSX(XTX)1
(Ljung, 1987).

Our focus will be on sequential estimation, since the
other cases are similar. The volume of the confidence
ellipsoid for the parameter vector A based on the first
N experiments is quantified by the information matrix
(Beck and Arnold, 1977; Silvey, 1980)

M{u;: i=1,..,N})=XXX'SX)'X'™X  (4)

which is the inverse of the covariance matrix for the
gain estimates.

4. Problem Formulation for Constrained Input
Design

For identification and control purposes, the most
critical parameters for sheet and film processes are the
process gains (Featherstone and Braatz, 1997b). The
D-optimality criterion minimizes the volume of the
confidence ellipsoid for the process gain estimates
(Atkinson and Donev, 1992):

maxdet M({u;: i =1, ..., N}) (5)

Uy

where the optimization is only over experimental de-
signs that are physically realizable. Also, the objective
function is modified to exclude process gain estimates
whose signs are known with confidence after previous
experimental data are available. The following is a brief
description of the constraints, the objective function
modification, and the method used to solve the optimi-
zation problem.

Constraints. To prevent excessive process upsets
during experimental data collection, constraints are
imposed on the process inputs and outputs. For sheet
and film processes the constraints on the manipulated
variables at each time instance are usually of the forms
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Figure 2. Blown film example: (a) the standard step experiment
input manipulations; (b) a representative open loop output re-
sponse.

(Braatz et al., 1996; Braatz and VanAntwerp, 1997;
Chen and Wilhelm, 1986)

—a = u; = a, [0j(min—max constraint) (6a)

—b = u; —u;_; = b, 0j (Ist-order constraint)

—d=u; —2utu_ =d,
0j (2nd-order bending moment constraint) (6c)

After the first experiment, output constraints can be
included by applying (2) with the estimated P to rewrite
the output constraints as input constraints. The opti-
mization problem for D-optimal sheet and film identi-
fication design is posed as (5) subject to the constraints
(6).

Modification of the Objective Function. For the
first experiment, no modification of the objective func-
tion is necessary. However, in subsequent experiments,
the sign of some process gains may be known with
sufficient confidence. For control purposes, further
reduction of the confidence interval associated with
these gains will not significantly improve the achievable
closed-loop control performance (Featherstone and
Braatz, 1997b). Therefore, these gains are excluded in
the objective function. This formulation still allows
input manipulations in any direction, as allowing inputs
in directions associated with known gains can allow
input designs to more easily satisfy the constraints.

At a given level of confidence, the confidence interval
around each estimated gain is tested for inclusion of
zero. If the confidence interval does not include zero,
then the sign of the gain is known within the selected
confidence level. After the first experiment, a 99.99%
confidence interval was used in the accuracy tests. This
conservative level of confidence was used to prevent any
poorly identified gain from being mistakenly excluded
from the objective function after only one experiment.
For gain estimates based on more than one optimally
designed experiment, the level of confidence was re-
duced to 99.9%.

Constrained Input Design via Simulated An-
nealing. A simulated annealing algorithm (Corana et
al., 1987; Goffe et al., 1994) was used to solve the
optimization problem. Basically, the simulated anneal-
ing algorithm searches for the global optimum of an
n-dimensional function by allowing both up- and down-
hill moves and focusing on the most promising area as
the optimization proceeds. As the constraints (6) are
not the box constraints which are used in most simu-
lated annealing algorithms (Bohachevsky et al., 1986;
Corana et al., 1987; Goffe et al., 1994), modifications
were necessary to handle the first- and second-order
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spatial constraints (6). A detailed description of the
algorithm, with details regarding the parameters used
and computation times, is provided in the first author’s
thesis (Featherstone, 1997).

5. Example: Blown Film Process

The following example is based on a simulated blown
film process and illustrates the experimental design
procedure for a realistic large-scale sheet and film
process. ldentification experiments were performed to
develop two models: one based on using the standard
industrial step experiments and the other based on the
proposed experimental design procedure. Control simu-
lations were performed on the original process to
compare the achievable closed-loop performance by the
two models.

Consider the true process transfer function matrix
C(s) to be

s
C(s) = peal
C1 C2 ceoe Cm-1 Cm ceoe Cm Cm-1 ceoe C2
o .
G2 G € .. Cm1Cm .. ° . .
: . . .
. G & G ., Cm1 °, e e Cma
. .
. .. .. .
Cm-1 . C2 1 C2 cee . . . Cm
Cm Cm1 o C2 *e *e . Cm-1 Cm .
. . . (7
. . * * .
. Cm Cm1 . *e *e C2 . Cm-1 Cm
Cm . % *e cee O2 C1 C2 . Cm1
o e e :
Cm1 °*s ° e Cm1,.. G2 O C2 .
S e
. e % eee Cm Cm1 .., @2 O &
C2 eee Cp1 Cm eee Cm

\_

where m is the spatial extent of interactions, n is the
number of actuator and sensor lanes across the ma-
chine, s is the Laplace transform variable, and the
interaction parameters are

¢, =10; ¢,=0.9; ¢;=06; ¢c,=0.2;, ¢;=0.1;
cg=—-0.1;, ¢,=0.05 cg=c,=0.0 (8)

In practice, the process parameters c; are really
nonlinear functions of the polymer being processed, the
die gap opening, the temperature, etc. These nonlinear
interactions are quite complex, and current modeling
efforts are focused on the axial (bubble) shape, assuming
constant properties at surface and a rigid die gap
opening (Sidiropoulos et al., 1996; Perdikoulias and
Tzoganakis, 1996; Kurtz, 1995; Wong, 1995; Liu et al.,
1995; Pearson and Richardson, 1983). Koop (1993) has
studied the deformation of an elastic ring under point-
wise radial load but does not consider the actual blown
film process. Therefore, a linear model was assumed
which is only representative of a possible interaction
matrix. The condition number of the interaction matrix
is singular, which poses difficulties for most identifica-
tion and control procedures.

Identification. For this example, the measurement
noise in each sensing location was considered to be
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Figure 3. Blown film example: the input manipulations (a, b)
and open loop output responses (c, d) of the first and fifth optimally
designed experiment, respectively.

independent and have a variance of 0.04. This is a
realistic noise description for many plastic film extru-
sion processes. Using the industrial standard input
design (Heaven et al., 1993), the step input was per-
formed in a number of actuator locations which are
separated so that the resultant bump response profiles
do not overlap. For the blown film process example, the
step input was specified as

Us=e5F €1 e 1 ey ()]
where
e,=[0 .. 010 .. 0] (10)

with the 1 in the kth position. The standard step input
satisfies the constraints (6) witha=1and b =d = 2.
A representative output in response to the standard step
experiment is shown in Figure 2.

The optimally designed experiments were computed
while satisfying the same constraints applied to the
standard step experiment. The input manipulations
and output responses for the first and fifth optimally
designed experiments are shown in Figure 3. The
results of the identification experiments are contained
in Figure 4, which shows the 95% confidence interval
for each estimated gain along with the true value when
the number of experiments is either one or five (only
the unique 23 process gains are shown—the other 22
gains are repeated (Featherstone, 1997)).

After one experiment using the step input (9), it is
apparent from Figure 4 that many of the gains are
incorrectly identified and that most gains have large
confidence intervals. Comparing parts a and b of Figure
4, the first optimally designed experiment has signifi-
cantly tighter confidence intervals for all the param-
eters. In fact, on average the parameter estimates 4;
are 1290% more accurate for the optimally designed
experiment (Featherstone and Braatz, 1997a).

Seventeen gains are identified with confidence for the
five optimally designed experiments, whereas only ten
gains are confidently identified for the five standard step
experiments (Figure 4). Not all the gains have a smaller
variance than after the step experiments, due to the
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Figure 4. Plant gains 4; (shown using * ) and the 95% confidence
intervals associated each estimated model gain 4; (shown using -)
based on (a) one standard step experiment, (b) one optimally
designed experiment, (c) five standard step experiments, and (d)
five optimally designed experiments.

exclusion of the already confidently known gains in the
objective function during the optimization. The step
experiments identify A1, 419, and A3 more accurately
than the optimally designed experiments. This has no
consequence in the controller design, because the gains
are identified with significant confidence in both models.
The optimally designed experiments are concerned with
obtaining better estimates for the gains whose signs are
not accurately identified. On average the estimated
gains are 1120% more accurate for the optimally design
experiments (Featherstone and Braatz, 1997a).

Time Domain Simulations. The two models were
used to design the controllers in the simulation studies;
one based on the five step experiments (model 1) and
the other on the five optimally designed experiments
(model 2). The controllers were designed using the SVD
controller design method of Braatz and co-workers
(Featherstone and Braatz, 1997b; Hovd et al., 1996;
Braatz and VanAntwerp, 1996), which provides a con-
troller designed to be robust to the inaccuracies quanti-
fied by the identification algorithm as well as model
structure errors (the control weights and other details
in the design are available in the first author’s thesis
(Featherstone, 1997)). The controller provides the best
performance achievable for the model with the quanti-
fied model inaccuracies. The simulations demonstrate
how much improvement in closed-loop performance is
obtained by the more accurate model obtained from the
experimental design procedure (see Figure 5).

The model based on the five optimally designed
experiments has a larger number of gains known with
confidence, allowing the robust controller to perform
input moves in more directions than with the model
based on the standard step experiments (33 directions
for the optimally designed model compared to 19 for the
step model). This results in a smoother final profile
response. The standard deviation of the profile as a
result of the controller based on the better model is 37%
smaller. It should be reiterated that the better model
was not obtained by more experiments or by weakening
the constraints. The better model was obtained by
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using the optimal experimental design rather than the
standard industrial bump tests.

6. Conclusions

Manipulated variables were computed that optimize
the information in data collected from sheet and film
processes. For a simulated blown film process, the
model was an order of magnitude more accurate than
that obtained using the industrial standard bump test
experiments. The improved accuracy resulted in a 37%
reduction in closed loop thickness variations. This
indicates that substantial benefits can be achieved by
incorporating the optimal experimental design algo-
rithm into industrial sheet and film process control
algorithms.
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