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Fast Model Predictive Control of Sheet
and Film Processes

Jeremy G. VanAntwerp and Richard D. Braatz, Member, IEEE

Abstract—Sheet and film processes are prevalent in the chemical
and pulp and paper industries, and include paper coating, polymer
film extrusion, and papermaking. A model predictive control algo-
rithm is developed which is based on an off-line singular value de-
composition of the plant. The input constraints are approximated
by an ellipsoid whose size is optimized on-line to reduce conser-
vatism. The controller has a structure proven to be robust to model
inaccuracies and is computationally efficient enough for real-time
implementation on large scale sheet and film processes (e.g., ma-
nipulated variable settings computed for 200 actuators in less than
ten CPU seconds). The algorithm is applied to a paper machine
model constructed from industrial data.

Index Terms—Control systems, industrial control, large scale
systems, model predictive control, optimal control, paper machine
control, predictive control, process control.

I. INTRODUCTION

SHEET and film processes are industrially important and
include polymer film extrusion, papermaking, and paper

coating. As detailed descriptions of sheet and film process con-
trol problems are available in the literature [1], [2], only their
main characteristics are summarized here. Multivariable control
of sheet and film processes is challenging due to: 1) large dimen-
sionality; 2) model inaccuracies; and 3) actuator limitations [1].
The large-scale and high-speed nature of these processes place
constraints on the amount of on-line computation available for
the control algorithm, even with the processing speeds achiev-
able by existing control hardware [3]. Process models for a sheet
and film process have significant uncertainty associated with
them, due to low signal-to-noise ratios, nonuniform shrinkage
across the web, sideways movement of the entire web, and im-
precise actuator movements. For any model-based controller,
model uncertainty can significantly deteriorate closed-loop per-
formance, and this is particularly true for sheet and film pro-
cesses [4]. While being robust to this model uncertainty, the con-
trol algorithm must also avoid excessive actuator movements
that may compromise the integrity of the actuating mechanism
and the sheet/film.

In order to handle the process dimensionality within the com-
putational constraints, existing industrial control algorithms for
sheet and film processes are relatively simple. Typically, the
sampling time for the control algorithm is chosen to be the time
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it takes the scanning sensor to make one or two complete scans
across the sheet. Each scan consists of hundreds of individual
sensor readings, which are typically grouped into blocks to re-
duce process dimensionality. Model inaccuracies are addressed
through excessive detuning. This simplicity results in reduced
product quality and a loss of flexibility.

Several methods have been proposed for designing con-
trollers for sheet and film processes which are robust to model
inaccuracies but do not directly address actuator limitations
[5]–[7]. Model predictive control (MPC) approaches have been
proposed that directly address actuator limitations [2], [3], [8],
but do not explicitly address model inaccuracies. Also, these
approaches require too much computation for implementation
on large scale machines with much of the existing control
hardware [3].

A method was recently proposed which [9] 1) directly ad-
dresses actuator limitations 2) has minimal on-line computa-
tional requirements; and 3) has a controller structure proven to
be robust to model inaccuracies. The method was applicable to
sheet and film processes in which all manipulated variable direc-
tions are controllable and the dynamics are adequately described
by a pure time delay. As these assumptions do not always hold
in practice, here we extend the method to handle singular plants
with general dynamics. The resulting algorithm is applied to a
paper machine model constructed from industrial data.

Note that, as is standard in the industrial control of sheet and
film processes, this paper focuses on the control of profile prop-
erties across the web (in the literature this is called the cross-di-
rectional control problem [1]), since this is generally consid-
ered much more difficult than controlling a mean profile prop-
erty. Readers interested in the latter problem including coupling
to the cross-directional control problem are directed to the fol-
lowing papers and citations therein [1], [10]–[12].

II. CONTROL PROBLEM STATEMENT

As is common in MPC, the process is represented by its finite
impulse response

(1)

where
vector of manipulated moves;
sheet/film profile at time instance;
interaction matrix (the mapping from inputs to out-
puts is assumed to be linear over the operating region
which is a good assumption in practice).

1063–6536/00$10.00 © 2000 IEEE



VANANTWERP AND BRAATZ: FAST MODEL PREDICTIVE CONTROL OF SHEET AND FILM PROCESSES 409

The number of impulse response coefficients used to model the
system is and

(2)

where is the scalar such that is the th impulse response
coefficient matrix, and zero otherwise. This
description can model a system with time delays by setting

where is the time delay of the process. The
interaction matrix for a sheet and film process is typically
nonsquare and singular or nearly singular [4], [13], [14].

The constraints on the manipulated variables form a finite
polytope

(3)

For example, typical manipulated variable constraints for a sheet
and film process are a minimum and maximum allowable value
for each actuator [3], [9]

(4)

and second-order bending constraints which limit the allowable
differences between neighboring actuators

(5)
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(6)

The MPC problem is to compute as the solution to the
following quadratic program (QP):

(7)

subject to (8)

where is the desired profile (which is usually flat),
and are positive semidefinite weighting matrices, andis
the control horizon. Each weight ( , ) is assumed to be a
constant multiplied by the identity matrix, which is appropriate

for sheet and film processes. In particular, is often selected
large enough that rate constraints

(9)

are satisfied. Another method to handle rate constraints is de-
scribed in [15].

The dynamics for sheet and film processes are simple enough
that a control horizon of one is usually adequate, so for brevity
this case is considered here. It is straightforward to generalize
the control algorithm to handle larger control horizons (which
would have increased computational requirements).

III. FAST MPC CONTROL ALGORITHM

An overview of the proposed algorithm is presented in
Table I. Only an outline of the algorithm derivation is given
here. The complete derivation is given in [15]. The proposed
control algorithm uses the singular value decomposition of the
interaction matrix

(10)

where is a real matrix whose diagonal elements
are nonnegative, is a real orthogonal matrix (that
is, ), and is the matrix containing the
left singular vectors of where is the number of elements
of , is the number of elements of, and is the

identity matrix. The matrices , , and are computed
off-line using standard mathematical software. Due to strong
interactions across the web, a number of the singular values of

will usually be zero or nearly zero [4].
The control algorithm approximates the finite polytope (3)

with an ellipsoid

(11)

where is the center and defines the direction and relative
length of the axes of an ellipsoid, andis a scaling parameter
which is optimized online to reduce conservatism (see below).
The matrix is selected to have the form

(12)

where is a real, diagonal, positive definite matrix. Selecting
of the form in (12) fixes the directions of the axes of the

ellipsoid (11) in -dimensional space, and simplifies its off-line
computation (see [15]).

By isolating the decision variables , a solution to (7) can
be found very efficiently. The lone inequality constraint (11) in-
troduces one Lagrange multiplier . It can be shown that

(defined in Table I) is monotonic in [15]. Consequently,
has a unique solution which is determined via bi-

section. This gives the which (suboptimally) solves the
QP for a fixed scaling parameter. The value of is iterated
until the resulting lies on the boundary of the polytope
(3). Properties of the ellipsoid approximation [16] imply that

can be computed via bisection and will converge to a value
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TABLE I
THE ROBUST ELLIPSOID (RE) ALGORITHM (� AND � ARE NUMERICAL TOLERANCES)

between one and . The exact value of
needed to produce a which lies on the boundary of the

polytope is found via bisection. Since corresponds to
an ellipsoid that is completely within the polytope, pro-
duces a which lies completely within the polytope. Like-
wise, produces a which lies outside the
polytope [if was within the polytope it would have been
implemented—see Table I].

As the unconstrained solution approaches the manipulated
variable constraint region, the performance of the proposed
algorithm approaches that of the QP solution. Systems for
which the unconstrained solution is regularly far outside the
manipulated variable constraint set may have undersized ac-
tuators and/or a controller that is tuned too aggressively. In
other words, the new algorithm will provide a good approx-
imation to the QP for well-designed and well-tuned MPC
control systems, but will provide a poorer approximation for
poorly designed systems.

The actuator moves to be implemented on the process
are calculated from with the following excep-
tion. In practice, the experimental data used to construct the
process model are not sufficiently informative to accurately
identify many of the singular values and singular vectors in (10),
[4], [13], [14]. These model errors can include time-varying
phenomena including actuator stiction/backlash, nonuniform
sheet shrinkage, variable transport delay, and varying process
responses. Attempting the control these spatial modes will
lead to very poor performance. The proposed algorithm is
ideally suited to control only those singular vectors that are
controllable. Since it uses the singular value decomposition
of the plant, each is independent and corresponds to a
singular value of the process. Thus, if the singular value is
known to be poorly captured by the process model (this can be
determined using multivariable statistics [4], [13], [14]), then
the corresponding is simply set to zero.

The proposed algorithm requires no on-line calculations
of matrix inverses, singular value decompositions, or deter-
minants. The number of iterations [number of times is
computed] for convergence is not a function of the size

(13)

(14)

of the interaction matrix. The most computationally expensive
steps in the algorithm for large and are the matrix mul-
tiplications required to translate between and co-
ordinates. This is in contrast to the QP control algorithm (7)
whose on-line computational expense is a higher order polyno-
mial function of , even for the fastest algorithms [17].

It is instructive to compare the robust ellipsoid (RE) al-
gorithm with other “fast MPC” approaches. One strategy is
to just compute the unconstrained control move, and then to
“clip” each manipulated variable so that it satisfies the actuator
constraints. While this algorithm is easy to implement, it
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TABLE II
THE STRUCTURE OF THEINTERACTION MATRIX. THE VECTORc IS SHOWN IN

FIG. 1 AND WAS FIT FROM DATA IN [22, FIGS. 3 AND 5]

Fig. 1. The effect of a step change in one actuator on downstream
measurements.

gives very poor closed-loop performance for ill-conditioned
processes [18]. Standard ellipsoidal algorithms [19] and active
set methods are slower than the best interior point algorithms
[17], which require flops to solve a QP, where is the
problem size [17]. The RE algorithm’s most expensive step is

Fig. 2. Actuator gains as a function of position across the paper machine.

a matrix-vector multiplication, which requires flops. As
will be seen in the paper machine example, this leads to a much
faster control algorithm. The RE algorithm is also much faster
than recently proposed customized linear program (LP)/QP
algorithms [20], [21]. As such, it is the closest to achieving
the 5-s sampling times which are enabled by the full-scanning
technologies which are just now becoming available.

The RE algorithm is not a standard ellipsoidal algorithm [19],
since in (11) is computed only once. Standard ellipsoidal al-
gorithms recompute a new ellipsoid that encloses the optimal
solution at each step, which is at a higher computational cost
relative to the RE algorithm which onlyrescalesthe ellipsoid at
each step. The RE algorithm also has an intuitive motivation as
the solution to an unconstrained QP with a time varying penalty
on the vector of manipulated variables.

The transformation from an optimization problem overto
an optimization over was motivated by results of Braatzet
al. [5], [7], who showed that this decomposition corresponds to
a controller structure that is robust to very general classes of
perturbations in the plant interaction matrix. Furthermore, the
control algorithm does not manipulate in directions that are un-
controllable due to model uncertainties. The inherent robustness
of the RE algorithm will be demonstrated on a paper machine
model constructed from industrial data.

IV. A N INDUSTRIAL PAPER MACHINE MODEL

In order to demonstrate the properties of the RE algorithm,
a model was developed from industrial data that captures many
of the realities of an industrial paper machine. Many of the fea-
tures of this model are common to other sheet and film pro-
cesses (e.g., constant interaction matrix, scalar dynamics, etc.).
The model was developed from industrial identification data re-
ported by Heavenet al. [22] who studied the slice lip to weight
profile transfer function of a fine paper machine. The actuators
are motors which change the slice lip openings and the weight
profile is measured by a scanning sensor at the reel of the ma-
chine. Heavenet al.introduced pseudorandom binary sequences
at a few different points across the machine and measured the
downstream machine response (see [22] for details).

The model has the form

(15)



412 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 8, NO. 3, MAY 2000

Fig. 3. Measurement profiles and manipulated variable settings are shown for the QP and RE algorithms when the web has an initial profile with a bump near
the edge. The initial measurement profile is shown as a solid line, the steady-state profile is shown as a dotted line.

where
vector of measurements of basis weight at time

;

vector of actuator positions at time ;

interaction matrix (with units of lbs/mil).

The vector is a zero-mean Gaussian white noise signal
that is integrated by the plant dynamics. This signal represents
process disturbances and real paper machines are known to have
disturbances of this sort (see, e.g., [22, eq. 3]). The magnitude of
the disturbances was selected based on [22, Figs. 7
and 8]. The model structure with a time delay of 2 is taken from
[22, eqs. 5 and 9] and is reported in [22, Table 7].
Using the machine speed, Heavenet al.estimated the time delay
as two full scans of the scanning sensor. It should be noted that
for different machine speeds, the new time delay is easily esti-
mated, but that the interaction matrix and model structure may

change. The interaction matrix represents the interactions be-
tween the 130 actuators and the 650 downstream measurement
locations and is of the form

(16)

where the matrix is given in Table II.
Heavenet al.reported observing significantly different gains

at the edges of the industrial paper machine but chose to average
out these differences across the machine. On the other hand, we
believe them to be an important feature of real paper machines.
The diagonal matrix captures the variation of the actuator
gains across the machine as shown in Fig. 2. The ’s were
fit from data in [22, Table 2]. Analytic expressions for and

are given in [15].
Reference [22, Fig. 7] shows constraints on the actuators of

the form (4) with and . For the model being
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Fig. 4. Measurement profiles and manipulated variable settings are shown for the QP and RE algorithms when the web has a psuedorandom initial profile.The
initial measurement profile is shown as a solid line, the steady-state profile is shown as a dotted line.

TABLE III
STEADY-STATE VARIANCES OF THEMEASUREDPROFILE AND CPU TIME REQUIRED TOSOLVE THE PROBLEM ON A SPARC ULTRA 1 (143 MHz)WITH 64 MB OF

RAM FOR THETHREEDIFFERENTINITIAL PROFILES. EACH NUMBER REPORTEDHERE IS THEAVERAGE OFTEN SIMULATIONS TO AVERAGE OUT ANY EFFECTS

OF THERANDOM SEED (THE SECONDNUMBER IN EACH COLUMN IS THESAMPLE STANDARD DEVIATION BASED ON10 SIMULATIONS). ALTHOUGH NOT SHOWN

HERE, THE PLOTS FOR THECENTER BUMP DISTURBANCE ARE GIVEN IN [15]

developed here, these constraints will be recentered (
). Additionally, we will impose constraints of the form

(5) with , as constraints of this type are usually specified
for real paper machines [3].

The measurement is subject to noise
(17)

where is given by (15) and is a vector of zero-mean
Gaussian white noise chosen to be representative of the data ob-
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Fig. 5. Measurement profiles and manipulated variable settings are shown for the QP and RE algorithms when the plant is misidentified. The initial measurement
profile is shown as a solid line, the steady-state profile is shown as a dotted line.

tained from a real paper machine (e.g., [22, eq. 3]). The magni-
tude of the noise was chosen to be equal to 0.067 in order to
match the level of noise in [22, Figs. 7 and 8].

This same model form will also used for a process with more
sensors and actuators by interpolating the vector of interaction
parameters and the gains across the machine. This cor-
responds to a paper machine where the actuators and measure-
ments are spaced more closely, rather than a wider machine with
the same actuator spacing. The motivation for scaling the con-
trol problem in this way is that paper machines are unlikely to
become significantly wider in the near future, but there is likely
to be a continued increase in the number of actuators and sen-
sors.

V. SIMULATION RESULTS AND DISCUSSION

The RE algorithm was compared to traditional MPC on the
paper machine model. The traditional MPC formulation results
in a constrained QP with decision variables. This QP was

solved using IMSL’s QP solver, which is implemented in FOR-
TRAN. For the closed-loop simulations shown here, the con-
troller tuning parameters, and , were chosen to be
and and and were chosen to be 10 and 2 10 ,
respectively. The control horizon was .

The closed-loop performance of the RE and traditional MPC
algorithms were tested on the paper machine model with three
different initial measured profiles; one with a bump near the
edge, one with a bump near the center, and a pseudorandom
profile. For the case of no plant/model mismatch, the RE and
QP algorithms achieve similar measured profiles (see Figs. 3
and 4 and Table III), but the RE algorithm has a much smoother
series of input vectors (see Figs. 3 and 4), which produces less
stress on the slice lip.

As discussed in the control algorithm section, many of the
smaller singular values are poorly identified in practice. The
corresponding singular vectors are also poorly known, and in
fact, even their general direction cannot be predicted with con-
fidence from the experimental data [4], [13], [14]. Attempting to
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Fig. 6. Measurement profiles and manipulated variable settings are shown for the QP and RE algorithms when the plant is misidentified. The initial measurement
profile is shown as a solid line, the steady-state profile is shown as a dotted line.

manipulate in these directions will result in poor performance.
Featherstone and Braatz [13], [14] give algorithms for quanti-
fying and minimizing the error in the singular values with sta-
tistical confidence during model identification.

To compare the robustness of the two algorithms to
plant/model mismatch, the directions of the singular
vectors in were flipped for

and . This new plant
will be assumed to be the true process. For each controller,
the manipulated variable vector was calculated based on
but was implemented on . Featherstone and Braatz [13]
give criteria for deciding which singular values should be
controlled and which should not. For this study, we will assume
that the 20 smallest singular values were determined to be
uncontrollable. For the RE algorithm, was set equal to zero
for . Thus, the RE algorithm is controlling
the paper machine based on the reduced order controllable
portion of the model. The misidentified plant results in poor

performance for the QP, but the performance of the RE algo-
rithm suffers only slightly (see Figs. 5 and 6 and Table III).
Also, the jaggedness of the QP manipulated variable vectors
becomes more pronounced while the RE manipulated variable
vectors are virtually the same (see Figs. 5 and 6).

Fig. 7 shows how the computation time for the RE and QP
algorithms grows as a function of the number of actuators. The
slope of each line is an estimate of the rate of growth of the so-
lution time as a function of the problem size (e.g., a slope of 3
means the solution time grows as). The computation time for
the RE algorithm grows more slowly as a function of than
the time required by the QP. The RE algorithm is fast enough
to be implemented on real paper machines, even those of very
high dimensionality, while providing robustness to model un-
certainties (e.g., manipulated variable settings for 200 actuators
in under ten CPU s).

A few final comments are in order. The MPC algorithm
could be modified to not manipulate in uncontrollable plant
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Fig. 7. The CPU time for the QP (*) and RE (x) algorithms are shown as a
function of the number of actuators. For each algorithm, for each number of
actuators, the solution time for ten different random seeds is shown. The slopes
of the lines shown are 3.73 for the QP and 2.38 for the RE algorithm. The
optimizations were run on a Sparc Ultra 1 workstation (143 MHz) with 64 MB
of RAM.

directions [13]. Still, the RE algorithm is faster, and has
the robust optimal controller structure for a wide variety of
model uncertainty structures [7]. Also, not manipulating in
the uncontrollable directions arises very naturally with the
RE algorithm. The simulation results for the paper machine
considered here, and other results for a polymer film extruder
considered elsewhere, suggestthat constraint handling is ac-
tually unnecessary for some (but not all) web processes, pro-
vided that the control algorithm does not attempt to manip-
ulate in uncontrollable directions of the process [4]. This is
because manipulated variable moves in the controllable plant
directions (which correspond to the larger singular values)
have a strong effect on the plant output. In cases where
constraint handling is needed, the RE algorithm can quickly
compute a feasible control move.

VI. CONCLUSIONS

An algorithm for the control of sheet and film processes
has been developed which directly addresses actuator limi-
tations and model uncertainties. The algorithm is based on
an off-line singular value decomposition of the plant. The
polytopic manipulated variable constraints are approximated
with an ellipsoid whose size is optimized on-line to reduce
conservatism. The control algorithm only manipulates in con-
trollable plant directions, which are identified using cited
statistical criteria.

A model of a fine paper machine was constructed from
industrial identification data. The model captures more of
the realities of paper machine operations than other models
reported in the literature. In the case where there was no
plant/model mismatch, the robust ellipsoid algorithm provided
similar closed-loop profile responses as classical model pre-
dictive control, but with much smoother manipulated variable
profiles. In the practical case where there were model uncer-
tainties, the robust ellipsoid algorithm provided substantially

reduced profile variability. The robust ellipsoid algorithm
was also substantially faster than classical quadratic program-
ming-based model predictive control—an order of magnitude
faster for the paper machine with 520 actuators. The robust
ellipsoid algorithm is sufficiently computationally efficient
to be implemented in real time on large scale sheet and film
processes.
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