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In open-loop optimal control, inputs to a dynamic system are computed that optimize
a specified performance criterion. A no®el approach is proposed that quantifies the
impact of parameter and control implementation inaccuracies on the performance of
open-loop control policies. Such information can be used to decide whether more labo-
ratory experiments are needed to produce parameter estimates of higher accuracy, or to
define performance objecti®es for lower-le®el control loops that implement the optimal

( )control trajectory. The no®el features of the approach include 1 computational effi-
( )ciency; 2 the parametric uncertainty description, which is produced by most process

( )identification algorithms; and 3 addressing of control implementation inaccuracies.
The merits of the approach are illustrated on a batch crystallization process.

Introduction
A problem of academic and industrial interest is the com-

putation of optimal model-based control policies for batch
Žand semibatch processes Barrera and Evans, 1989; Barton et

.al., 1998; Diwekar et al., 1989; Rippin, 1983 . Recently there
has been interest in the analysis of open-loop control policies
that are robust to uncertainties in the model parameters
Ž .Loeblein et al., 1997; Torvi and Hertzberg, 1997 . This re-
search has been motivated by two facts. First, in practice
model uncertainties are significant, including external factors
such as economic cost data or feed compositions, or internal
process parameters such as kinetic rate constants. Second,
the optimal control policy and the resulting performance can
be strongly sensitive to model uncertainties. Quantitative es-
timates of these effects can be used to decide whether more
laboratory experiments are needed to produce parameter es-
timates of higher accuracy, to define performance objectives
for lower-level control loops that implement the optimal con-
trol trajectory, or to design optimal control policies that are
robust to a given level of model uncertainty.

While most literature studies represent model uncertain-
ties by fixed upper and lower bounds on each parameter
Ž .Biegler et al., 1997 , we will treat the parametric uncertain-
ties as being within a hyperellipsoid. Our motivation for this
is that most process identification algorithms produce uncer-

Žtainty descriptions in this form Beck and Arnold, 1977; Ljung,

Correspondence concerning this article should be addressed to R. D. Braatz.

.1987 . We will also quantify the effect of control implementa-
tion uncertainty on the performance, since open-loop control
policies are usually implemented by a lower-level feedback
controller whose setpoint tracking response will generally be
imperfect due to actuator constraints and unmodeled time-

Ž .varying behavior, nonlinearities such as valve stiction , and
disturbances. To our knowledge, this is the first time that
control implementation inaccuracies are rigorously addressed
in the analysis of batch or semibatch processes.

Concerning effects of the parametric and implementation
uncertainties on the open-loop control policies, industrially
important problems are the robustness of the optimal control
trajectory to model uncertainty, the robustness of predicted
optimal performance to model uncertainty, robustness of
predicted performance to model uncertainty, and the robust-
ness of predicted performance to control implementation un-
certainty. For each problem, we use Taylor series to quantify
the performance objective and control trajectory in a neigh-
borhood around the optimal open-loop operation. Then ma-
trix algebra manipulations are followed in order to estimate
the worst-case performance and the associated worst-case
vectors, assuming that the worst-case vectors are within the
hyperellipsoid. The accuracy of the estimates are finally as-
sessed by a nonlinear dynamic simulation using the obtained
worst-case vectors.

The article is organized as follows. First the overall ap-
proach and the uncertainty description are described. This is

July 1999 Vol. 45, No. 7AIChE Journal 1469



followed by the mathematical formulation and solution of four
analysis problems for batch and semibatch processes. The ef-
fectiveness of the analysis tools is demonstrated on a batch
crystallization process.

Problem Formulation and Solution
When developing algorithms for the analysis of uncertainty

in optimal batch and semibatch processing, there are several
choices on how the analysis problem can be formulated. First,
there is a decision as to whether the uncertainty should be

Žrepresented as being stochastic that is, the parameters de-
. Žscribed by a probability distribution Torvi and Hertzberg,

. Ž1997 or deterministic that is, the parameter vector is as-
. Žsumed to be fixed and located within some closed set Bi-

.egler et al., 1997 . Second, the form of the probability distri-
bution function or the closed set must be selected. Popular
choices are to use a multivariate normal distribution for rep-
resenting stochastic uncertainty and independent upper and
lower bounds on each parameter for representing determinis-
tic uncertainty. Third, it must be decided how precise an
analysis is desired}this decision greatly influences the com-
putational efficiency of the algorithm that is constructed to
solve the analysis problem.

In our case we assume that the parametric uncertainty is
deterministic and lies within a hyperellipsoid. The hyperellip-
soid can be constructed from experimental data by first com-

Ž .puting a stochastic multivariate normal distribution for the
wparameters such as using standard process-identification al-

Ž .xgorithms Beck and Arnold, 1977; Ljung, 1987 , and then
defining the size of the hyperellipsoid by specifying a confi-
dence level a . In our opinion, such an uncertainty descrip-
tion blends the strengths of the purely stochastic and deter-

Žministic approaches. The purely stochastic approach can be
too optimistic, since some critical parameters may not have
sufficient influence during the calculation of an expectation
operator. The purely deterministic approach can be too pes-
simistic, since a highly unlikely parameter can dominate the

.results. In the approach taken here, the confidence level can
be selected to avoid overly pessimistic or optimistic results.

There is strong motivation to not attempt to analyze the
worst-case performance of batch and semibatch processes to
very high precision. First, since in practice the boundary of
the parametric uncertainty set is generally estimated from ex-
perimental data with its stochastic variations, its precise loca-
tion is, to some degree, uncertain. Hence, from a practical
point of view, it would be a waste of effort to quantify the
worst-case performance of the batch process to extremely high
precision when the input data are not known to extremely
high precision. Second, we are interested in the analysis of
complex nonlinear systems. The approach of solving the anal-

Žysis problem to very high precision that is, to grid the param-
eter region, perform a time-domain simulation at each grid

.point, and then to tally the results requires too much compu-
tation time to be feasible for a complex nonlinear system. For
example, a grid size of 100 in each dimension leads to 100 n

grid points, where n is the number of parameters. Even a
batch process with only four parameters requires 108 grid
points}if each simulation took one minute, the time to com-
pute an analysis measure to this precision would take two

Ž .centuries! In fact, the results of Braatz, 1996 can be gener-

alized to show that the computation of either an exact or
highly accurate approximate solution to the analysis problem
for nonlinear systems is NP-hard.

The first step of the approach is to use a Taylor series to
quantify the performance objective and control trajectory in a
neighborhood around the optimal open-loop operation. While
some precision is lost when using a Taylor series, the gain
will be a mathematical simplification that will allow the
derivation of analytical results for quantifying the robustness
of the optimal control trajectory and the performance. The
second step is to perform a nonlinear simulation to improve
the analysis estimates.

There are several variations on the open-loop optimal con-
trol problem, depending on the objectives of the problem be-

Žing considered such as minimum completion time, maximum
. wprofit , the generality of the constraints such as path in-

Ž .equality constraints Barton et al., 1998 , tranversality condi-
Ž .xtions Ray, 1981 , and whether lumped or distributed param-

Ž .eter systems are under consideration Ray, 1981 . While the
approach taken here does not depend on the particulars of
the optimal control problem formulation, it is assumed that
there is an algorithm available that can compute the optimal
control trajectory for any fixed model parameter in the hy-
perellipsoid uncertainty description. It is also assumed that
no parameter vector in the uncertainty description results in
an infeasible control problem; in other words, we assume that

wthe process was designed properly this flexibility issue is dis-
Ž .xcussed in detail elsewhere Biegler et al., 1997 .

ˆDefine u as the nominal parameter vector of dimension
n=1. Since we are interested in complex systems, the corre-
sponding control trajectory defined by the optimal control
problem will be computed numerically and hence can be rep-
resented as a vector u of dimension m=1. For example, aˆ
convenient representation for u for an optimal temperatureˆ
trajectory defined over a fixed range of time would be the
temperatures at m discrete time instances along the trajec-
tory.

Define u as the optimal control trajectory associated with
the parameter vector u . The model parameters are assumed
to lie within the hyperellipsoid

T y1 2ˆ ˆe s u : u yu V u yu F r a , 1Ž . Ž .Ž . Ž .½ 5u

where V is an n= n positive definite covariance matrix; a isu

the confidence level; and r is a distribution function. Uncer-
tainty descriptions of this type are provided by algorithms that

Žestimate the parameters from experimental data Beck and
.Arnold, 1977; Ljung, 1987 . For example, assume that

v There are no errors in the independent variables;
v This is no prior information regarding the parameters;
v The measurement errors are additive, zero mean, nor-

mal, and have known positive definite covariance matrix; and,
v Maximum likelihood estimation is used.
Then V is given byu

y1TV s X cov e X , 2Ž . Ž .Ž .u

Ž .where e is the measurement noise vector; cov e is the co-
2Ž . 2Ž .variance of e; X is the input data matrix; and r a s x a ,n

Ž .the chi-squared distribution Beck and Arnold, 1977 . Other
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assumptions, such as taking into account a prior parameter
Ž .distribution that is, Bayesian estimation and making other

Žstatistical assumptions on the measurement noise such as
.unknown error covariance , lead to different expressions for

Ž .V and r a , which can be looked up in standard identifica-u

Ž .tion texts Beck and Arnold, 1977 . Taylor series expansions
can be used to estimate parameter hyperellipsoids for nonlin-

Ž .ear systems Beck and Arnold, 1977 .
In what follows we address four worst-case analysis prob-

lems:
1. Robustness of the optimal control trajectory to model

uncertainty
2. Robustness of predicted optimal performance to model

uncertainty
3. Robustness of predicted performance to model uncer-

tainty
4. Robustness of predicted performance to control imple-

mentation uncertainty.
In each case the worst-case change in process operation

and the associated worst-case parameter vector within the
uncertainty set are estimated.

Step 1: analysis estimates based on Taylor series
Problem 1: Robustness of the Optimal Control Trajectory.

The dependence of the optimal control policy on a fixed-
parameter vector u is represented by a nonlinear operator N
that maps the parameter space into the space of optimal con-
trol trajectories:

us N u 3Ž . Ž .
ˆd u'uyus N u y N u . 4Ž . Ž .Ž .ˆ

Assume N is locally differentiable. Linearize N about the
ˆnominal parameter vector u

­ ui
L s m= n matrix 5Ž .i j ­uj ˆu s u

ˆ ˆd us N u y N u f L u yu ' Ldu . 6Ž . Ž .Ž . Ž .

The computation of L, as well as all other derivatives dis-
cussed in this article, is described in the Appendix.

Here the problem of interest is to estimate how close the
optimal control trajectory computed for the model is to the

Žoptimal control trajectory for the real system assumed to lie
.within the hyperellipsoid e . With the closeness measured us-

ing a weighted Euclidean norm, this problem is stated mathe-
matically as

Tmax d u W d u , 7Ž . Ž . Ž .u
u g e

Žwhere W is a specified positive semidefinite matrix usuallyu
.identity and

TT T Td u W d us Ldu W Ldu sdu L W Ldu . 8Ž . Ž . Ž .u u u

To simplify the algebra, define

xs ry1 a Vy1r2du . 9Ž . Ž .u

Substituting Eqs. 8 and 9 into Eq. 7 results in

T2 T 1r2 T 1r2max r a x V L W LV x . 10Ž . Ž .Ž .u u u
Tx x F1

Recognizing that the maximization is a Raleigh quotient
Ž .Golub and van Loan, 1983 implies that a solution to the
optimization problem is

x s" ® eitherqorywill do , 11Ž . Ž .max 1

where

W 1r2LV 1r2 sU SV T 12Ž .u u

is the singular-value decomposition, and ® is the leftmost1
column of V. A worst-case parameter is

du s" r a V 1r2 ® , 13Ž . Ž .max u 1

giving a worst-case deviation in control trajectory

1r2d u s" r a LV ® 14Ž . Ž .max u 1

with the objective value

T 2 2max d u W d u s r a s , 15Ž . Ž . Ž . Ž .u max
u g e

where s is the maximum singular value of W 1r2LV 1r2. Thismax u u

is an estimate of how far the optimal control trajectory based
on the model can be from the optimal trajectory for the real
system, and gives the corresponding worst-case parameter
vector within the hyperellipsoid.

Some engineers may prefer to compute the worst-case op-
timal control move for each u , rather than to measure thej
worst-case change in u in terms of the weighted Euclidean

Ž .norm Eq. 7 . In this case, the optimization problem is

< <max d u , 16Ž .j
Tx x F1

where

1r2d u s L du s r a L V x 17Ž . Ž .j j j u

and L is the jth row of L. A solution to this optimizationj
problem is

1
1r2 Tx s" V L , 18Ž .max u j1r25 5L Vj u

5 5 Ž .where ? is the Euclidean norm Golub and van Loan, 1983 .
A worst-case parameter vector is

r aŽ .
Tdu s" V L , 19Ž .j, max u j1r25 5L Vj u

with the worst-case jth control move being

1r2< < 5 5d u ' max d u s r a L V . 20Ž . Ž .j, max j j u
Tx x F1
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Problem 2: Robustness of Predicted Optimal Performance.
Here the problem of interest is to estimate how close the
optimal performance objective computed from the model is
to the optimal performance objective for the real system.

Ž .Define y as the scalar performance objective when theˆ
control trajectory has been optimized for the nominal param-

ˆeter vector u ; y as the optimal performance objective for u ;
and d ys yy y. Then the problem of interest is to computeˆ

< <max d y . 21Ž .
u g e

The approach to estimating the solution to this nonlinear
program is similar as for Problem 1. Assume that y is locally
differentiable in u . Linearize y about the nominal parameter
û

ˇd ys yy ys Ldu , 22Ž .ˆ

where

­ y
Ľ s a row vector . 23Ž . Ž .j ­uj ˆu s u

Following similar mathematics as in Problem 1 gives

r aŽ .
Ťdu s" V L 24Ž .max u1r2ˇ5 5LVu

Žone sign gives the worst case, and the other gives the best
.case , and

1r2ˇ< < 5 5d y ' max d y s r a LV . 25Ž . Ž .max u
du g e

Problem 3: Robustness of Predicted Performance to Model
Uncertainty. For this problem, we estimate how much per-
formance objective y can be degraded by model uncertainty
when the optimal control trajectory for the nominal process
is implemented perfectly. Assume that y is locally differen-

ˆtiable in u . Linearize y about the nominal parameter u , with
ˆthe control trajectory fixed to its optimal ®alue for u :

­ y
L̃ s a row vector . 26Ž . Ž .j ­uj ˆu s u

The optimization problem is posed and solved exactly as in
ˇ ˜Problem 2, with L replaced with L.

Problem 4: Robustness of Predicted Performance to Control
Implementation Uncertainties. Here we would like to esti-
mate how much performance can be degraded by control im-
plementation uncertainties, which is represented mathemati-
cally by

aFd uF b , 27Ž .

where u is the control vector; d usuyu; a and b are vec-ˆ
tors, and the inequalities are element by element. Approxi-
mate d y by the second-order Taylor series expansion about
the optimal control trajectory:

d ys Md uqd uTH d u , 28Ž .u

where

­ y
M s a row vector 29Ž . Ž .j ­ uj us û

and

2­ y
H s an m= m matrix . 30Ž . Ž .Ž . i ju ­ u ­ ui j us û

In contrast to Problems 1, 2 and 3, the second-order terms
may be required to obtain a good approximation in Eq. 28.
Since the linearization is about the optimal control trajectory,
elements of M that do not lie on an active constraint are

Ž .zero Luenberger, 1984 , and the dependence of y on the
corresponding elements of u are captured only in the sec-
ond-order terms.

Mathematically, the analysis problem is to compute

< < < T <max d y s max Md uqd u H d u . 31Ž .u
aF d uF b aF d uF b

This problem, which is nonconvex in general, cannot be solved
analytically, but can be written in terms of the mixed struc-
tured singular value m, which is a matrix function commonly

Ž .used in robustness analysis Doyle, 1982; Fan et al., 1991 .
Define

1
ws by a 32Ž . Ž .

2

and

1
zs bq a . 33Ž . Ž .

2

wThen for any real number k this follows from similar alge-
Ž .xbraic manipulations as in Braatz et al., 1994 :

< T <max Md uqd u H d u G kmm N G k , 34Ž . Ž .u D
aF d uF b

where

0 0 kw
kH 0 kH zu uNs , 35Ž .

T T Tz H q M w z H zq Mzu u

� 4and the perturbation block Dsdiag D , D , d , where Dr r c r
consists of independent real scalars and d is a complexc

Ž .scalar. Thus the optimization problem Eq. 31 is equivalent
to

max k . 36Ž .
Ž .m N G kD

Upper and lower bounds for this problem can be computed
by iterative m-computations, but a more efficient way is to
use skewed-m, which requires no more effort than that re-

Žquired for a single m calculation Fan and Tits, 1992; Fer-
.reres and Fromion, 1997; Smith, 1990 . These polynomial-

time computations can be performed within a few minutes on
a workstation for a problem with ms100, with the upper

Ž .and lower bounds usually quite tight Young et al., 1991 .
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Step 2: impro©ement of estimates
In Step 1, Taylor series approximations were used to com-

pute the worst-case analysis estimates. The accuracy of the
estimates can be assessed by comparing their values with those
obtained by a nonlinear dynamic simulation using the esti-

Ž .mated worst-case parameter vector Problems 1, 2 and 3 or
Ž .control vector Problem 4 . In Step 2, the values obtained by

the nonlinear dynamic simulation are used as the final analy-
sis estimates. This procedure is illustrated in the following
crystallization simulation.

Application: Crystallization Process
A crystallization process was selected for testing the effec-

Ž .tiveness of the robustness analysis tools because: 1 it is in-
Ž .dustrially important, and 2 it is highly nonlinear, which

should push the limits of the Taylor series approach.
Ž .The population-balance equation PBE approach ac-

counts for the crystal distribution in size, location, and other
Žstate variables Hulburt and Katz, 1964; Randolph and Lar-

. Ž .son, 1988 . Let f L, t be the population density distribution
function for crystals such that

f L, t dLs the number of particles in the system in theŽ .

range L" dL at time t

where L is the characteristic length of the crystal and t is
time. Assume that the crystals are characterized by one char-
acteristic length L and have symmetrical shape so that the
volumetric shape factor k , defined as®

Volume
k s 37Ž .® 3L

is constant. Also, assume that the crystallizer is well-mixed,
and growth dispersion, agglomeration, fracture, and attrition
are negligible.

For a batch crystallizer, the population balance equation is
given by

­ G S, u , L f­ f L, tŽ . � 4Ž .g
q s B S, u , 38Ž .Ž .b­ t ­ L

Ž .where G S, u , L is the rate of crystal growth in units ofg
Ž . Žlength per time; B S, u is the nucleation rate number ofb

. Ž .particles per unit time ; Ss CyC rC is the relative su-sat sat
persaturation; C is the saturation concentration; C is thesat
solute concentration; and u and u are the growth and nu-g b
cleation parameters, respectively.

The method of moments replaces the partial differential
Ž .equation Eq. 38 by a set of ordinary differential equations,

which simplifies the simulation and optimization of the batch
crystallizer. Assume that the growth rate is independent of
characteristic size L. The moment equations are derived by
multiplying Eq. 38 by L j, integrating over L, and placing on a

Ž .per-mass-of-solvent basis Hulburt and Katz, 1964 :

dm̂0
s B

dt

dm̂ j js jGm q Br , js1, 2, . . . , 39Ž .ˆ jy1 0dt

where r is crystal size at nucleation and is assumed to be a0
constant, and the jth moment is defined by

`
j ˆm ' L f L, t dL, 40Ž . Ž .ˆ Hj

0

Ž̂ .where f L, T is the population density distribution function
on a per-mass-of-solvent basis.

The final crystals can be characterized in terms of the final
amount of nucleated crystal mass relative to seed crystal mass
Ž .Jones, 1974 . Quantifying this requires determining the final
state of the crystals grown from seed. Writing a mass balance
only over the seed crystals, and applying the method of mo-
ments gives

dmXˆ0
s0

dt

dmXˆ j Xs jGm , js1, 2, . . . , 41Ž .ˆ jy1dt

where the prime indicates seed.
Assume constant volume. The amount of solute leaving the

solution must be accounted for by crystal growth and nucle-
ation:

ˆdC
3sy3r k Gm y r k Br , 42Ž .ˆc ® 2 c ® 0dt

where r is the density of the crystal, and the solute concen-c
ˆtration C is on a per-mass-of-solvent basis.

Several models for growth kinetics have been developed
Ždepending on the crystal growth mechanisms Garside, 1984;

.O’Hara and Reid, 1973; Burton et al., 1951 . The most popu-
Ž .lar model is given by Randolph and Larson, 1988 :

Gs k S g , 43Ž .g

where k and g are the growth parameters.g
There are several different types of nucleation mechanisms

Ž .Randolph and Larson, 1988 . This article considers sec-
ondary nucleation from crystal surfaces, since it is the pre-
dominant mechanism taking place in most seeded batch crys-
tallizers. The nucleation rate is assumed proportional to the
collision energy, with the rest of the kinetics being in stan-

Ž .dard power-law form Nyvlt et al., 1985 :

Bs k Sb m , 44Ž .ˆb 3

where k and b are the nucleation parameters.b
For specificity we consider the case where the supersatura-

Ž .tion is created by reducing the temperature T t , although
other methods of achieving supersaturation, such as antisol-

Ž .vent addition Charmolue and Rousseau, 1991 , can be for-
mulated in a similar manner.
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The optimal control formulation is a generalization of
Ž .Miller and Rawlings, 1994 :

optimize F

T tŽ .

subject to g t sT yT t F0Ž . Ž .1 min

g t sT t yT F0 45Ž . Ž . Ž .2 max

dT tŽ .
g t s y R F0Ž .3 maxdt

dT tŽ .
g t s R y F0Ž .4 min dt

ˆ ˆg sC yC F0,5 final max

where F is some desired characteristic of the crystals at the
Ž .end of the batch details below . The temperature constraints

Ž . Ž .g t to g t ensure that the temperature profile stays within1 4
the operating range of the crystallizer. The constraint g is5
the minimum yield constraint, as the final solute concentra-
tion specifies the amount of crystals produced.

Several objectives have been recommended to favor down-
Ž .stream operations or product quality. Ajinkya and Ray 1974

maximized the mean crystal size and suggested minimizing
Ž .the second moment of the CSD. Jones 1974 maximized the

Ž .final size of the seed crystals. Chang and Epstein 1982 max-
imized the number average size, maximized the total volume,

Ž .and jointly using a weighted factor minimized the variance
and maximized the number average size of the product CSD.

Ž .Eaton and Rawlings 1990 minimized the ratio of the nucle-
ated-crystal mass to seed-crystal mass.

In this article, three properties of the final CSD are inves-
tigated: weight mean size, coefficient of variation, and ratio
of nucleated-crystal mass to seed-crystal mass. The three
properties can be calculated directly from the moments
Ž . ŽRandolph and Larson, 1988 whether the goal is to maxi-

.mize or minimize the property is also listed :

m̂4
Weight mean sizes maximize 46Ž . Ž .

m̂3

m mˆ ˆ2 0
Coefficient of variations y1 minimize 47Ž . Ž .2( mŽ .ˆ1

Nucleated-crystal mass m ymXˆ ˆ3 3
s minimize . 48Ž . Ž .XSeed-crystal mass m̂3

Ž .For brevity, the parameters with units for an industrial-
scale crystallizer for potassium nitrate are reported else-

Ž .where Chung and Braatz, 1998 . The nominal nucleation and
growth parameters estimated from simulation data were

mm
8.79g s1.31, bs1.84, k s e ,g min

particles
17.38k s e , 49Ž .b 3cm ?min

Table 1. Optimal Nominal Performance Objectives

Performance Objective ŷ

Weight mean size 455 mm
Coefficient of variation 1.11
Nucleation to seed mass ratio 0.23

with covariance matrix

102,873 y21,960 y7,509 1,445
y21,960 4,714 1,809 y354y1V s 50Ž .u y7,509 1,809 24,225 y5,198

1,445 y354 y5,198 1,116

2Ž . 2Ž .a s0.05, and r a s x a s9.49. The covariance matrix
indicates significant correlations among the parameter uncer-
tainties.

The optimal nominal performance objectives are reported
in Table 1.

Problem 1. For Step 1, the estimated worst-case changes
Ž .in the 2-norm of the control trajectory Eq. 15 with respect

to weight mean size, coefficient of variation, and nucleation
to seed mass ratio are summarized in Table 2. Table 3 gives
the corresponding parameter vectors.

Table 2 indicates an insensitivity of the optimal tempera-
ture trajectory to the parameter variations with respect to the

< <first and the third objectives. All of the worst-case d u inj
Eq. 20, for these two objectives, were less than 0.018C for the
entire length of the batch, also indicating this insensitivity.
For the coefficient-of-variation objective, the optimal tem-
perature trajectory for the real system differs significantly
from that computed for the model. The importance of a tem-
perature deviation greater than 0.18C is demonstrated in the
Problem 4 analysis given later.

< <The computed values of worst-case d u are given in Tablej
4. It shows that the parameter variations have a small effect
on the optimal temperature trajectory at the beginning and
the end of the batch, but has a large effect on the tempera-
ture trajectory during the middle of the batch run.

For Step 2, nonlinear dynamic simulation performed using
du as the model parameters suggests that the Taylor seriesmax

Žexpansion is sufficiently accurate for analysis purposes see
.Table 2 .

Table 2. Worst-Case Changes in the 2-Norm of the
Control Trajectory

Step 1 Step 2
5 5 5 5d u d u

Weight mean size 0.0138C 0.0118C
Coefficient of variation 0.378C 0.308C
Nucleation to seed mass ratio 0.00668C 0.00758C

Table 3. Worst-Case Parameter Vectors for Each
Objective

Tdumax

w xWeight mean size y0.015 y0.045 y0.87 y4.05
w xCoefficient of variation 0.0076 0.0053 0.86 4.01

w xNucleation to seed mass ratio y0.042 y0.16 y0.87 y4.01
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Table 4. Worst-Case Optimal Control Move for Each
u , for the Coefficient of Variation Performancej

Objective

< < < <j d u j d uj j

1 0 9 0.13
2 0 10 0.12
3 0 11 0.10
4 0 12 0.081
5 0.13 13 0.062
6 0.15 14 0.042
7 0.15 15 0.021
8 0.14 16 0.001

Problem 2. The worst-case changes in optimal weight
mean size, coefficient of variation, nucleation to seed ratio,
and their corresponding parameter vectors, are summarized
in the Tables 5 and 6.

Table 5 indicates that the effects of uncertainty on the
weight mean size and the coefficient of variation are rela-
tively small, whereas the nucleation to seed mass ratio is
highly sensitive to parametric uncertainty. For the weight
mean size and coefficient of variation objectives, the nonlin-
ear simulation values agree quite well with the values ob-
tained by the Taylor series expansion. The larger difference
between the performance objectives for the nucleation to seed
mass ratio indicates the usefulness of Step 2 in improving the
accuracy of the worst-case performance estimate.

Problem 3. The results for Problem 3 are nearly identical
to those of Problem 2, both for the performance estimates
from the Taylor series expansion, and for the nonlinear dy-
namic simulations. While this will not be true in general, the
first author’s MS Thesis contains a theoretical explanation

Ž .why this occurs for some optimal control problems Ma, 1999 .
Problem 4. The worst-case performance degradations due

to control implementation uncertainties are reported in Table
7. All of the performance objectives are relatively insensitive
to 0.018C variations in temperature, while being sensitive to
0.18C variations in temperature. Among three objectives, we
see that the nucleation to seed mass ratio objective is the
most sensitive to control implementation uncertainties. The
ratio is not affected significantly by 0.018C temperature varia-
tions, but increases 143% when the temperature differs from
the optimal trajectory by only 0.18C. Note that controlling the
temperature within 0.18C is challenging for an industrial crys-
tallizer, and that a perfectly implemented optimal cooling
policy reduces the nucleation to seed mass ratio by 30% com-

Ž .pared to natural cooling Miller and Rawlings, 1994 . This
implies that the potential benefits from using an optimal con-
trol policy can be completely wiped out by variations in tem-
perature of the magnitude expected in the operation of an
industrial crystallizer. This agrees with the main conclusion

Table 5. Worst-Case Optimal Performance Objectives
for Problem 2

Step 1 Step 1 Step 2
d y y ymax max max

Weight mean size 34 421 417
Coefficient of variation 0.04 1.15 1.14
Nucleation to seed mass ratio 0.14 0.37 0.46

Table 6. Worst-Case Parameter Vectors for Problem 2
Tdumax

w xWeight mean size y0.025 y0.15 0.76 3.55
w xCoefficient of variation y0.07 y0.35 0.59 2.7

w xNucleation to seed mass ratio 0.093 0.42 0.76 3.6

Table 7. Worst-Case Performance Degradation Due to
Different Levels of Control Implementation

( )UUncertainty Eq. 31

Wt. Coeff. of Nucl. to Seed
Mean Size Variation Mass Ratio

Ž . Ž . Ž .b sy a s0.18C 411 408 1.18 1.26 0.76 0.56j j
Ž . Ž . Ž .b sy a s0.018C 453 450 1.12 1.15 0.27 0.24j j

UThe results of a nonlinear dynamic simulation using the estimated
worst-case control implementation uncertainty are reported in parenthe-
ses. In all cases the upper and lower bounds for m were nearly identical.

of a detailed parametric study by Bohlin and Rasmuson
Ž .1992 }that the benefits of controlled cooling could be lost
without extremely accurate temperature control.

Ž .Miller and Rawlings 1994 showed that optimal control in-
creased the weight mean size by 20% compared to using nat-
ural cooling. With Table 7 this indicates that, while 0.18C
variations in the implemented temperature trajectory may
significantly reduce the weight mean size, attempting to im-
plement the optimal control trajectory will still give better
results than natural cooling. Approximately 50% of the ex-
pected benefits of optimal control could be lost due to con-
trol implementation uncertainties up to 0.18C.

Problem 4 was repeated with H set to zero to see theu
importance of including second-order terms in the Taylor se-
ries expansion in Problem 4. The results were given in Table
8. From Table 8, it can be observed that if the temperature
variations are F0.018C, the same results were obtained.
However, if the temperature variations are up to 0.18C, the
results are significantly different. In particular, the estimate
of the worst-case change in the weight mean size is signifi-
cantly improved by including second-order terms in the Tay-
lor series expansion.

Conclusions
Algorithms were developed for estimating the effects of

parametric uncertainty and control implementation inaccu-
racy on the optimal open-loop control policy. The first step
of the approach computes a worst-case parameter vector and
an initial estimate of performance degradation based on a
Taylor series expansion that describes the local behavior
about the nominal trajectory. The second step uses a nonlin-

Table 8. Worst-Case Performance Degradation Due to
Different Level of Control Implementation Uncertainty

( )Eq. 31 Without Using Hu

Wt. Coeff. of Nucl. to Seed
Mean Size Variation Mass Ratio

b sy a s0.18C 435 1.18 0.64j j
b sy a s0.018C 453 1.12 0.27j j
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ear dynamic simulation to compute improved estimates. The
difference between the initial and final estimates provides an
indication as to the accuracy of the Taylor series expansion in
capturing the process dynamics in the vicinity of the optimal
control trajectory. These quantitative estimates can be used
to decide whether more laboratory experiments are needed
to produce parameter estimates of higher accuracy, or to de-
fine performance objectives for lower-level control loops that
implement the optimal control trajectory.

The analysis tools were applied to a batch cooling crystal-
lizer simulation. The nucleation to seed mass ratio was deter-
mined to be highly sensitive to both parametric uncertainty
and control implementation inaccuracy. With all of the per-
formance objectives, the benefits of controlled cooling could
be lost without very accurate temperature control. Nonlinear
dynamic simulations indicated that the Taylor series esti-
mates were accurate enough for process engineering pur-
poses.
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An easy-to-implement method to compute the derivatives

is by divided differences. Criteria for selecting the size of the
Žperturbations are provided in textbooks Beck and Arnold,

.1977 . An alternative approach, which augments the original
Ždifferential equations with sensitivity equations Beck and

.Arnold, 1977; Caracotsios and Stewart, 1985 , can be applied
˜directly to compute L, M, and H .u
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