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Abstract

The model-based experimental design of batch crystallizers is investigated. A dynamic programming formulation mini-
mizes the volume of a confidence hyperellipsoid for the estimated nucleation and growth parameters over the supersaturation
profile and the seed characteristics, namely, the crystal mass, mean size, and width of the seed distribution. It is shown that
the accuracy of the parameter estimates can vary by several orders of magnitude depending on the seed characteristics, and
that highly accurate estimation of nucleation and growth parameters can be obtained with as few as four batch experiments.
q 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Crystallization from solution is an industrially im-
portant unit operation due to its ability to provide high

Ž .purity separations. The crystal size distribution CSD
is a key factor in the production of high quality prod-
ucts and for determining the efficiency of down-
stream operations, such as filtration and washing.
Batch crystallizers are widely used in industry, and a
large proportion of these crystallizers are seeded.

The crystal growth and nucleation kinetic parame-
ters must be determined experimentally before sys-
tematically designing a crystallizer and computing
optimal operations and control procedures. The re-
liance on experiments to estimate these parameters
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arises due to an insufficient fundamental understand-
ing of the nucleation and growth phenomena to de-

w xrive the kinetics from first principles 1,2 , and the
strong sensitivity of most crystallizations to trace un-
measured chemical species in the feedstocks. The
benefits of reducing the cost and time required to do
experiments can be significant. For instance, in the
pharmaceutical industries there is a huge pressure to
bring a crystal product to market as fast as possible,
since the first company to put a new product on the
shelf usually captures the most of the market, even if
a somewhat superior product is made available
shortly thereafter. In such an environment, even a
small reduction in the number of experiments can re-
sult in huge profitability increases.

In this paper, we apply model-based experimental
design to a crystallization process in order to mini-
mize the number of experiments required to con-
struct a sufficiently accurate model. The accuracy of
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the estimated parameters is quantified by a hyperel-
lipsoid, whose size is a function of the informative-
ness of the data used in the parameter estimation
procedure. The model-based design procedure com-
putes experimental conditions that optimize the in-
formativeness of the data, where the experimental
design variables are the supersaturation profile and
the seed characteristics.

This paper appears to be the most comprehensive
study ever conducted on the model-based experimen-
tal design of a crystallization process. It is the first
study to include seed characteristics as well as the
supersaturation profile in the experimental design. It
is shown that this allows highly accurate estimation
of nucleation and growth parameters to be obtained
with as few as four batch experiments. The software
implementing the algorithms has been made avail-
able to the crystallization community via the web.

The paper is organized as follows. The process
model and the dynamic programming formulation of
the experimental design procedure are summarized
first, then the method is applied to a simulated batch
crystallizer. The final results are used to draw some
important conclusions.

2. Batch crystallization model

It is assumed that all crystallization experiments
are conducted in a batch crystallizer since this is sig-
nificantly less time-consuming than experiments per-

Ž . w xformed in other e.g., MSMPR crystallizers 3 . The
batch crystallizer model is summarized briefly since

w xexcellent descriptions are given elsewhere 3,4 .
Fig. 1 is the schematic diagram of a jacketed batch

crystallizer. Water moving through the jacket is used
to specify the temperature T in the crystallizer. As-
sume that the batch crystallizer has constant volume,
is well-mixed, and that physical processes such as
agglomeration, fracture, and attrition are negligible.
Also assume that the crystals are characterized by one
characteristic length L, with the constant volumetric
shape factor k and surface area shape factor k . Thenv a

w xthe population balance equation is 3,4 :

E f L,t E G S,u , L fŽ . � 4Ž .g
q sB S,u 1Ž . Ž .b

Et EL

Fig. 1. A jacketed batch crystallizer.

Ž .where t is time, f L,t is the number density func-
Ž . Ž .tion, G S,u , L is the crystal growth rate, B S,u isg b

Ž .the nucleation rate, Ss CyC rC is the rela-sat sat

tive supersaturation, C is the solute concentration,
C is the saturation concentration, and u and u aresat g b

the growth and nucleation parameters, respectively.
Several models for growth rate have been devel-

oped depending on the crystals and crystallization
w xprocesses 5–7 . The most popular model is given by

w x3 :

Gsk S g 2Ž .g

where k and g are the growth parameters.g

In general nucleation is classified into two cate-
w xgories: primary or secondary 3 . This paper consid-

ers secondary nucleation from crystal surfaces, since
it is the predominant mechanism taking place in most
seeded batch crystallizers. The nucleation rate is as-
sumed proportional to the collision energy, with the
rest of the kinetics being in standard power law form
w x8 :

Bsk Sbm 3Ž .ˆb 3

where k and b are the nucleation parameters, and m̂b 3

is the third moment, as defined below.
The method of moments replaces the partial dif-

Ž .ferential Eq. 1 by a set of ordinary differential
equations, which simplifies the simulation of the
batch crystallizer. The moment equations are derived
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Ž . jby multiplying Eq. 1 by L , integrating over L, and
w xplacing on a per mass of solvent basis 4 :

d m̂0
sB

d t

d m̂ j js jGm qBr js1,2, . . . 4Ž .ˆ jy1 0d t

where r is crystal size at nucleation and is assumed0

to be a constant, and the j-th moment is defined by
`

j ˆm ' L f L,t d L 5Ž . Ž .ˆ Hj
0

Ž̂ .where f L,T is the population density function on a
per mass of solvent basis.

The seed distribution, represented as shown in Fig.
2, is characterized by three parameters. The initial
mass of seed crystals is m , L is the mean size ofseed 0

the seed crystals, and W is the width of the seed dis-
tribution. Narrow seed distributions have W near 0,
with Ws1 indicating a range of seed sizes from in-
finitesimal to twice the mean seed crystal size.

The amount of solute leaving the solution must be
accounted by crystal growth and nucleation:

ˆdC
3sy3r k Gm yr k Br 6Ž .ˆc y 2 c y 0d t

where r is density of the crystal and r is the sizec 0

of the crystal at nucleation.

w xFig. 2. Seed distribution: L sm rm is the mean size, W g 0,1ˆ ˆ0 1 0

quantifies the width of the distribution.

3. Model-based experimental design

The model-based experimental design procedure is
applied sequentially. Initial estimates of the parame-
ters are used to compute the first experimental de-
sign, which is implemented in the laboratory. The
data which are collected are used to compute im-
proved parameter estimates and the associated confi-
dence hyperellipsoid, which are both used in comput-
ing the experimental design for the next laboratory
experiment. Since excellent descriptions of parame-
ter estimation and model-based experimental design

w xprocedures are provided in textbooks 9,10 , only a
brief description is given here.

The parameter estimation problem is posed as a
nonlinear optimization problem; here we use the ob-
jective

N Nm d
2

F u s w y yy 7Ž . Ž .˜Ž .Ý Ý i j i j i j
is1 js1

where u is the parameter vector, y and y are the˜i j i j

measurement and model prediction of the i-th mea-
sured variable at the j-th sampling instant, w is ai j

weighting factor, N is number of measured vari-m

ables, and N is the number of sampling instances. Tod

compute the maximum likelihood estimate of the pa-
Ž .rameters, each w in Eq. 7 is set equal to the in-i j

w xverse of the measurement error variance 10 .
Due to random errors associated with measure-

ments, the parameter estimates are also random vari-
ables with probability distributions. An approximate
confidence region for the parameters can be obtained
by linearizing the model near the vicinity of the esti-

w xmate 10 :

y u fy u U qF u U uyu U 8Ž . Ž . Ž . Ž . Ž .˜ ˜j j j

w xwhere y s y , . . . , y is the vector of model˜ ˜ ˜j 1 j Nm , j

predictions at the j-th instant, u U is the best esti-
mate, and F is the N =N matrix given byj m p

E ỹj
F s 9Ž .j

UEu u

Although the matrices F can be calculated using fi-j

nite differences, a more accurate way is to integrate
the sensitivity equations along with the model equa-

w xtions 11 .



( )S.H. Chung et al.rChemometrics and Intelligent Laboratory Systems 50 2000 83–9086

For crystallization experiments it is normally ac-
ceptable to assume that the measurement errors are
normally distributed and independent of each other,
that is, the measurement error covariance matrix V is
diagonal with the diagonal entries V ss 2. Then thei i i

parameter covariance matrix V for the linearizedu

problem is given by

Nd

y1 T y1V s F V F .Ýu j j
js1

Ž .The approximate 100 1ya % confidence region is
the hyperellipsoid defined by

TU Uy1 2uyu V uyu Fx a 10Ž . Ž . Ž . Ž .u Np

2 w xwhere x is the chi-squared distribution 10 .
The eigenvectors of Vy1 give the direction and theu

eigenvalues give the length of the axes of the hyper-
ellipsoid. Because it is impossible to visualize a
four-dimensional figure, confidence intervals are re-
ported:

U U2 2u y x a V Fu Fu q x a VŽ . Ž .( (i N u , i i i i N u , i ip p

11Ž .

Ž .where V is the i,i element of V .u , i i u

The model-based optimal experimental design
procedure computes experimental conditions that
minimize the uncertainty in the estimated parame-
ters, which is quantified by the volume of the confi-

Ž w x.dence hyperellipsoid this is called D-optimality 9 .
Ž Ž ..The volume of the hyperellipsoid Eq. 10 is in-

versely proportional to the determinant of Vy1, henceu

to minimize the volume is to maximize the objective
function

Nd

y1 T y1ˆ < <c u t ;u s V s F V F . 12Ž . Ž .Ž . Ýu j j
js1

For specificity, we consider the case where the
supersaturation is created by reducing the tempera-

Ž .ture T t , although other methods of achieving su-
w xpersaturation such as antisolvent addition 12 can be

formulated in a similar manner. The dynamic pro-
w xgramming formulation is generalization of 13 :

max c
Ž .T t ,m , L ,Wseed 0

subject to g t sT yT t F0Ž . Ž .1 min

g t sT t yT F0Ž . Ž .2 max

dT tŽ .
g t s yR F0Ž .3 maxd t

dT tŽ .
g t sR y F0Ž .4 min 13Ž .d t
g sm ym F05 seed ,min seed

g sm ym F06 seed seed ,max

g sL yL F07 0,min 0

g sL yL F08 0 0,max

g sW yWF09 min

g sWyW F010 max

Ž . Ž .The temperature constraints g t to g t ensure that1 4

the temperature profile stays within the operating
range of the crystallizer. The constraints g to g5 10

ensure that the seed distribution is practical. For ex-
ample, for economic reasons the seed mass is usually
constrained to be less than 10% of the final crystal
mass.

4. Results

The measurements selected for this study are con-
Ž .centration and transmittance N s2 . Transmittancem

is related to the second moment by

k ma solvent
transmittances Isexp y lm 14Ž .ˆ 2ž /2 mslurry

where l is the cell length, m is mass of the sol-solvent

vent, and m is mass of the slurry. Therefore, atslurry

the j-th sampling time the measurements are

Ij
y s . 15Ž .j Ĉj

Each measurement is assumed to have additive nor-
mally distributed noise with variances s 2 and s 2,I C
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Table 1
Parameters used in the simulation study

Variable Name Value Units
6m mass of solvent 7.57=10 gsolvent

† 3r density of crystal 2.11 grcmc
†r nucleated crystal size 0 mm0

Ĉ solute concentration g KNO rg H O3 2
† 2Ĉ saturation concentration 0.1286q0.00588Tq0.0001721T g KNO rg H Osat 3 2

†k surface area shape factor 6 dimensionlessa
†k volumetric shape factor 1 dimensionlessv
† 3Ž .k nucleation parameter exp 17.142 arcm minb
†b nucleation parameter 1.78 dimensionless
† Ž .k growth parameter exp 8.849 mmrming
†g growth parameter 1.32 dimensionless

†l cell length 1.77 mm
T crystallizer temperature 8C
T maximum T constraint 32.3 8Cmax

T minimum T constraint 22.0 8Cmin

R maximum rate of T change 0.0 8Crminmax

R minimum rate of T change y0.1 8Crminmin

m maximum seed mass 110,000 gseed,max

m minimum seed mass 5.0 gseed,min

L maximum mean seed size 600 mm0,max

L minimum mean seed size 5.0 mm0,min

W maximum percent width of seed distribution 0.95 dimensionlessmax

W minimum percent width of seed distribution 0.05 dimensionlessmin
2† 2Ž .s variance of transmittance measurement 0.009 dimensionlessI
2† 2 2Ž . Ž .s variance of concentration measurement 0.0005 g KNO rg H OC 3 2

N number of sampling instances 160 dimensionlessd

D t sampling time 1.0 min

† w xParameters are from Miller 14 .

Table 2
Estimated parameters and 95% confidence intervals for different experimental designs. The true parameter values are given in Table 1. MBED
stands for ‘‘model-based experimental design’’

Number of data sets Sequential MBED Natural cooling Linear cooling

1 g 1.289"0.071 1.316"0.102 1.315"0.095
ln k 8.749"0.242 8.829"0.468 8.835"0.413g

b 1.752"0.140 2.402"1.179 1.776"0.285
ln k 17.048"0.492 19.796"5.344 17.137"1.291b

2 g 1.321"0.025 1.375"0.103 1.313"0.080
ln k 8.849"0.094 9.093"0.475 8.825"0.343g

b 1.784"0.046 1.723"0.568 1.770"0.240
ln k 17.154"0.191 16.882"2.643 17.106"1.079b

3 g 1.323"0.027 1.325"0.102 1.291"0.072
ln k 8.860"0.097 8.870"0.471 8.731"0.308g

b 1.781"0.074 1.595"0.528 1.747"0.213
ln k 17.136"0.266 16.287"2.473 17.005"0.954b

4 g 1.317"0.019 1.350"0.103 1.299"0.065
ln k 8.838"0.070 8.989"0.473 8.762"0.280g

b 1.781"0.035 1.652"0.541 1.786"0.205
ln k 17.136"0.137 16.588"2.529 17.180"0.911b
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Fig. 3. Temperature profile for optimal experimental design: step
Ž . Ž . Ž . Ž .1 — , step 2 - - - , step 3 - P - , and step 4 PPP .

respectively. The parameters to be estimated are u T

w x Ž . Ž .s g,k ,b,k defined in Eqs. 2 and 3 .g b

Table 1 lists the properties of the KNO –H O3 2

batch cooling crystallizer used in this study. All vari-
ables are defined in Sections 2–4. The nucleation and
growth parameters b†, k† , g†, k† were obtainedb g

w xthrough a thorough experimental study 14 , and these
are treated as the true values for this study. The mo-
ment equations were integrated for a production run

w xof 160 min using Gear’s stiff method 15 . The cool-
Ž .ing profile T t was parameterized by a linear spline

w x16 to reduce the infinite dimensional nonlinear pro-
gram to a finite dimensional nonlinear program,
which was solved using successive quadratic pro-

w xgramming 17 . The software implementing the algo-
rithms has been made available to the crystallization

w xcommunity via the web 18 .
For sequential optimal model-based experimental

design, the initial design is based on setting the ki-
netic parameters equal to the midpoint of the range

w x Žof possible values as given in 3 gs1.5, ln k s5,g
.b s 2, and ln k s 10 . The obtained experimen-b

tal data are then used to improve the parameter

estimates, and to design the next experiment. The
procedure was repeated until the relative error in each
kinetic parameter was less than 2%. Each set of pa-
rameter estimates is listed in Table 2 with estimates
obtained by linear and natural cooling. The obtained
temperature profile and the seed distribution for the
model-based experimental design are given in Fig. 3
and Table 3, respectively.

Table 2 shows that the parameter estimates ob-
tained by the model-based design procedure for a
single experimental run are more accurate than for
four experimental runs using natural cooling or lin-
ear cooling. Comparing the designs where four ex-
perimental runs are used, the parameter estimates ob-
tained by the model-based experimental design pro-
cedure are approximately an order of magnitude more
accurate than for the other designs. Better parameter
estimates were obtained by linear cooling than natu-
ral cooling.

Fig. 3 and Table 3 indicate that the supersatura-
tion profile and the mean seed size for the optimal
experimental design can change substantially from
one iteration to the next. For each experiment, the
temperature profile is at its maximum or minimum
rate constraint during most of the run. The maximum
rate constraint can occur at the beginning, middle,
andror end of the run. As shown in Table 3, the seed
mass is small for all optimal experimental designs.
Reducing the amount of initial seed causes the super-
saturation to be larger throughout the experiment,
providing better signal-to-noise ratios for determin-

Ž Ž . Ž ..ing parameter values see Eqs. 2 and 3 . This is in
sharp contrast to which seed characteristics are desir-
able for optimal control of product crystal properties
w x19 in which large seed masses are used to promote
growth over nucleation.

< y1 <Recall from Section 3 that V is inversely pro-u

portional to the volume of the hyperellipsoid defin-

Table 3
Optimal seed distribution for sequential optimal experiment de-

w xsigns. A seed distribution similar to Miller’s 14 was used for the
linear and natural cooling profiles

Ž . Ž .m g L mm Wseed 0

Miller’s 230 196 0.612
MBED steps 1–3 5.0 600 0.95
MBED step 4 5.0 142 0.95
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ing the confidence region for the model parameters.
< y1 <In other words, V quantifies the informativenessu

the experimental data — the larger its value, the more
informative the data, and the more accurate the re-
sulting parameter estimates. To determine the magni-
tude of the effect of the seed distribution on the in-

< y1 <formativeness the experimental data, ln V wasu

plotted for the range of seed distributions for a fixed
temperature profile in Fig. 4. It shows that the accu-
racy of the parameter estimates can vary by several
orders of magnitude depending on the seed charac-
teristics, the most important being the seed mass and
mean size. As seen in Table 3, a small seed mass
gives the most informative experimental data.

Before this work, the most sophisticated study of
the model-based experimental design of crystalliza-

w xtion processes appears to be that of Matthews 13 .
The main differences between our study and that of

w x Ž .Matthews 13 are that our study: 1 considers a
Ž .much wider range of seed masses, 2 starts from rel-

atively low accuracy parameter estimates as would be
Ž .expected in practice, 3 optimizes over the seed dis-

tribution, which can have orders-of-magnitude effect
Ž .on the accuracy of the estimated parameters, and 4

compares sequential model-based experimental de-
Ž .sign to the standard alternatives Table 3 .

5. Conclusions

The crystallization study can be used to draw some
general conclusions. Highly accurate estimation of
nucleation and growth parameters can be obtained
with as few as four batch experiments. The seed
characteristics have a much stronger effect on the
quality of the parameter estimates than minor modi-
fications of the supersaturation profile. Small seed
masses should be used when collecting experimental
data.

To encourage the application of optimal model-
based experimental design to industrial crystalliza-
tion, the algorithms used in this study have been made

w xavailable via the web 18 .
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