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Abstract

Efficient algorithms are developed for the model reduction of large scale uncertain systems. The polynomial-
time algorithms rely primarily on well-conditioned singular value decomposition computations, and allow
robustness stability and performance margins to be computed for uncertain systems of high dimensionality.
Application to a realistic description of a large scale paper machine control system demonstrates the utility of
the algorithms. © 1998 Elsevier Science Ltd. All rights reserved
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1. Introduction

It is impossible to generate highly accurate phe-
nomenological models for industrial-scale processes
because of inaccurate values for the physical para-
meters of the process, and lack of complete under-
standing of the underlying physical phenomena (for
example, during polymerization, crystallization, and
drying). This necessitates the identification of a pro-
cess model from input—output data collected during
process operations. The quantity of this data is usu-
ally limited however, since data collection for an
industrial-scale process is expensive and time consum-
ing. The quality of this data is deteriorated by noise,
unknown disturbances, and imperfectly operating
equipment (e.g. stiction and clogging in valves). The
limited quality and quantity of input-output data
ensures that the identified model will not be an exact
representation of the true process. It was recognized
in the late 1970s that ignoring model inaccuracies
could lead to poor performance or instability
(Brosilow, 1979; Morari and Zafriou, 1989; Palmor
and Shinnar, 1981; Skogestad and Postlethwaite,
1996).

Robustness analysis consists of testing whether
a given controller provides the desired performance
for all potential model parameter variations. The
function, u, is a nonconservative measure for ana-
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lyzing system robustness (Doyle, 1982; Safonov, 1982),
and is a direct generalization of the concept of the gain
margin taught to engineers in their undergraduate
process controls course (Ogunnaike and Ray, 1994;
Seborg et al., 1989; Stephanopoulos, 1983).

Large scale systems have large numbers of inputs
and outputs, and include whole chemical plants as
well as some unit operations, such as paper machines,
polymer film extruders, and adhesive coaters (Braatz,
1997). The importance of ensuring robustness of the
closed loop system to model uncertainties increases as
the process dimensionality increases (Featherstone
and Braatz, 1997; Braatz, 1997); hence developing
algorithms for computing robustness margins for
large scale systems is of immense practical import-
ance. This explains why researchers have spent many
man-centuries working to derive efficient numerical
algorithms for computing robustness margins (a man-
century refers to one man working 40 hours per week
for one century) (Bartlett et al., 1989; Beck and Doyle,
1992; Boyd et al., 1994; Chiang and Safonov, 1992;
Daniel et al., 1986; de Gaston and Safonov, 1988; Fan
et al, 1991; Kharitonov, 1978; Kouvaritakis and
Latchman, 1985a,b; Latchman, 1988; Newlin and
Young, 1992; Pena and Sideris, 1990; Sideris, 1990;
Sideris and Pena, 1989; Siljak, 1989; Tierno and
Young, 1992; Young and Doyle, 1990).

Computational complexity theory provides an
approach for determining the level of accuracy and
computational speed that are obtainable by algo-
rithms for computing robustness margins, and as to
which classes of algorithms may provide practical
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robustness margin computation for large scale
systems (Braatz et al., 1993). One of the main goals
of computational complexity theory is to classify
computational problems as being polynomial-time or
NP-hard. A computational problem is polynomial-
time if the time needed to solve the problem is
bounded by a fixed function that is polynomial in the
quantity of data needed to define the problem. Exam-
ples of polynomial-time problems are linear programs,
matrix inversion, and gain margin computation.
Although the exact consequences of a problem being
NP-hard is still a fundamental open question in the
theory of computational complexity (Garey and Joh-
nson, 1983; Papadimitriou and Steiglitz, 1982), it is
generally accepted that a problem being NP-hard
means that it cannot be solved in polynomial time in
the worst case.

{
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by 0,. Given a vector (ry, ... ,r;) with Z::1 r; = n, the
perturbations which may occur at different locations
in the system are collected in the block-diagonal
matrix A

A = {dlag{éilni e ,6;1,,(,(5)61*.11,,“‘, ’6(‘"‘1’”"
Apirs A0 € R, 07 €6,0,€6™7" ], (2)

and the system is arranged to match the diagram in
Fig. 1. The block structure refers to the vector
(ry, ... .r). The nominal system M in Fig. 1 is deter-
mined by the nominal model, the size and nature of
the uncertainty, the performance specifications, and
the controller. Off-the-shelf programs construct
M and the structure of A directly from the system
description (Balas et al., 1992; Chiang and Safonov,
1992; Russell and Braatz, 1996a, b).

The structured singular value g, (M) is defined as

0 if there does not exist AeA

pa(M) =

AcA

Braatz et al. (1993) have shown that exact y-compu-
tation is NP-hard. Braatz (1996) has shown that even
approximating u within an a priori chosen tolerance is
an NP-hard problem. The u computation scales very
poorly as the size of the problem increases. This moti-
vates the development of polynomial-time algorithms
for reducing the dimension of large scale uncertain
systems, before applying u-computation to the system
to analyze its robustness. Algorithms are developed
that can reduce the dimension of uncertain systems by
orders of magnitude, which allows robustness margin
computation to be practically performed for uncertain
systems with much larger dimensionality. The theor-
etical implications of the algorithms are explored, and
the algorithms are applied to the computation of
robustness margins for some large scale systems.

2. Mathematical nomenclature

Doyle (1982) and Safonov (1982) derived the struc-
tured singular value, g, to test for the robustness of
uncertain systems. To calculate u the uncertainty (the
set of possible plants) must be modeled as norm
bounded perturbations A; on the nominal system
M (see Fig. 1). Through weights each perturbation is
normalized to be of size one

lAill. =supa(A) < 1, (N

where 6(A;) is the maximum singular value of matrix
A;. The perturbation A, is complex for representing
unmodeled dynamics, and real for representing para-
metric uncertainty. The set of real numbers will be
denoted by #, the set of complex numbers by %, the
r x r identity matrix by I,, and the r x r matrix of zeros

such that det(l — MA) =0,
-1
<min {a(A)|det(I — MA) = 0}) otherwise.

Without loss of generality we have taken M and each
subblock of A to be square. The time required to
either approximately or exactly compute u grows rap-
idly as the dimensions of M and A increase. The
following section presents an exact algorithm that
reduces the dimension of the M and A matrices in
a manner that does not affect the value of g.

3. Exact model reduction algorithm

The exact model reduction (EMR) algorithm is
listed in Table 1. The following theorem states that the
reduced model produced by the EMR algorithm has
the same robustness margin as the original model
(proof in appendix).

Theorem 1 (Exact model reduction). Let M e €"*"
and A€ A where A is defined in equation (2). Then
ua(M) = pz(M), where A corresponds to the block-
structure ¥ = (Fy, ... ,F;) and M and F are obtained by
performing the EMR algorithm (in Table 1).

Theorem 1 implies that a method for computing the
robustness margin u for a large scale uncertain system
described by M and A is to first apply the EMR

M

Fig. 1. System arrangement for calculating u,(M)
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Table 1. Exact model reduction (EMR) algorithm
Step 1. Perform a singular value decomposition on M to obtain
M=Y wol. (*)
i=1
Eliminate the terms of equation () corresponding to ¢; = 0 to obtain
H
(v, [v
M=|:|Z = UzVH (ve)
v

where U; and V,; are r, x r matrices and X = diag(s,, ... ,6,) where r is the rank of M.

Step 2: Let W! = (UY)" where U" is the unitary outer rotation matrix of the singular value decomposition of U;, and let
W} = (UV)" where U"" is the unitary outer rotation matrix of the singular value decomposition of V;. Row reduce each of
the U, and V, matrices so that their last r; — rf and r; — r} rows contain only zeros by premultiplying U; and ¥; by W/ and
W/ . respectively. Now, construct WV = blockdiag(W{, ..., W) and W" = blockdiag(W7Y, ... ,W}).

Step 3. Let 7; = max{r’,r!} and U, and V, be the F; x r matrices consisting of the first 7, rows W U; and W[V, respectively.

Let

O
L

Vi

and V =

Vi

Step 4: Let WY and W] be the 7; x r matrices consisting of the first 7; rows of W[ and W/, respectively.

Step 5. Define WV =blockdiag (W{, ..., W5 I, ..

..,I;) and WV = blockdiag(W}{, ... WY, I, ,...I) Let
M = USVEWY (W V)" which is a /i x i matrix where i=Y!_ F,

i=1

Fi.

algorithm to compute an equivalent uncertain system
with lower dimension matrices (M and A), and then
compute u for the lower dimension uncertain system.
The EMR algorithm is stated and proved as an exact
algorithm because the theoretical results in Section
5 will require this. Due to roundoff errors, the robust-
ness margins for the original and reduced dimension
uncertain systems will not be exactly equal. However,
each step of the algorithm is very well conditioned, so
that the difference between the robustness margins for
the original and reduced dimension systems is negli-
gible. This is supported by theoretical results in Sec-
tion 4 and has been tested extensively using random
matrices (some typical results are presented in
Example 2 of Section 7).

It is sometimes of interest to compute perturbations
of minimum magnitude that destabilize the uncertain
system (i.e, a A that achieves the minimum in equa-
tion (3)). A control engineer may use this information
to judge the likelihood that such parameter values
would occur in practice. Off-the-shelf software applied
to the computation of p for the uncertain system
of reduced dimension M provides as output a destabi-
lizing perturbation of minimum magnitude A. To
construct a destabilizing perturbation of minimum
magnitude A for the original system M, sequentially
add row and column vectors of zeros to A correspond-
ing to the row numbers removed in WVU and W'V
in Step 3 of the EMR algorithm.

Theoretical bounds derived in Section 5 indicate
that applying the EMR algorithm before performing

u-computation can substantially reduce the computa-
tional expense associated with robustness margin
computation. The speedup provided by the EMR
algorithm will be illustrated by application to a large
scale paper machine control system in Example 1 of
Section 7. Another important consideration in robust-
ness margin computation that was discussed above
concerns accuracy. Since smaller matrices result in
better numerical conditioning during p-computation
(this was demonstrated using extensive simulations in
Chapter 6 of Young (1993)), tighter bounds on the
u-values can be obtained by performing the EMR
algorithm. This potential for improved accuracy in
robustness margin computation is illustrated in
Example 2 of Section 7.

In the EMR algorithm, rank deficiency of the
matrix M and row rank deficiecies of U; and V; allow
the dimensions of the y-problem to be reduced. If
there are no rank deficiencies in both Steps 1 and 3, no
reduction in dimension will occur. In the instances
where the EMR does not reduce the dimension suffi-
ciently, the algorithm described in the next section
may provide an uncertain system of even lower di-
mension that has approximately the same robustness
margin as the original system.

4. Approximate model reduction algorithm

The strategy behind the EMR algorithm is to delete
subspaces of M, U;, and V; that do not affect the value
of the robustness margin. The approximate model
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reduction (AMR) algorithm in Table 2 deletes subspa-
ces of M, U,, and V; that have a very small effect on
the value of the determinant given in the definition of
U (see equation (3)).

Given the computational complexity in computing
u exactly, it is just as difficult to compute the exact
difference between the actual u-values and the u-
values obtained by performing the AMR algorithm.
However, this difference is reduced by removing only
subspaces associated with singular values that are
nearly zero.

In practice, u-values are not computed directly, but
rather the upper and lower bounds are computed.
When the perturbations are complex, many of the
norm and eigenvalue perturbation theorems (Golub
and van Loan, 1983; Stewart and Sun, 1990) can be
extended to provide estimates of the error between the
actual u-values and the u-values obtained by perform-
ing the AMR algorithm. The extensions to these the-
orems are more conservative, due to the fact that
optimizations are used in the computation of the
lower and upper bounds for u. For brevity, only the
most useful of these conditions will be provided here.

Theorem 2 bounds the error caused by arbitrarily
perturbing an M matrix (this is stated as a separate
result as it may be of independent interest), while
Corollary 1 applies Theorem 2 to place an upper
bound on the error induced by the AMR algorithm
(proofs in appendix).

Theorem 2. (u-Upper bound perturbation theorem).
Let M, E€¥"*" and A€ A, where A contains the
block-structure for complex blocks only (r=
(re+1, ... +17)) as defined in equation (2). Then, the upper
bound for us(M) is calculated and defined by

iy(M) = inf 6(DMD ") 4

where the set & has the structure

2= {diag{Dk+la 3Dm’dm+llrm‘v adllr,}
|die #:d; > 0;D; e €"*";D; = DF > 0}. (5)

Assume the infima in equation (4) is achieved for
fs(M)and ,(M + E). Then the folowing inequalities

apply
Ba(M + E) — G((D**)E(D**)™ ") < ia(M)
< fa(M + E) + 6((D*)E(D*)™ 1), (6)

Table 2. Approximate model reduction (AMR) algorithm
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Aa(M + E) — k(D**)G(E) < iia(M)
< fin(M + E) + x(D*)6(E), (7

where k(D) = 6(D)é(D '), D* = argmin ., 6(D(M +
E)D™'), and D** = argminy.,d(DMD ™).

Corollary 1 (Approximate model reduction). Define
M, A, r, i, and 2 as in Theorem 2, with the additional
assumption that all of the uncertainties in A are full
block. Let the SVD of M =U, L. VH v U_x_v¥,
where X _ contains only those singular values set equal
to zero by Madification 1 of the AMR algorithm, the
matrices U, and V., contain only the singular vectors
corresponding to L., and the matrices U_ and
V_ contain only the singular vectors corresponding to
L. Lee WYU,=0,+0U, and VEWY)H =
VH + V" where U, and VY are the partsof WY U,
and V5 (WV\H, respectively, removed by Modification 2
of the AMR algorithm.

Let M and A be the reduced matrices computed from
the AMR algorithm, and Z be compatible with A.
Assume the infima in equation (4) are achieved for j1,(M)
and fiz(M), and define D** = argmin p., 6(DMD 1)
and D* = argmin ., 6(DMD™"). Then

ia(M) — G((D**)E(D**)" ') < ity (M)
< (M) — a((D*)E(D*) 1), (8)
fis(M) — k(D**)G(E) < fix(M)
< (M) + k(D*)G(E), 9)
apply with E given by
E=-WYH 0.2, Vi + 0, 2.7
+ U . VHwY —u_z ve (10

and D* corresponding to the block structure of A with
the scalar values (dp+ 1, ... ,d;) of D*.

Furthermore.
#a(M) — k(D**)(3G(M) + 6(Z ) < j1a(M)

< pa(M) + k(D*)(B6(M) +6(2-)). (1)

The objective of the AMR algorithm is to reduce
the size of the y-problem while minimizing the inac-

curacies in the u-value. The tolerances in the AMR
algorithm provide the trade-off between these two

Perform the EMR algorithm with the following two modifications:
Modification 1: In Step 1 of the EMR algorithm, set equal 10 zero the singular values of M that are below some predefined

tolerance.

Modification 2: In Step 2 of the EMR algorithm, set equal to zero the singular values of U; and ¥, that are below some

predefined tolerance and decrease r’ and r} accordingly.
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objectives, and Corollary | can be useful for choos-
ing the tolerance without solving the original u-prob-
lem. For instance, equation (11) provides an upper
bound on i (M) in terms of D*, which is obtained
directly from the output of the upper bound u-compu-
tation for the reduced M using the p-toolbox. Also
note that, when the infima are achieved, equations
(8) and (9) prove that the AMR algorithm is numer-
ically robust (that is, the p-value for the reduced
problem approaches the pu-value for the original prob-
lem as E goes to zero). The conservatism of the
bounds in Corollary 1 are illustrated in Example 2 of
Section 7.

There will always be dynamics in the real system at
very high frequencies that is not captured by the
nominal model. Real parameter uncertainties do not
completely capture such unmodeled dynamics, since
the use of real parameter uncertainties requires an
upper bound be placed on the number of states, and
this upper bound is never known in practice (for
example, how many states are precisely needed to
represent stiction in a valve?). This implies that uncer-
tain system representations should always include at
least one complex perturbation that enters non-
trivially in the closed loop system. For such systems,
Packard and Pandey (1993) have shown that the
robustness margin is a continuous function of the
elements of M. Deleting subspaces corresponding to
small singular values (as done in the EMR and AMR
algorithms) has a small effect on the elements of M,
and for problems where u is a continuous function of
M, has a small effect on the value of the robustness
margin. This argument, which can be stated rigorous-
ly in terms of ¢ — J statements (not given here for
brevity), implies that the EMR and AMR algorithms
are well-behaved model reduction techniques. This
conclusion has been confirmed by extensive testing on
both random matrices and descriptions of real sys-
tems (see Section 7 for examples).

5. Theoretical implications

Braatz et al. (1993) have shown that 4 computation
is NP-hard as a function of the dimension of the
uncertain system matrix M. For practical computa-
tional reasons, it is natural to wonder whether there is
a more natural parameter for which the computa-
tional complexity is a function of. For example, recent
results regarding the p-computation for systems with
rank-one M matrices (Chen et al., 1991; Young, 1993)
led John Doyle at Caltech to recently hypothesize that
the NP-hardness of u-computation may be more dir-
ectly related to the rank of M than the dimension of
M. Although we will not show that the NP-hardness
of u-computation is a function only of the rank of M,
we will show that the NP-hardness of y-computation
scales as a function of the rank of M muitiplied by the
number of perturbations.

Theorem 3 characterizes the computational com-
plexity of the EMR algorithm.
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Theorem 3 (Computational complexity of the EMR
algorithm). Let M € €"*" and A€ A where A is de-
fined in equation (2). The number of flops required by
the EMR algorithm is bounded by (26! + 12)n® —
(21 + 4)n?.

The off-the-shelf software commonly used for ro-
bustness margin computation computes upper and
lower bounds on yu (Balas er al., 1992; Chiang and
Safonov, 1992). The tightest polynomial-time-com-
putable upper bound on u of Me%"*" can be
formulated as a linear matrix inequality, whose com-
putation grows as @ (n*In(n)) (Boyd et al., 1994). To
the authors’ knowledge, there is no tighter bound on
u that can be computed with lower computational
expense as a function of the dimension of M. Theorem
3 indicates that the EMR algorithm is bounded by
a third-degree polynomial in the dimension of M (first
order in the number of uncertainty blocks). Thus the
overall computational expense of computing the
tightest polynomial-time upper bound on y can be
reduced by performing the EMR algorithm before
robustness margin computation. Typical speedups are
illustrated on several examples in Section 7.

Theorem 4 provides an upper bound on the dimen-
sion of the reduced svstem resulting from application
of the EMR algorithm.

Theorem 4 (Upper bound on dimension of reduced
system). The row (= column) dimension of M resulting
from applying the EMR algorithm to M e €"*" and
A € A (where A is defined in equation (2)) satisfies the
Sollowing inquality:

!
dimension(M) = Y 7 <!rank(M). (12)
i=1

Theorems 3 and 4 imply that the EMR algorithm
provides a polynomial-time transformation of a given
u-computation problem into an equivalent g-compu-
tation problem of dimension less than or equal to the
number of perturbation blocks multiplied by the rank
of M. This strongly suggests that y-computation
problems for uncertain systems described by M ma-
trices of low rank can be considered as being “easier”
than for systems with M matrices of full rank.

6. Comparison with previous work

Rivera and Morari (1987, 1990) developed methods
to reduce the number of plant or controller states,
with the overall objective being to aid in the design of
a low order robust controller. The objective of this
paper, to efficiently compute robustness margins for
systems with large numbers of inputs and outputs, is
completely different.

The only existing algorithm for the model reduction
of large scale systems with linear time-invariant un-
certainties was proposed by Fan and Tits (1986).
Their algorithm only applies to systems with complex
perturbations; whereas the new algorithm holds for
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both real and complex, and repeated and full
block uncertainties. The new algorithm reduces to
Fan and Tits’ when only non-repeated complex
uncertainties are considered (the weight in Table |
WY (WYY = I when there are only full block com-
plex uncertainties), while having significant modifica-
tions for real and repeated complex uncertainties. Our
method of proof (described in the appendix) is differ-
ent, and is more intuitive than that used by Fan and
Tits who used the numerical range formulation of the
robustness margin (Fan and Tits, 1986).

Beck et al. (Beck, 1994, Beck and Doyle, 1995;
Wang et al., 1991) have developed model reduction
techniques that hold for general noncommutative op-
erators. It is the opinion of the authors that their work
is seminal. However, it is expected that the extent of
dimensionality reduction achievable by their tech-
niques to systems with linear time-invariant uncer-
tainties (which are commutative) is limited. Also, their
algorithms are based on linear matrix inequalities,
whose solution is significantly more computationally
expensive than for our algorithms which only requires
a limited number of SVD calculations.

7. Examples

7.1. Example 1: Paper machine control system

Most paper machine models used for cross directional
controller design have the form (see (Laughlin et al.,
1993; Braatz, 1997, Braatz et al., 1996) for details)

P(s) = p(s)Pcp. (13)

where p(s) is a transfer function representing scalar
dynamics, and P.p is a static interaction matrix.
Most reported interaction matrices are Toeplitz
symmetric

P1 P2 Pm 0 0
P2 Pr P2 v Pm . .
: P2 P1 P2
Pop=|tr P O
O pn : . . P2 i Pm
' ' P2 P P2 :
Pm = P2 P1 P2
0 0 pn - P2 m
N ;

nxn

(14)

where m specifies the spatial extent of coupling across
the paper machine, and n is the number of actuators
and sensor lanes (most modern paper machines have
edge effects, and more sensor lanes than actuators, but
a further discussion of paper machine models would
be outside of the scope of this paper). For our nominal
model we will use the m = 10 interaction parameters
for a paper board machine model (Karlsson and

E.L. RusseLL and R.D. BRAATZ

Haglund, 1983):

pi=1 p;=09 pi=07 ps=08,
ps=1, pe=06 p,=—-0.5
ps= —04; pg=~02; po=-02. (15)

It will be assumed that there are 101 actuators
(n = 101). The nominal scalar dynamics are assumed
similar to those given by Laughlin et al. (1993)

(16)

where the time delay 6 = 1 and the open loop time
constant t = 1. Due to a low quantity of high quality
experimental data (Featherstone and Braatz, 19935),
nominal paper machine models always have a signifi-
cant amount of uncertainty associated with them. We
will model this uncertainty as being associated with
both the input and output of the process, i.e. the true
process is assumed to be an element of the set

(I + Wolo)P(s)I + W, A)), (17)

where the uncertainty weights are given by

055 +0.1

Wo=W,=— '~
¢ T 055 + 1

I,. (18)

Each uncertainty weight allows for steady state inac-
curacies of up to 10% and high frequency uncertain-
ties of 100%, with crossover frequencies of w, = 0.2
and Wy = 2.

It is well known to experts in paper machine con-
trols that the poor conditioning of paper machine
makes it impossible to control all n possible distur-
bance directions (Featherstone and Braatz, 1995;
Kjaer et al, 1994; Kristinsson and Dumont, 1996).
Researchers have proposed various methods to select
which directions to control, including methods based
on Gram polynomials (Kjaer er al., 1994; Kristinsson
and Dumont, 1996), splines (Halouskova et al., 1993),
and columns of the input rotation matrix of a singular
value decomposition of the interactions matrix
(Braatz and Featherstone, 19935; Featherstone and
Braatz, 1995, 1997). The robust controller design pro-
cedure of Braatz and VanAntwerp (Braatz and
VanAntwerp, 1996) results in the controller

K(s) = k(s)K¢p, (19)
where k(s) represent scalar dynamics given by
+1
ks) ==, (20)
As
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with the desired closed loop time constant 4 = 2, and
Kcp1is a static decoupling matrix constructed from the
singular value decomposition of Pc, = UZVT. More

specifically,
£ 0
=V Ut
Keo [ 0 0}

(21)
where £ is equal to the upper left submatrix of £ with
fifteen rows and columns (these rows and columns
correspond to the singular values of P., with the
largest magnitude).

Now we will apply the EMR algorithm for comput-
ing robust stability margins for the uncertain system
described by the nominal plant (14)(16), uncertainty
set (17)418), and controller (19)+21). Constructing
the M matrix by hand as shown in textbooks and
monographs (Morari and Zafiriou, 1989; Skogestad
and Postlethwaite, 1996) or using off-the-shelf pro-
grams (Balas et al., 1992; Chiang and Safonov, 1992;
Russell, 1996; Russell and Braatz, 1996a, b) results in

M =

[ — WoP(I + KP)"'K

WoP(I + KP)™!
— W,K(I+ PK)™! ’

—~ W KP(I + KP)"!
(22)

where the elements of M are a function of frequency
(s = jow).

Using the MATLAB u-tools toolbox (Balas et al.,
1992), lower bounds via the power iteration and upper
bounds for the robustness margins of M were com-
puted for various uncertainty structures (structure of
Ao/structure of A;): (1) repeated real/full complex, (2)
repeated complex/full complex, and (3) full com-
plex/full complex. The EMR algorithm reduced the
block structure from (101, 101) to (30, 30) for all
frequencies between [0.1,10] for each of the uncer-
tainty descriptions. The upper and lower bounds for
the robustness margins calculated before and after the
application of the EMR algorithm for the repeated
complex/full complex and full complex/full complex
uncertainty structures are the same to five significant
figures for the entire frequency range (see Fig. 2). For
the repeated real/full complex case (Fig. 3), the lower
bound for u using the EMR algorithm is somewhat
better than the lower bound before using the EMR
algorithm. The largest improvement of the lower
bound for y by implementing the EMR algorithms is
0.29 at frequency = 1.26, while the worst case
degradation of the lower bound by implementing the
EMR algorithm is 0.077 at frequency w = 0.95.

Figures 4-6 indicate that the robustness margin
computations using the EMR algorithm is less com-
putationally expensive than the computations with-
out the EMR algorithm. For the repeated real/full
complex uncertainty structure, when the bounds are
not tight there is roughly an order of magnitude
difference as can be concluded from Figs. 3 and 6.
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Fig. 2. Plots of u(w) for M (the upper and lower bounds for
u(w) were within 5 significant digits). Solid curve is for the
full complex/full complex uncertainty structure, and the dot-
ted curve is for the repeated complex/full complex uncertain-
ty description.
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Fig. 3. Plots of u(w) bounds for M with the repeated real/full
complex uncertainty structure. Dotted curve is the lower
bound using M. Solid curve is the lower bound using the
EMR algorithm on M. Dash-dotted curve is the upper
bound using either M or using the EMR algorithm on M.
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Fig. 4. Flops required to compute the lower and upper u(w)
bounds for the repeated complex/full complex uncertainty
structure. Dotted curve represents the flops using M. Solid
curve represents the total flops required to reduce M using
the EMR algorithm and to compute the u(w) bounds.
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Fig. 5. Flops required to compute the lower and upper u{w)
bounds for the full complex/full complex uncertainty struc-
ture. Dotted curve represents the flops using M. Solid curve
represents the total flops required to reduce M using the
EMR algorithm and to compute the z(w) bounds.
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Fig. 6. Flops required to compute the lower and upper u(w)
bounds for the repeated real/full complex uncertainty struc-
ture. Dotted curve represents the flops using M. Solid curve
represents the total flops required to reduce M using the
EMR algorithm and to compute the u(w) bounds.
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7.2. Example 2: Random matrices

The EMR and AMR algorithms have been applied
to numerous random matrices to test their perfor-
mance. In this section, the EMR and AMR algorithms
are tested on random matrices. The performance of
the EMR algorithm on a rank 2 matrix is shown in
Table 3. For all of the uncertainty descriptions listed
in the table, u-computations utilizing the EMR algo-
rithm result in tighter bounds than p-computations
without the EMR algorithm. Also, the required num-
ber of flops is reduced by over an order of magnitude
by performing the EMR algorithm before using stan-
dard software to compute u.

The AMR algorithm is tested on a full rank matrix
in Table 4. Table 4 shows that the combination of the
AMR algorithm with a standard u algorithm pro-
duces tighter bounds and requires less computational
expense than the application of u software alone.
Extensive applications to random matrices have dem-
onstrated that the EMR/AMR algorithms are numer-
ically robust, and produce similar results as shown in
Tables 3 and 4.

Table S illustrates the application of Corollary 1. It
shows that practical error bounds for the upper
bound computation of y are obtained by using toler-
ances [0.001,0.1]. The computed upper bounds with
and without the AMR algorithm are identical up to
five significant digits, indicating that the AMR algo-
rithm performs much better than the bounds provided
by Corollary 1.

8. Conclusions

Exact and approximate polynomial-time algo-
rithms were developed for reducing the dimension of
large scale uncertain systems. The polynomial-time
algorithms rely primarily on singular value decompo-
sitions, which can be computed accurately and
effectively using well-conditioned public-domain
computer algorithms. The exact algorithm is shown to
have direct implications for understanding the inherent

Table 3. Comparison of y-computations with and without the EMR algorithm for the 100 x 100 rank 2 matrix M = uv,
with randomly-generated U and V given in equations (44) and (45)

Block structure Block structure u-bounds u-bounds Flops Flops®

before EMR after EMR without EMR with EMR without EMR with EMR

(257, 25, 25¢, 257) (2r, 2,272 0.584 0.579 1.28 x 107 5.46 x 107
0471 0.567

(25", 257, 25, 257) (2, 25,25, 27) 0.794 0.794 1.18 x 107 5.44 x 107
0.778 0.793

(501, 259, 257) (27,2, 27) 0.567 0.567 1.09 x 10° 5.48 x 107
0.473 0.565

*The total number of flops required to reduce M and to compute .
Note: Superscripts r, ¢ and f stand for repeated real, repeated complex and full complex uncertainties, respectively.
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Table 4. Comparison of u-computations with and without the AMR algorithm for the full rank matrix M = UV + OVH,
where U and ¥ are random 100 x 98 matrices with the real and complex part of each element bounded between 0 and 1 (this
matrix is available from http://brahms.scs.uiuc.edu). In the application of the AMR algorithm (see Table 2), the tolerance in

Modification 1 is 0.1 6y, Where a,,, is the maximum singular value of M, and the tolerance in Modification 2 is 0.1

Block structure Block structure u-bounds u-bounds Flops Flops*

before AMR after AMR without AMR with AMR without AMR with AMR

(25", 257, 25¢, 257) (1, 1,15 14) 0.820 0.836 1.58 x 10° 4.16 x 107
0.675 0.797

(257, 25, 25¢, 257) (17,1515 17) 0.115 0.115 1.21 x 10° 4.15x 107
0.112 0.115

(507, 25¢, 257) (1, 14, 17) 0.802 0.800 1.11 x 10° 422 x 107
0.675 0.797

*The total number of flops required to reduce M and to compute p.
Note: Superscripts r, ¢ and f stand for repeated real, repeated complex and full complex uncertainties, respectively.

Table 5. Application of Corollary 1 (using equation (10) in
equation (6)) to be the upper bound u-computation of the
full rank matrix M = UV + OV¥ where U and ¥ are ran-
dom 100 x 98 matrices with the real and complex part of
each element bounded between 0 and 1 (this matrix is avail-
able from http://brahms.scs.uiuc.edu). The block structure of
the uncertainty is the full-block structure (25, 25, 25, 25). The
tolerance value (1) indicates that the tolerance in Modifica-
tion 1 is to,,, where o4, is the maximum singular value of
M, and the tolerance in Modification 2 is ¢.

Tolerance Block Upper  Upper Error bounds
t structure  u Bound u bound
after AMR  without with
AMR AMR
0.001 (25 25 25,25) 1.664 1.664 [1.662, 1.666]
0.01 3, 3) 1.664 1.664 [1.660, 1.668]
0.1 ( L) 1.664 1.664 [1.506, 1.822]

computational complexity of robustness margin com-
putation. Theoretical bounds and numerical examples
indicate that the algorithms allow robustness margin
computation to be practically performed on uncertain
systems of very high dimensionality. Application to
a realistic description of a large scale paper machine
control system demonstrates the utility of the algo-
rithms.
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Appendix A

A.1. Proof of Theorem 1

Let us consider us(M) when there exists a AeA
such that det(I — MA) =0. Then

-1
(M) = (min (G(A) det(I — MA)} = 0}) (23)

AeA

By using the singular value decomposition as defined
in equation (%) of Table 1 with the unitary matrices
WY and WY as defined in the algorithm,

HaM) = ua(WORWEUZVEW ) RWY). (24)

Let W,/ = blockdiag(W{, ... , W51, ., ....I,)and
W, = blockdiag(l,,, ... , L,.,We+1, ... , W), Let
W) and W} be defined similarly. By using the fact
that u(M) = w(M U) = y(UM) for any unitary matrix
U with the same structure as A (Young, 1993),

pa(M) = pua(WORWHHWUYUSVEW R W W Y)

= ua(W P WUYUSVEW ) Wy, (25)
Now with U, and V; defined as in the algorithm, we

have

7y 7 H
[WUUZ VH(wV)H]” - [sz(:)Vl g}‘ (26)
i)

where the ijth submatrix has dimensions r; x r;. Then,
the sequence

j-1
{r‘,-+1+ Y ri,
(=1

j-1
IR r,} if r;>F,
i=1

Py
oy

if rj=rj,

(27)
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lists row and column numbers of WYUZ VH(WV)H
which contain only zeros. Define the matrix W ¥ equal
to W) with the corresponding rows in % equal to
zero, and the matrix (W,2)¥ equal to (WY)¥ with

m

the corresponding columns in &% up to r;

p=1'0
equal to zero. Then, (WL )AWUUSVHWY)HW! =
(WHEWUYUZVEWY) WY and since (W Y)# com-
mutes with A

Us(M) = (min {G(A)|det(] —(Wr)iwlUzVH
AecA
-1
x (WY)HWYA) =0})

=(min{6(A)|det(1— WUYUzvHw i

AeA

(28)
= (min {G(A)|det(l — WYUZVH(WY)H
AeA

-1
X W"(W”)”’A)=O}) ,

where (W V) is equal to (W)¥ with the columns in
S equal to zero. Note that
WUYUZVEWY)HWY(WU)H has the same structure
as the matrices given in equation (26). Define A equal
to A with rows in ¥ equal to zeros, and A equal to
A with columns in % equal to zeros. Then,

det(I — WYUSVHWYVYHWY (W U)HA)
=det(l - WYUZVHW")HWY(WU)HA)
=det(l —AWVUZVHWY)HWY (W U)H)
=det(I —AWUUZVHEWY )R WY (W V)H)
=det(/ - WYUSVEWYYTWY(WUAR). (29)

Immediate from equations (28) and (29),

(M) = (Ti? (6(A)|det(] — WVUZVH

—-1
X (WHEWY(WY)ER) = 0}) , (30)

where A corresponds to the original block structure
(ry, ... ,r;) with the rows and columns in .% replaced
by zeros.
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Note that when i =j

/

_I,‘ — U,-EV,-" W}'(W}")"é}];} 0 ] Vi<k

L 0 L), =0

(1, — UZVEWY(WY)HEsT, 0 .

(1- W”UEV"(W")"WV(W”)"K]U=< ' 0-’( 7o, ; Vk+1<j<m (31)
L r,—F _Jij
(1, - UZVEW (WYKL, 0 ] Ymil<j<l
0 Irj—i" i) T
\_ -
and when i # j
[
—UZVEIW (WHEsL, 0 Vi< k
i 0 0, ]S K,
R [ - U ZVEWYWUHsL. 0
[f - W”U):V"(W")"W"(W”)"A],-_,-=< g 0’( P10, 0 Vk+1l<j<m (32

L ij
- UZVIW (WHHAL 0 Ymal<i<l
i 0 0], sI=5

where W! and W! are defined in the algorithm,
A; corresponds to A as A; corresponds to A, and
the ijth submatrix has dimensions r;xr;. There-
fore, by performing a Laplace expansion of
(- WUYUZVEWYYHWY(WV)EX about the rows
which have a single nonzero element of value one,
it is concluded that det(] - WYUZVHWY)H
WY (WY)HR) = det(] — OZVEWY(WVY)HA) where
U, V, WY, and (WV)¥ are defined in the algorithm
and A is equal to A with the rows and columns in
& eliminated. Since A+ A is one-to-one and

3(8) = 5(8),
pa(M) = (min {G(A)|det(I — OZVH WY

x(WOHA) = 0})™" = pa(rm). (33)
Now, let us consider u,(M) when there does not exist
a AeAsuch that det(] — MA) = 0. Then by reviewing
the previous steps of this proof, it is concluded that
there does not exist and AeA such that
det(I — MA) = 0. Therefore, for the case when
ua(M) =0, pz(M) =0. O

M=U,Z,V¥+U_z_VvH

A.2. Proof of Theorem 2

Given the definitions provided in the theorem state-
ment,

ming(DMD™') < a(D*M(D*)™!)

Dev

(34)

G(D¥(M + E — E)D*)" ') (35)

< &D*M + E)D*)™Y)

+ a(D*E(D*)™ 1) (36)
< GHD*(M + E)D*)™ 1)

+6(D*)é(E)a((D*)™')  (37)
=G(D*(M + E)(D*)™ 1)

+ k(D*)G(E) (38)

which are the right-hand-side inequalities in equa-
tions (6) and (7). A similar argument gives the left-
hand-side inequalities in equations (6) and (7). O

A.3. Proof of Corollary I

Given the definitions provided in the corollary
statement,

=(WOHRWYU . Z, VEWVHWY +U_z_VH
=WUHHUO, + Uz, (V, +V)"WY + U_T_VH
=WUHHOLZ VIWY + WORWO 2, V8 + U S, P8+ U, S. VEYyWY + U_3_VH,

— J —

J

v
M+E

Y
-E

)

(39)
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where WY and WV are defined in Table 1. This
derived the expression in equation (10).

The following equalities shows that g, (M + E) =
Az (M) when all the uncertainties are full block:

(DM + E)D™1)

=g(WUDWUHT =, VEWYD Y(WV)H)
=a(DU,Z. VDY)
=¢DU.Z. VEWY(WU)Ep~1)

o _ (40)
= gDUZVEWY(WY)HD 1)
=g(DMD™ ).

The first equality follows from equation (39) and the
fact that WU and (W")# are unitary matrices. The
second equality results since D and D~' commute
with WY and (W")", respectively. The third and
fourth equalities follow from the fact U,%.VH has
the form of equation (26) where W" and WU are
defined in Theorem 1. The last equality follows by
definition. Applying Theorem 2, k(D*) = x(D*), and
equation (40) proves equations (8) and (9).

To prove equation (11}, apply equation (9) and the
inequalities:

(Eysa(w"O, 2. Vi+ 0.2, VY
+ U2 VIHWYy+6U.Z_VH)
<UL, VE+ U Z. VLU, 2, VH
+aU._X_VH)
<UL VH+6U,Z,7Y)

+aU.z, VH+aU_z_vH) (41)
<HZ)+GE)+GE.)+E(E)
= 36(M) + &(Z_). O

A.4. Proof of Theorem 3

The number of flops (floating point operations)
needed to compute the SVD for the first step of the
algorithm is bounded by 13n® where M € 6" *" (Golub

18 5 677910 8 6838 8 4
U=tolto 7 10352 1 0 132 54
9 3 6829 310 86 9 10 6
30 5991 4 553 20
10 5 8134 6 3 595 18
9 2 208810 8 521 9 6
5 6 3660 4 4 751 52
410 0989 7 1 1044 79
JT9 64 3 4 23683 7 76
+1_OT)[4859726153658
8 45 810 810 710 6 10 1
8950 6 22351 6 14
048 5 0 58613 5 98
2471010 27596 6 25
6 60 4 3 14527 9 41
1048 6 51031 40 10 10 1

925

and van Loan, 1983). In the second step, the number
of flops required to row reduce all the inner and outer
rotation matrices, U; and V;, corresponding to the
block structures r; is bounded by (26! + 4)n> — 2In?,
where r; and ! are defined in equation (2). This bound
can be calculated by considering the SVD and matrix
multiplication individually. First, the flops needed
to calculate the SVDs of every U; and V; is limited to
26In°. Secondly, the bound on the flops needed to per-
form the matrix multiplications for the second step is

2an(2r—l

()

42
=2n?(2n — 1) = 4n3 “2

- 2In%.

By summing the two parts of the second step, the
bound on the flops is calculated to be
(261 + 4)n> — 2In?

The third and fourth steps of the algorithm do not
require any flops. The fifth step consists entirely of
matrix multiplication, and the necessary number of
flops is n(2n — )i + 2(2n — 1)i? + n(2a — 1)A. Since
n > n, the number of flops for the fifth step is bounded
by the polynomial 8n® — 4n?. Therefore, the flops
performed for the entire model reduction algorithm is
bounded by (261 + 12)n® — (2 + 4)n*. 0

A.5. Proof of Theorem 4

Since rank(U;) and rank(V;) from Step 2 of Table 1
must be less than or zqual to rank(M), by the defini-
tion of r; in Step 3 of Table 1, each element of the
resulting block structure vector of the EMR algo-

rithm satisfies
Fi < rank(M). (43)

Theorem 4 follows by summing both sides of this
inequality over the number of perturbation blocks.

A.6. Matrices for Example 2

98614106 07 8 5 8
7405597 2 710 9 5

S 7644101 43 9 7 4

9 1 2938 9 77 4 10 9
1053761 8106 3 10 10
999902 6 05 4 5 8
7608 78 7 22 9 10 1]7
122486339336]

9 8 0 1 201 58 02

410 3 5641 105 56

5 8 4 1836 74 1281
301 2 34229 5 53715
9 10 75260 6 9 10 2 4

0 3 52973 00 853

1 7 814106 7 6 65 2 T
4 9 1086 95 9 6 2 3 4 ]
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