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Abstract

Large scale systems have large numbers of inputs and outputs, and include whole chemical plants as well as some unit
operations, such as paper machines, polymer film extruders, and adhesive coaters. The importance of ensuring robustness of the
closed loop system to model uncertainties increases as the process dimensionality increases; hence developing algorithms for
computing robustness margins for large scale systems is of immense practical importance. Computational complexity is a tool of
computer scientists which has had impact in understanding large scale optimization problems, both theoretically and in terms of
finding computational solutions. Computational complexity theory is used to determine the level of accuracy and computational
speed that are obtainable by algorithms for computing robustness margins, and as to which algorithms are likely for providing
practical robustness margin computation for large scale systems. © 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Robust control for single loop and 2 x 2 chemical
processes has been studied extensively over the past 15
years (Palmor & Shinnar, 1981; Song, Fisher & Shah,
1984; Laughlin, Jordan & Morari, 1986; Yousefpor,
Palazoglu & Hess, 1988; Doyle, Packard & Morari,
1989; Kozub, MacGregor & Harris, 1989; Morari &
Zafiriou, 1989; Campo & Morari, 1990; Zafiriou &
Marchal, 1991; Arkun & Calvet, 1992; Schaper, Seborg
& Mellichamp, 1992; Amann & Allgower, 1994; Horn,
Arulandu, Gombas, VanAntwerp & Braatz, 1996;
Skogestad & Postlethwaite, 1996; Stryczek & Brosilow,
1996). On the other hand, whole chemical plants as well
as some unit operations, such as paper machines, poly-
mer film extruders, and adhesive coaters have large
numbers of inputs and outputs. More recently chemical
engineers have become interested in applying rigorous
control systems techniques to these large scale systems
(Ricker & Lee, 1995; Dave, Willig, Kudva, Pekny &
Doyle, 1997; Rao, Campbell, Rawlings & Wright, 1997;
Rigopoulos, Arkun & Kayihan, 1997; Russell, Power &
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Braatz, 1997; Featherstone & Braatz, 1998a,b; Russell
& Braatz, 1998a,b; VanAntwerp & Braatz, 1998). The
importance of ensuring robustness of the closed loop
system to model uncertainties increases as the process
dimensionality increases (Featherstone & Braatz, 1997,
Russell & Braatz, 1998a; Featherstone & Braatz,
1998b); hence developing algorithms for computing ro-
bustness margins for large scale systems is of immense
practical importance. This explains why researchers
have spent many man-centuries working to derive effi-
cient numerical algorithms for computing robustness
margins (a man-century refers to one man working 40 h
per week for one century). In this paper computational
complexity theory (described below) is used to deter-
mine the level of accuracy and computational speed
that are obtainable by algorithms for computing ro-
bustness margins, and as to which algorithms are likely
to provide practical robustness margin computation for
large scale systems.

The purpose of computational complexity theory is
to characterize the inherent difficulty of calculating the
solution for a problem under study. This theory can be
used to characterize computational problems as being
in one of two classes: P and NP-hard. The class P refers
to problems in which the exact time needed to solve the
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problem can be bounded by a single function which is
polynomial in the amount of data needed to define the
problem. Such computational problems are said to be
solvable in polynomial-time, and include linear and
convex quadratic programs.

Although the exact consequences of a problem being
NP-hard is still a fundamental open question in the
theory of computational complexity, it is generally ac-
cepted that a problem being NP-hard means that it
cannot be computed in polynomial time in the worst
case. It is important to understand that being NP-hard
is a property of the problem itself, not of any particular
algorithm. Whether a problem is polynomial-time or
NP-hard determines the highest computational effi-
ciency which can be expected by any algorithm, and as
to which classes of algorithms can provide practical
solutions to the problem. For example, an engineer
may look to interior point algorithms (Nesterov &
Nemirovskii, 1994) for computing the solution to a
polynomial-time optimization problem; whereas would
consider using approximations, heuristics, or branch-
and-bound techniques for computing the solution for
an NP-hard optimization problem (Papadimitriou &
Steiglitz, 1982; McCormick, 1983; Ryoo & Sahinidis,
1996; VanAntwerp, Braatz & Sahinidis, 1998). The
solution to an NP-hard optimization problem takes
much longer to compute, and for some large scale
problems even a supercomputer may be unable to find
the global solution to high accuracy within a reasonable
amount of time (Garey & Johnson, 1983).

It is known that the exact computation of the robust-
ness margin is NP-hard (Braatz, Young, Doyle &
Morari, 1994). Although the general u recognition
problem is NP-hard, special cases (that is, with restric-
tions on the structure or field of M or A) may be
simpler to compute. For example, when the M matrix is
restricted to be rank one, the calculation of u has
sublinear growth in problem size, irrespective of the
perturbation structure (Chen, Fan & Nett, 1991). In
this manuscript we provide the simplest known proof
that robustness margin computation is NP-hard even
when all of the uncertainties are represented as inde-
pendent real parameter variations. This is followed by a
related result that robustness margin computation is
NP-hard for the case of one complex scalar uncertainty
and independent real parameter variations. These re-
sults indicate that computing the robustness margin
even for systems with very simple uncertainty structures
is NP-hard.

The main result of this manuscript is that even
approximating the robust performance margin is a hard
computational problem. This result is especially impor-
tant in light of recently-proposed techniques for robust-
ness margin computations using Monte Carlo methods
and other methods of testing only a subset of the plants
in the uncertainty set (Barmish & Lagoa, 1997). Al-

though such algorithms are of interest, the main result
implies that there exist large scale uncertain systems for
which such algorithms will grossly underestimate the
size of the robust performance margin. Practical al-
gorithms for computing robustness margins should be
based on rigorous upper and lower bounds that are
tight for typical systems, although the main result im-
plies that such bounds will not be tight for some
problems.

All proofs require only basic linear algebra and fol-
low from relating robustness margin computation with
some specialized nonconvex programs. Given that com-
putational complexity theory is not usually studied by
chemical engineers, we provide a brief introduction to
its basic principles. This is followed by the results, and
a discussion of how the results relate to other results in
the literature.

1.1. Notation

In what follows, matrices are upper case and vectors
and scalars are lower case. The set of real numbers is R;
the set of complex numbers is C, and the set of ratio-
nale is Q. The Euclidean 2-norm of vector x is defined
by ||x|l»=/x"x, whereas the vector oo-norm of x is
defined by |}x||., =max|x,|. The maximum singular
value of matrix A4 is represented by o(A4), and 7, is the
r x r identity matrix. An ‘0’ will be used to represent
either zero or a matrix of zeros.

2. Introduction to computational complexity theory

Here we provide a description of computational com-
plexity theory that is concise and useful for practi-
tioners. This includes a discussion of how this theory
can be applied to e-approximation problems, as such
descriptions are not provided in the standard textbooks
(Papadimitriou & Steiglitz, 1982; Garey & Johnson,
1983).

Computational complexity theory allows a character-
ization of the inherent difficulty of calculating the solu-
tion for a problem under study. Problems (or
equivalent versions of the same problem) are generally
characterized as being in one of two classes: P and
NP-hard. The class P refers to problems in which the
exact time needed to solve the problem can always be
bounded by a single function which is polynomial in
the amount of data needed to define the problem. Such
problems are said to be solvable in polynomial time.
Although the exact consequences of a problem being
NP-hard is still a fundamental open question in the
theory of computational complexity, it is generally ac-
cepted that a problem being NP-hard means that it
cannot be computed in polynomial time in the worst
case. It is important to understand that being NP-hard
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is a property of the problem itself, not of any particular
algorithm. It is also important to understand that hav-
ing a problem be NP-hard does not imply that practical
algorithms are not possible. Practical algorithms for
NP-hard problems exist and typically involve approxi-
mation, heuristics, branch-and-bound, or local search
(Papadimitriou & Steiglitz, 1982; Garey & Johnson,
1983; McCormick, 1983; Ryoo & Sahinidis, 1996). De-
termining whether a problem is polynomial-time or
NP-hard tells the large scale systems engineer what kind
of computational efficiency can be expected by any
algorithm, and what kinds of algorithms to investigate
for providing practical solutions to the problem.

2.1. Three versions of an optimization problem

Consider the optimization problem

SUp/, ). )
where w as the vector of data required to uniquely
specify an instance of an optimization problem, and the
feasible region y, and objective function f, (x) are
functions of the problem data. For the optimization
problems considered in this manuscript, the feasible
region y, will be non-empty, and compact (closed and
bounded). Then the supremum is achieved by at least
one x in the feasible region:

= supf,,(x) = maxf, (x) (@)

An optimization problem can be written in three
closely-related but different versions (Papadimitriou &
Steiglitz, 1982):

P1. The optimization version: find the optimal feasible

solution x, that is, such that f, (x) is maximized.

P2. The evaluation version: Find the value f,, =1, (*)

of the optimal solution.

P3. The recognition version: Given k, is there a feasi-

ble solution x such that f, (x) > k?

The recognition version can also be written as:
‘Given k, is f,,(X) > k? The recognition version is im-
portant for studying the complexity of the problem,
because it is the type of problem traditionally studied
by the theory of computation. Unlike the first two
versions, the recognition version is a question, which
can be answered by yes or no.

The recognition version is no harder than the evalua-
tion version (P3 < P2), since we can immediately deduce
the answer to the recognition version from the answer to
the evaluation version. In other words, the evaluation
problem is at least as difficult to solve as the recogni-
tion problem, so if a recognition problem is NP-hard,
then the corresponding evaluation problem must also
be difficult.

If f,(x) is easy to compute, then the evaluation
version cannot be significantly harder than the opti-
mization version (P2 <P1). Thus the ordering from
least difficult to most difficult is P3 < P2 <PI.

2.2. The classes P and NP

The classes P and NP refer to the recognition versions
only. The class P refers to the class of recognition
problems that can be answered by a polynomial-time
algorithm. An example would be the linear program-
ming recognition problem.

Researchers believe that class NP is richer than the
class P (P # NP). For a problem to be in NP, it is not
required that it can be answered in polynomial time by
an algorithm. It is only required that, if x is a yes
instance of the problem, then this x can be checked in
polynomial time for validity. In other words, a problem
is in NP if we can calculate f, (x) and check that xey in
polynomial time. This condition is usually referred to as
polynomial-time verifiability. This definition automati-
cally implies that P is a subset of NP.

If a recognition problem is in the class NP, then the
complement is in the class co-NP. The co-NP problem
related to our optimization problem would be: ‘Given
k, is f,, () <k? Tt is unclear how to verify if this
problem is answered by yes, except by solving the
evaluation version of the optimization problem. This
certainly appears to be more difficult than verifying if
the recognition version is in NP. For this reason re-
searchers believe that NP # co-NP.

2.3. NP-complete and NP-hard problems

NP-complete problems are the hardest problems in
NP. Examples of problems that are NP-complete are
the traveling salesman problem, the max-cut problem,
and the indefinite quadratic programming problem.
Almost all researchers believe that NP-complete prob-
lems are harder than P problems, but there is no proof.

Any problem that is at least as hard as an NP-com-
plete problem is said to be NP-hard. An NP-hard
problem can refer to much broader classes of problems
than recognition problems (Garey & Johnson, 1983). In
particular, if the recognition version of an optimization
is NP-complete, then the corresponding evaluation and
optimization versions are NP-hard.

2.4. Computational complexity of e-approximation
problems

Because we have assumed that the feasible region y,,,
in Eq. (1) is non-empty, and compact, the infimum is
achieved by at least one x in the feasible region:

fo= inf£,(x) = min,, (x) 3)

Then the e-approximation problem for Eq. (1) is to
compute a value f, e R for which

[ =[] <€lfs—ful- 4)

™
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This definition is preferable to others in the literature
in that it is invariant to translation and dilation (that is,
multiplying by and adding a constant) of the objective
function (Vavasis, 1992; Bellare & Rogaway, 1993;
Vavasis, 1993). Quantifying the optimization objective
in different units does not affect the quality of the
approximation as measured by Eq. (4).

A 0O-approximation algorithm provides the exact op-
timal solution, while a 1-approximation algorithm need
only find any feasible point and compute its objective.
We will study the existence of polynomial-time al-
gorithms for computing an e-approximation. Let n be
a measure of the quantity of data needed to describe an
instance of an optimization problem (for example, this
could be the number of elements in the data vector w,
or the number of rows in a matrix which contains most
of the data). To provide the strongest results, € will be
selected to be a function of n—this allows the consider-
ation of algorithms for which the accuracy of the
approximation degrades as the size of the problem
(measured by n) increases.

Even when the exact optimization problem is NP-
hard, the e-approximation problem can be either easy
or hard (Ausiello, D’Atri & Protasi, 1980). For an
example of a hard exact optimization problem that has
an easy e-approximation algorithm, consider the class
of concave quadratic programming problems

min x"Hx +p’x (5

where H is of rank one. The exact optimization prob-
lem is NP-hard (Pardalos & Vavasis, 1991), whereas an
algorithm exists that computes an e-approximation in
polynomial-time as a function of problem size (Vavasis,
1992). As another example, while the exact knapsack
problem is NP-hard, its solution can be approximated
in polynomial-time within every constant factor of the
optimum (Barland, Kolaitis & Thakur, 1996).

The well-known traveling salesman problem is NP-
hard (Johnson & Papadimitriou, 1989), and its e-ap-
proximation problem is also hard (Sahni & Gonzales,
1976). More specifically, finding a polynomial-time al-
gorithm that approximates the optimum within a given
constant is equivalent to establishing that P= NP
(Sahni & Gonzales, 1976; Kolaitis & Thakur, 1993;
Reinelt, 1994; Yannakakis, 1994). As another example,
consider the class of polynomial programs with box
constraints

o 1A%, kil {(n X;) H (1 —xﬂ)} (6)

where ¢ is the number of terms in the polynomial
objective, n is the number of optimization variables,
and for each k, A4, and B, are disjoint subsets of {1, ...,
n}. The exact optimization problem is NP-hard. The
e-approximation problem is also hard, as stated in the
following lemma.

Lemma 1. (Polynomial programming with box con-
straints) There is a constant y > 0 such that the follow-
ing is true. If there exists a polynomial-time algorithm
that can compute an e-approximation for Eq. (6),
where €(n)=1—n"", then P=NP.

Proof 1. Follows directly from the proof of Theorem
3.1 in (Bellare & Rogaway, 1993). QED.

The general consensus in the computational commu-
nity that P # NP implies that the e-approximation
problem for polynomial programming with box con-
straints is also hard. Note that the particular form of
Eq. (6) in Lemma 1 considers very weak forms of
approximation, as it allows the quality of the approxi-
mation to degrade as a function of problem size. In
particular, for fixed y and large n, €(n) in Lemma 1
approaches one, which only requires that the approxi-
mation algorithm be able to find a feasible point and
evaluate the corresponding objective function. Thus
Lemma 1 indicates that the existence of even a weak
polynomial-time approximation algorithm for polyno-
mial programs with box constraints is highly unlikely.

3. Robust stability and robust performance margins

Measuring the robustness of uncertain systems is of
immense practical importance. The standard procedure
for computing robust stability margins is to first con-
vert the description of the closed loop system into a
(-computation problem (procedures for doing this are
described in (Morari & Zafiriou, 1989; Russell &
Braatz, 1996; Skogestad & Postlethwaite, 1996; Russell
et al., 1997)).

Define the set A of block diagonal perturbations by

k17"

A= {diag {01y es0id, 5oL, 05, A

Let MeC"*" Then the structured singular value u (M)
is defined as (Fan, Tits & Doyle, 1991)

Ua(M)
= {0 if there does not exist A
€A such that det(/ — MA)=0,

UA(M) = {[rAneigl{o’(Aﬂdet(l— MA) = 0}} otherwise
®)

Without loss of generality we have taken M and each
subblock of A to be square.
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In a similar manner, robust performance margins are
computed by converting the system description into a
skewed-u computation problem, where skewed-u has
the same definition as p, except with rows and/or
columns of M (Eq. (8)) re-scaled (Smith, 1990; Braatz
& Morari, 1991; Fan & Tits, 1992):

Ha(M)
= {0 if there does not exist AeA such that &(A;)
<1 and det(/ — MA)=0,

HA(M) = {[rpeig{é(Az)l&(Al) <1 det<1— M[%l AO D
= 0}] — 1 otherwise )

where A =diag{A,, A,} The reader is directed to the
citations for more details; here we would just like to
note that any algorithm for approximately computing u
can be used to directly approximately calculate skewed-
4 and vice versa (Packard, 1988; Skogestad & Morari,
1988; Smith, 1990; Braatz & Morari, 1991; Fan & Tits,
1992; Braatz, Morari & Skogestad, 1996).

4. Computational complexity of exact robustness
margin computation

Braatz et al. (1994) and Coxson and DeMarco (1992)
proved that exact u-computation is NP-hard. The
Braatz et al. proof did not prove NP-hardness for
classes of u problems with independent real parameter
variations. The Coxson and DeMarco proof did ad-
dress independent real parameter variations, but was
lengthy. The following approach addresses independent
real perturbations, while providing a much shorter path
between a basic computation problem (Lemma 2) and
robust margin computation than provided by Coxson
and DeMarco.

First we will recall a well-known NP-complete prob-
lem (Garey & Johnson, 1983):

Lemma 2. Given an integer m >0 and aeQ™, ||al, <
0.1, with positive entries, the task of determining
whether the equation

m

at=Y a;t;=0 (10)

i=1

has a solution ¢ with t,e{— 1,1}, Vi=1,..., m, is NP-
complete. Nemirovskii (Nemirovskii, 1993) used this
result to prove that the following problem is NP-hard.

Lemma 3. Consider the set of matrices

=il 7]

Y, zeQ™ |y < s

z|x,5a} (11)

where CeQ”*™ is a fixed constant invertible matrix
with rational elements. The task of determining
whether all matrices in M are nonsingular is NP-hard.

Poljak and Rohn (Poljak and Rohn, 1993) had ear-
lier proved a closely related result, but had a much
more complicated approach.

We will use Lemma 3 to show that exact u computa-
tion is NP-hard for the class of u problems with
independent real parameter variations. Consider x with
MeQ"*", keQ, and mixed real/complex uncertainty
blocks.

Theorem 1 (NP-hardness of robust stability margin com-
putation with independent real perturbations). u-compu-

tation with nonrepeated real perturbations is NP-hard.

Proof 2. Consider the class of matrices M defined in Eq.
(11). All matrices in M are nonsingular if and only if

det=[yCT ﬂ;&o, Vylle <o V|z||, <« (12)

I, z Cc 0
@det[chl 1}det[o 1}7&0,

Vil o Vzf. <o (13)
0 —z

w0 )0

Viyle <o Y]zl <o (14)

Define z= —Alw and y= —Ajw, where w= —akl

and Al and A are real diagonal perturbation matrices
with independent real scalar uncertainties. Then Eq.
(14) is equivalent to

0 Alw
I— N A” 1
@det< [WTA;Cl 0 :|>750, VH o < 1/k,
V)AL < 1k (15)
0 I|[A, O c' o
©det<1_|:wT 0:||:0 A;:||: 0 w:|>7é0’
VAL < 1k, V||A;|. <1/k (16)
c-' 0 0 I|lA, O
e G (]| e B0
VHA{. w < 1/k, VHA; <1k 17)
0 CUI[A, 0O
I— ‘¢
e U [ 50
V|A;’ o < 1/k, VHA;’,stl/k (18)
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<y (M) <k, (19)
where
0 c!
M= 20
Lww? 0 :| 20)
and
A7 0
Ar=|"7 . 21
ki e

Thus there exists a singular matrix in M if and only
if u, (M) = k. Determining whether there exists a singu-
lar matrix in M is NP-hard by Lemma 3, and the above
equivalences show that the nonsingularity task polyno-
mially reduces to a u problem with real M and indepen-
dent real scalars. QED.

Models for real systems always have unmodeled dy-
namics associated with them. Unmodeled dynamics
correspond to having at least one complex uncertainty
in the u problem. The next result states that gu-compu-
tation is NP-hard for this practically-motivated class of
problems.

Corollary 1. (NP-hardness of robust stability margin
computation with mixed perturbations) g-computation
problems with one complex scalar perturbation with the
remainder being nonrepeated real scalar perturbations
is NP-hard.

Proof 3. Because the u problem in the proof of Theo-
rem 1 has real M and all perturbations are 1 x 1,
application of Schur’s determinant formulae (Zhou,
Doyle & Glover, 1995) implies that any one of the real
perturbations can be replaced by a complex scalar
perturbation without affecting the value of the robust-
ness margin. QED.

That the computation of robust performance margins
is also a hard problem immediately follows.

Corollary 2. (NP-hardness of robust performance mar-
gin computation with independent real perturbations).
Robust performance margin computation with nonre-
peated real scalar perturbations is NP-hard.

Proof 4. The robust performance margin for a system
with nonrepeated real scalar perturbations can be writ-
ten directly in terms of a skewed-u problem with the
same number of nonrepeated real scalar perturbations
plus one additional complex perturbation (Smith, 1990;
Fan & Tits, 1992). The main loop theorem (Theorem
5.2 of Packard (1988)) allows the polynomial-time con-
struction of M such that

AN(M) > k< (M) > k, (22)

(Fan & Tits, 1992), thus the complexity of the skewed-p
problem is equivalent to the complexity of the x-com-
putation problem. The x-computation problem for this
perturbation class is NP-hard by corollary 1. QED.

5. Computational complexity of e-approximate
robustness margin computation

Here we show that it is hard to compute robust
performance margins within a given e.

The first step in our development is to show that the
polynomial program with box constraints (Eq. (6)) can
be represented as a skewed-u problem.

Lemma 4 (Polynomial program with box constraints
reduces to robustness margin problems). The polynomial
program with box constraints polynomially reduces to
real u, mixed u, real skewed-yx, and mixed skewed-u
problems.

Proof 5. The proof is trivial for £ =0, so consider the
case where k> 0. Treat the constraints as uncertainty
and the objective function as the performance objective
of a robust performance problem. The constraint set is

{x0<x<1}

= {x|]x =X+ A%w; A

= diag[o}],..., 0}]; o7e[ — 1/k, 1/k]}, (23)
where
=121 (24)
and
w= (k/2)1 (25

The realization algorithm of Russell et al. (1997)
computes in polynomial time a matrix M that satisfies

fu= ¥, {(n x,) 1] (l—x,»)>}=Fu(M, &)

k=1 i€ Ay

= [F.(M, A), 26)
where Me Q@+ Dx@m+1D,
A= {diag [0%,..., 6},)0;
€R; each 67 possibly repeated}, 7)

m= 3 |, ; (28)
k=1

+ |°@k

|4,| refers to the number of elements in the vector of
indices A,, and the linear fractional transformation
F, (M, A") is defined by
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FM(M’ Ar):M22+leAr(I_MllAr)_ler (29)

Then the polynomial program with box constraints
can be written as

o max 1f“ (x)= HA{I“lax |F, (M,A")| (30)

Now apply the robust performance theorem (Doyle,
1982) to give

i £ f(12) (1) =

ie Ay j€ By

where
= {dlag[ ’l 5;79 ( +l]|5 ER 5m+l
eC; each 67 possibly repeated}. (32)

Similarly, apply the skewed-u main loop theorem
(Smith, 1990; Fan & Tits, 1992) to give

= wa(M) (33)
where M is equal to M but with some of its rows scaled
by k. Using the fact that M is real, the Schur determi-
nant formula can be used to show that in both cases the
complex scalar perturbation 6¢ can be replaced by a

real scalar perturbation.
Since

0<\’<I‘f;V(x)_ HAI}hlaX

t t
m= Y |A]+|Bi < > n=1n, (34)
K= K=

the quantity of data needed to describe the u and
skewed-u problems is bounded by a polynomial func-
tion of the quantity of data needed to describe the
polynomial program with box constraints. QED.

The main result applies Lemma 4 to show that the
e-approximation of robust performance margins is
hard.

Theorem 2 (e-Approximation of robust performance
margins is hard). Consider the skewed-y problem with:
(1) all real scalar uncertainties; (ii) one complex and the
rest real scalar uncertainties; or (iii) any superset that
contains these uncertainty descriptions. There is a con-
stant y > 0 such that the following is true. If there exists
a polynomial-time algorithm that can compute an e-ap-
proximation for skewed-u where e€(n)=1—n"", then
P =NP.

Proof 6. Suppose there exists a polynomial-time e-ap-
proximation algorithm for skewed-u. Apply the al-
gorithm to the skewed-u problem defined in the proof
of Lemma 4. The one-to-one correspondences between
A" and x and their objective functions (Eq. (26)) imply
that the polynomial-time e-approximation algorithm
for skewed-u could be used to provide a polynomial-
time e-approximation for the polynomial program with

box constraints. From Lemma 1 this implies that P =
NP. QED.

For all practical purposes, computing approxima-
tions of u is just as hard as computing approximations
of skewed-u, since either function can be approximated
by the other using bisection (Packard, 1988; Skogestad
& Morari, 1988; Fan & Tits, 1992), which is a polyno-
mial-time operation (Khachiyan & Todd, 1993; Boyd,
El Ghaoui, Feron & Balakrishnan, 1994).

6. Comparison with other results

In a rather lengthy proof, Coxson and DeMarco
(1992) used the results of Poljak and Rohn to prove
that exact p-computation with independent real
parameter variations is NP-hard. Braatz et al. (1994)
proved NP-hardness of u for the following classes of
systems:

1. systems with pure real perturbations;

2. systems with mixed perturbations in which the com-
plex block enters nontrivially in the robustness mar-
gin computation; and

3. systems for which the robustness margin computa-
tion is a continuous function of the problem data.

The result for classes 2 and 3 implied that the NP-
hardness of u is rather generic. Theorem 1 and corollary
1 are stronger results than those of Braatz et al. (1994),
because they show NP hardness with nonrepeated real
perturbations. Toker and Ozbay (1995) proved that u
computation is NP-hard for systems with pure complex
scalar uncertainties. Taken together, these results indi-
cate that the is NP-hard for nearly any practical class of
perturbations, that is, NP-hardness is an inherent prop-
erty of worst-case robust stability analysis. Corollary 2
indicates that the same is true for robust performance
analysis.

The NP-hardness of robustness margin computation
is not a property of the problem formulation—the same
result holds when the robustness margin is written in
terms of k,, (Safonov, 1982; Chiang & Safonov, 1992)
or other formalisms. Subclasses for which robustness
margin computation is polynomial time are problems
where M has rank 1 (Kharitonov, 1978; Bartlett, Hollot
& Lin, 1989; Chen et al., 1991; Barmish, 1993; Braatz &
Crisalle, 1998), and for processes with special types of
transfer function matrices and uncertainty structures
(Braatz & VanAntwerp, 1996; Hovd, Braatz & Skoges-
tad, 1996). Any realistic large scale chemical process will
have a corresponding M matrix of much higher rank than
one. The class of systems considered by (Braatz &
VanAntwerp, 1996, Hovd et al. 1996) is of industrial
relevance, but the results cannot be extended to pro-
cesses with general transfer function matrices.
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The result that computing approximate robust per-
formance margins is hard (Theorem 2) is truly a power-
ful result. The previous results concerning the
computational complexity of robustness margin compu-
tation (Demmel, 1992; Nemirovskii, 1993; Poljak &
Rohn, 1993; Braatz et al., 1994; Toker & Ozbay, 1995)
do not imply this. This is because the requirements for
relating the NP-hardness of one approximation prob-
lem to another are much stricter than for relating the
NP-hardness of their exact problems (see, for example,
the discussion on page 134 of Garey and Johnson
(1983) for a basic discussion, or the papers (Feige,
Goldwasser, Lovasz, Safra & Szegedy, 1991; Arora &
Safra, 1992; Arora, Lund, Motwani, Sudan & Szegedy,
1992; Feige & Lovasz, 1992; Bellare & Rogaway, 1993;
Kolaitis & Thakur, 1993; Zuckerman, 1993; Khanna,
Motwani, Sudan & Vazirani, 1994; Tardos, 1994; Yan-
nakakis, 1994; Agarwal & Condon, 1995; Arora, 1995;
Bellare, Goldreich & Sudan, 1995; Feige & Verbitsky,
1996) for more details.

The exact and approximate computational complex-
ity results for u directly generalize to related robustness
analysis and synthesis problems, using techniques de-
scribed by Toker and Ozbay (1995). In particular, both
the exact and approximate computation of
e the supremum of u of a transfer function evaluated

as a function of frequency, and
e s-optimal controllers
are hard problems. Also, any such robustness problem
which contains a superset of the uncertainty structures
considered here are also hard. For example, exact or
approximate u-computation for systems with two com-
plex scalar perturbations, one full complex block, and
repeated real scalar perturbations are hard problems.
Any easy proof of this is to define a class of matrices M
which have zero rows and columns corresponding to
the extra complex and repeated real perturbations, so
that u for the overall matrix M is equal to u for a lower
dimension matrix with independent real scalar pertur-
bations and one complex perturbation. Then apply
Corollary 1 and Theorem 2.

7. Conclusions

Computational complexity theory provides a power-
ful guide for solving the computational problems that
arise when applying rigorous optimization-based ap-
proaches to large scale systems. When a problem is
determined to be in the class P, then computationally-
efficient polynomial-time algorithms can be developed.
When a problem is determined to be NP-hard, then its
computation is more difficult and practical algorithms
must be based on heuristics, branch-and-bound, and/or
local search.

Computational complexity theory was applied to the
problems of robust stability and performance margin
computation. The main results imply that it is highly
unlikely that polynomial-time algorithms exist that can
calculate robustness margins either exactly or within a
useful desired level of accuracy for all problems. These
results are especially important in light of recently-pro-
posed techniques for robustness margin computations
using Monte Carlo methods and other methods of
testing only a subset of the plants in the uncertainty set
(Barmish & Lagoa, 1997). Although such algorithms
are of interest, the main result implies that there exist
large scale uncertain systems for which such algorithms
will grossly underestimate the size of the robust perfor-
mance margin.

Practical algorithms for computing robustness mar-
gins should be based on rigorous upper and lower
bounds that are tight for typical systems, although the
main result implies that such bounds will not be tight
for some problems. The feasibility of this approach for
systems with up to a few hundred uncertain parameters
has been demonstrated in computational studies
(Young & Doyle, 1990; Young, Newlin & Doyle, 1991;
Newlin, 1996). Current efforts are underway to develop
polynomial-time model reduction algorithms that can
substantially reduce the computational expense associ-
ated with robustness margin computation for typical
large scale systems. Preliminary results indicate that
such an approach can enable robustness margins to be
computed for systems with up to a thousand uncertain
parameters (Russell & Braatz, 1998b).
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