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Abstract

This is a tutorial on the mathematical theory and process control applications of linear matrix inequalities (LMIs) and bilinear
matrix inequalities (BMIs). Many convex inequalities common in process control applications are shown to be LMIs. Proofs are

included to familiarize the reader with the mathematics of LMIs and BMIs. LMIs and BMIs are applied to several important process
control applications including control structure selection, robust controller analysis and design, and optimal design of experiments.
Software for solving LMI and BMI problems is reviewed. # 2000 Published by Elsevier Science Ltd. All rights reserved.

1. Introduction

A linear matrix inequality (LMI) is a convex con-
straint. Consequently, optimization problems with con-
vex objective functions and LMI constraints are
solvable relatively e�ciently with o�-the-shelf software.
The form of an LMI is very general. Linear inequalities,
convex quadratic inequalities, matrix norm inequalities,
and various constraints from control theory such as
Lyapunov and Riccati inequalities can all be written as
LMIs. Further, multiple LMIs can always be written as
a single LMI of larger dimension. Thus, LMIs are a
useful tool for solving a wide variety of optimization
and control problems. Most control problems of inter-
est that cannot be written in terms of an LMI can be
written in terms of a more general form known as a
bilinear matrix inequality (BMI). Computations over
BMI constraints are fundamentally more di�cult than
those over LMI constraints, and there does not exist o�-
the-shelf algorithms for solving BMI problems. How-
ever, algorithms are being developed for BMI problems,
the best of which can be applied to process control
problems of modest complexity.
The many ``nice'' theoretical properties of LMIs and

BMIs have made them the emerging paradigm for for-
mulating optimization and control problems. While
LMI/BMIs are gaining wide acceptance in academia,
they have had little impact in process control practice.

One of the main reasons for this is that process control
engineers are generally unfamiliar with the mathematics
of LMI/BMIs, and there is no introductory text avail-
able to aid the control engineer in learning these
mathematics. As of the writing of this paper, the only
text that covers LMIs in any depth is the research
monograph of Boyd and co-workers [22]. Although this
monograph is a useful roadmap for locating LMI
results scattered throughout the electrical engineering
literature, it is not a textbook for teaching the concepts
of LMIs to process control engineers. Furthermore, no
existing text covers BMIs in any detail.
This tutorial is an extension of a document used to

train process control engineers at the University of Illi-
nois on the mathematical theory and applications of
LMIs and BMIs. Besides training graduate students, the
tutorial is also intended for industrial process control
engineers who wish to understand the literature or use
LMI software, and experts from other ®elds (for exam-
ple, process optimization) who wish to initiate investi-
gations into LMI/BMIs. The only assumed background
is basic calculus, a course in state space control theory
[74,37], and a solid foundation in matrix theory [16,66].
The tutorial includes the proofs of several main

results on LMIs. These are included for several reasons.
First, many of the proofs are di�cult to locate in the
literature in the form that is most useful for applications
to modern control problems. Second, the simplicity of
the proofs provides some insights into the underlying
geometry that manifests itself in terms of properties of
the LMIs. Third, working through these proofs is the only
way to become su�ciently experienced in the algebraic
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manipulations necessary to be able to formulate the LMI/
BMIs to solve new process control problems. Finally,
students learn far more by working through problems
or proofs than from reading theorem after theorem.
This paper is organized as follows. First an example is

used to motivate studies in LMI/BMIs. The second sec-
tion de®nes the LMI and discusses some of its basic
properties. The third section shows how inequalities of
many di�erent types can be written as LMIs or BMIs.
The fourth section discusses optimization problems over
LMI or BMI constraints, and why such optimization
problems can be e�ciently solved numerically. The ®fth
section reviews algorithms and software packages used
to solve LMI/BMI optimization problems, and the sixth
section lists LMI/BMI problems that are important in
process control applications. This is followed by con-
cluding remarks.

2. Motivating example: a reactive ion etcher

A large number of control problems can be written in
terms of LMIs or BMIs that cannot be solved using
Lyapunov equations, Riccati equations, spectral factor-
ization, or other classical techniques. The following is
an industrial process control problem in which the only
tractable solution is via an optimization over LMI and
BMI constaints.
Etching is known to be a highly nonlinear multi-

variable process that is strongly dependent on reactor
geometry. Attempts to control etch characteristics
usually manipulate the reactor pressure, gas ¯ow rate,
and the power applied to the electrodes. However, due
to many disturbances, complicated reaction dynamics,
and the general lack of detailed fundamental under-
standing of the plasma behavior, it is impossible to
predict etch performance for a system given a set of

inputs. In many cases, it is impossible to even predict
etch performance for the same system on two di�erent
runs. For this reason, it is impossible to maintain con-
sistent etch quality without the use of feedback control.
The feedback controller must be designed to be robust
to the variability in process behavior as well as the
nonlinear nature of the reactive ion etching process.
Here, we consider the laboratory reactive ion etcher

studied by Vincent et al. [146]. The manipulated variables
were the power of the applied rf voltage and the throttle
valve position which speci®es the input gas ¯owrate, and
the controlled variables were the ¯uorine concentration
and the bias voltage. Like many other chemical processes
described in the literature, the plasma dynamics of a
reactive ion etching process were reasonably well descri-
bed as a static input nonlinearity N followed by a linear
time-invariant (LTI) plant PL (see Fig. 1), which is the
well known Hammerstein model structure [51,106,134].
This nonlinear model was identi®ed using an iterative
least squares algorithm with data obtained from an
experimental system by exciting it with a pseudo-random
binary signal with varying amplitude [146]. The identi®ed
LTI plant for their experimental process was

PL

ÿ1:89eÿ:5s sÿ 38:2� �
s� 5:37� � s� 0:160� �

ÿ35:9 sÿ 37:8� �
s2 � 6:5s� 20:2

0:0239eÿ:5s sÿ 9:6� �
s� 1:05� � s� 0:214� �

ÿ0:143 sÿ 38:9� �
s2 � 3:28s� 4:14

266664
377775 �1�

The natural controller structure to use has the form
K � N̂ÿ1KL where KL is designed to stabilize the linear
portion of the plant PL and N̂ÿ1 is an approximate
inverse of the static nonlinearity N. If the input non-
linearity N were identi®ed perfectly then N̂ÿ1 would be
an exact inverse of N and there would be an identity
mapping from KL to PL. However, in practice the iden-
ti®cation is not perfect, and there is a nonlinear map-
ping from KL to PL. Furthermore, it is highly unlikely
that the system is nonlinear only at the process input.
Output nonlinearity is also a probability.
Nonlinearities in both the input and the output can be

rigorously accounted for by the uncertainty description
shown in Fig. 2. The operators �I and �O can vary
within set bounds as functions of time, and can achieve
an identical input-output mapping for any possible

Fig. 1. Reactive ion etcher in classical feedback form.

Fig. 2. Reactive ion etcher with input and output nonlinearities modeled as uncertainty.
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nonlinearity within the magnitude of the bounds set by
the uncertainty weights WI and WO.
The only known method for designing a globally

optimal robust nonlinear controller for this process is
by formulating the controller design as an optimization
over LMI and BMI contraints (see Section 7.5 for
details). The formulation allows a direct optimization of
the worst-case closed loop performance over the set of
plants described by the nonlinear uncertainty descrip-
tion. The BMI-based controller responded more than
twice as fast to set point changes than a carefully tuned
classical controller (linear quadratic control, whose
computation was via a Ricatti equation), while at the
same time providing guaranteed robustness [143].

3. The linear matrix inequality

Here we de®ne the LMI and some of its basic prop-
erties. We will use upper case Roman to refer to matrices,
lower case Roman to refer to vectors or scalars, lower
case Greek to refer to scalars, and upper case calligraphic
to refer to sets. The symbol 8 should be read ``for all''
and the symbol 2 should be read ``is an element of''. The
notation Rm denotes the set of real vectors of length m,
and Rn�n denotes the set of real n� n matrices.

3.1. De®nition

A linear matrix inequality (LMI) has the form:

F x� � � F0 �
Xm
i�1

xiFi > 0 �2�

where x 2 Rm;Fi 2 Rn�n. The inequality means that
F x� � is a positive de®nite matrix, that is,

zTF x� �z > 0; 8z 6� 0; z 2 Rn: �3�

The symmetric matrices Fi; i � 0; 1; . . . ;m are ®xed
and x is the variable. Thus, F x� � is an a�ne function of
the elements of x.
Eq. (2) is a strict LMI. Requiring only that F x� � be

positive semide®nite is referred to as a nonstrict LMI.
The strict LMI is feasible if the set xjF x� � > 0f g is
nonempty (a similar de®nition applies to nonstrict LMIs).
Any feasible nonstrict LMI can be reduced to an equiva-
lent strict LMI that is feasible by eliminating implicit
equality constraints and then reducing the resulting LMI
by removing any constant nullspace ([22], page 19). We
will therefore focus our attention on strict LMIs.

3.2. LMI equivalence to polynomial inequalities

It is informative to represent the LMI in terms of
scalar inequalities. More speci®cally, the LMI (2) is

equivalent to n polynomial inequalities. To see this,
consider the well-known result in matrix theory (e.g.
page 951 of [154]) that an n by n real symmetric matrix
A is positive de®nite if and only if all of its principal
minors are positive. Let Aij be the ijth element of A.
Recall that the principal minors of A are

A11; det
A11 A12

A21 A22

� �� �
; det

A11 A12 A13

A21 A22 A23

A31 A32 A33

264
375

0B@
1CA;

. . . ; det

A11 . . . A1n

..

. ..
.

An1 . . . Ann

264
375

0B@
1CA �4�

We apply this result to give that the LMI (2) is equiva-
lent to:

F0;11 �
Xm
i�1

xiFi;11 > 0 �a linear inequality�

F0;11 �
Xm
i�1

xiFi;11

 !
F0;22 �

Xm
i�1

xiFi;22

 !

ÿ F0;12 �
Xm
i�1

xiFi;12

 !
F0;21 �

Xm
i�1

xiFi;21

 !
> 0

�a quadratic inequality�

..

.

det

F x� �11 . . . F x� �1k
..
. ..

.

F x� �k1 . . . F x� �kk

264
375

0B@
1CA > 0

�kth order polynomial inequality�

..

.

det F x� �� � > 0 �nth order polynomial inequality�

The n polynomial inequalities in x range from order 1
to order n.

3.3. Convexity

A set C is said to be convex if lx� 1ÿ l� �y 2 C for
all x; y 2 C and l 2 0; 1� � [107]. An important property
of LMIs is that the set xjF x� � > 0f g is convex, that is,
the LMI (2) forms a convex constraint on x. To see this,
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let x and y be two vectors such that F x� � > 0 and
F y� � > 0, and let l 2 0; 1� �. Then

F lx� 1ÿ l� �y� � � F0 �
Xm
i�1

lxi � 1ÿ l� �yi� �Fi

� lF0 � 1ÿ l� �F0 � l
Xm
i�1

xiFi

� 1ÿ l� �
Xm
i�1

yiFi

� lF x� � � 1ÿ l� �F y� �

> 0: �5�

3.4. LMIs are not unique

The same set of variables x can be represented as the
feasible set of di�erent LMIs. For instance, if A x� � is
positive de®nite then A x� � subject to a congruence
transformation (see section 14.7 of [154]) is also positive
de®nite:

A > 0() xTAx > 0; 8x 6� 0 �6�

() zTMTAMz > 0; 8z 6� 0;M nonsingular �7�

()MTAM > 0 �8�

This implies, for example, that some rearrangements
of matrix elements do not change the feasible set of the
LMI.

A B

C D

� �
> 0() 0 I

I 0

� �
A B

C D

� �
0 I

I 0

� �
> 0

() D C

B A

� �
> 0 �9�

3.5. Multiple LMIs can be expressed as a single LMI

One of the advantages of representing process control
problems with LMIs is the ability to consider multiple
control requirements by appending additional LMIs.
Consider a set de®ned by q LMIs:

F1 x� � > 0;F2 x� � > 0; . . . ;Fq x� � > 0 �10�

Then an equivalent single LMI is given by

F x� � � F0 �
Xm
i�1

xiFi � diag F1 x� �;F2 x� �; . . . ;Fq x� �� 	
> 0;

�11�

where

Fi � diag F1
i ;F

2
i ; . . . ;Fq

i

� 	
; 8i � 0; . . . ;m �12�

and diag X1;X2; . . . ;Xq

� 	
is a block diagonal matrix

with blocks X1;X2; . . . ;Xq. This result can be proved
from the fact that the eigenvalues of a block diagonal
matrix are equal to the union of the eigenvalues of the
blocks, or from the de®nition of positive de®niteness.

4. The generality of LMIs and BMIs

This section shows how many common inequalities
can be written as LMIs. In addition, it shows how many
control properties of interest can be written exactly in
terms of the feasibility of an LMI. Such a problem is
referred to as an LMI feasibility problem.

4.1. Linear constraints can be expressed as an LMI

Linear constraints are ubiquitous in process control
applications. Model Predictive Control has become the
most popular multivariable controller design method in
many industries precisely because of its ability to address
linear constraints on process variables [32,48,61,95,110,
114]. The standard linear programming and quadratic
programming model predictive control formulations
can be written in terms of LMIs. Here we show the ®rst
step, which is to write the linear constraints on process
variables as LMI constraints.
Consider the general linear constraint Ax < b written

as n scalar inequalities:

bi ÿ
Xm
j�1

Aijxj > 0; i � 1; . . . ; n �13�

where b 2 Rn, A 2 Rn�m, and x 2 Rm. Each of the n
scalar inequalities is an LMI. Since multiple LMIs can
be written as a single LMI, the linear inequalities (13)
can be expressed as a single LMI.

4.2. Stability of linear systems

Stability is one of the most basic needs for any closed
loop system. Some methods for analyzing the stability
of linear systems are covered in undergraduate process
control textbooks [102,133]. Moreover, some nonlinear
processes can be analyzed (at least to some degree) with
linear techniques by performing a change of variables,
such as in binary distillation [91] and pH neutralization
[68,101].
The Lyapunov method for analyzing stability is

described in most texts on process dynamics [70,108].
The basic idea is to search for a positive de®nite func-
tion of the state (called the Lyapunov function) whose
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time derivative is negative de®nite. A necessary and
su�cient condition for the linear system

x
: � Ax �14�

to be stable is the existence of a Lyapunov function
V x� � � xTPx where P is a symmetric positive de®nite
matrix such that the time derivative of V is negative for
all x 6� 0 [108]:

dV x� �
dt
� x
:TPx� xTPx

:

� xT ATP� PA
ÿ �

x < 0; 8x 6� 0 �15�

() ATP� PA < 0 �16�

This is an LMI, where P is the variable. To see this,
select a basis for symmetric n� n matrices.
As an example basis, for i5j de®ne Eij as the matrix

with its i; j� � and j; i� � elements equal to one, and all of
its other elements equal to zero. There are m �
n n� 1� �=2 linearly independent matrices Eij and any
symmetric matrix P can be written uniquely as

P �
Xn
j�1

Xn
i5j

PijE
ij; �17�

where Pij is the i; j� � element of P. Thus the matrices Eij

form a basis for symmetric n� n matrices (in fact, if the
columns of each Eij are stacked up as vectors, then the
resulting vectors form an orthogonal basis, which could
be made orthonormal by scaling).
Substituting for P in terms of its basis matrices gives

the alternative form for the Lyapunov inequality

ATP� PA � AT
Xn
j�1

Xn
i5j

PijE
ij

 !
�

Xn
j�1

Xn
i5j

PijE
ij

 !
A

�
Xn
j�1

Xn
i5j

Pij A
TEij � EijA

ÿ �
< 0

�18�
which is in the form of an LMI (2), with F0 � 0 and
Fk � ÿATEij ÿ EijA; for k � 1; . . . ;m. The elements of
the vector x in (2) are the Pij; i5j, stacked up on top of
each other.

4.3. Stability of nonlinear and time varying systems

Many of the processes commonly encountered in
process control applications can be adequately modeled
as being linear time invariant (LTI). However, many
chemical processes cannot be adequately analyzed using

LTI techniques, including reactive ion etching [140],
packed bed reactors [46], and most batch processes [9].
In Section 4.2, we showed how testing the stability of

a linear system could be posed as an LMI feasibility
problem. Now let us consider a generalization of that
problem to testing the stability of a set of linear time
varying systems that are described by a convex hull of
matrices (a matrix polytope):

x
: � A t� �x; A t� � 2 Co A1; . . . ;ALf g �19�

An alternative way of writing this is [105]:

x
: � A t� �x; A t� � �

XL
i�1

liAi; 8li50;
XL
i�1

li � 1: �20�

A necessary and su�cient condition for the existence
of a quadratic Lyapunov function V x� � � xTPx that
proves the stability of (20) is the existence of P � PT >
0 that satis®es:

dV x� �
dt
� x
:TPx� xTPx

:
< 0; 8x 6� 0;

8A t� � 2 Co A1; . . . ;ALf g
�21�

() xT A t� �TP� PA t� �� �
x < 0; 8x 6� 0;

8A t� � 2 Co A1; . . . ;ALf g
�22�

() A t� �TP� PA t� � < 0; 8A t� � 2 Co A1; . . . ;ALf g

�23�

()
XL
i�1

liAi

 !T

P� P
XL
i�1

liAi

 !
< 0; 8li50;

XL
i�1

li � 1

�24�

()
XL
i�1

li AT
i P� PAi

ÿ �
< 0; 8li50;

XL
i�1

li � 1 �25�

() AT
i P� PAi < 0; 8i � 1; . . . ;L �26�

The search for P that satis®es these inequalities is an
LMI feasibility problem. This condition is also a su�-
cient condition for the stability of nonlinear time vary-
ing systems where the Jacobian of the nonlinear system
is contained within the convex hull in (20) [84]. There
are several di�culties in applying the LMI condition for
analyzing stability of nonlinear systems. First, it is very
di�cult to construct a convex hull for which the Jaco-
bian of a nonlinear system is provably contained within.
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Second, such a description will usually be highly con-
servative, since the convex hull overbounds the Jacobian
of the real nonlinear system. Third, each new vertex
adds another matrix inequality to the LMI feasibility
problem (26). For a system with a large number of
states (which is equal to the dimension of A) and ver-
tices (L), solving the LMI feasibility problem (26) can
become computationally prohibitive. The strength of
the approach is that LMIs for controller synthesis for
systems of the form (20) are relatively easy to construct
[22,77,131].

4.4. The Schur complement lemma

The Schur complement lemma converts a class of
convex nonlinear inequalities that appears regularly in
control problems to an LMI. The convex nonlinear
inequalities are

R x� � > 0; Q x� � ÿ S x� �R x� �ÿ1S x� �T> 0; �27�

where Q x� � � Q x� �T;R x� � � R x� �T, and S x� � depend
a�nely on x. The Schur complement lemma converts
this set of convex nonlinear inequalities into the
equivalent LMI

Q x� � S x� �
S x� �T R x� �

� �
> 0: �28�

A proof of the Schur complement lemma using only
elementary calculus is given in the Appendix. In what
follows, the Schur complement lemma is applied to
several inequalities that appear in process control.

4.5. Maximum singular value

The maximum singular value measures the maximum
gain of a multivariable system, where the magnitude of
the input and output vector is quanti®ed by the Eucli-
dean norm [130]. It is also very useful for quantifying
frequency-domain performance and robustness for
multivariable systems [96,130]. Process applications are
provided in many popular undergraduate process con-
trol textbooks [102,126].
The maximum singular value of a matrix A which

a�nely depends on x is denoted by � A x� �� �, which is
the square root of the largest eigenvalue of A x� �A x� �T.
The inequality � A x� �� � < 1 is a nonlinear convex con-
straint on x that may be written as an LMI using the
Schur complement lemma:

� A x� �� � < 1() A x� �A x� �T< I �29�
() Iÿ A x� �Iÿ1A x� �T> 0 �30�

() I A x� �
A x� �T I

� �
> 0 �31�

Here A x� � corresponds to S x� � in the LMI (28), and
Q x� � and R x� � correspond to I.

4.6. Ellipsoidal inequality

Ellipsoid constraints are important in process identi-
®cation, parameter estimation, and statistics [15,27,
41,85]; as well as certain fast model predictive control
algorithms [138,139]. Applications recently described in
the literature include crystallization processes [88,93],
polymer ®lm extruders [54], and paper machines [138,
139].
An ellipsoid described by

xÿ xc� �TPÿ1 xÿ xc� � < 1; P � PT > 0 �32�

can be expressed as an LMI using the Schur comple-
ment lemma with Q x� � � 1, R x� � � P, and S x� � �
xÿ xc� �T:

1 xÿ xc� �T
xÿ xc� � P

� �
> 0: �33�

4.7. Algebraic Riccati inequality

Algebraic Riccati equations are used extensively in
optimal control, as described in textbooks on advanced
process control [111,130], which describe applications to
chemical reactors, distillation columns, and other pro-
cesses. A result involving a Riccati equation can be
replaced with an equivalent result where the equality is
replaced by an inequality [151]. More speci®cally, these
optimal controllers can be constructed by computing a
positive de®nite symmetric matrix P that satis®es the
algebraic Riccati inequality:

ATP� PA� PBRÿ1BTP�Q < 0 �34�

where A and B are ®xed, Q is a ®xed symmetric matrix,
and R is a ®xed symmetric positive de®nite matrix.
The Riccati inequality is quadratic in P but can be

expressed as a linear matrix inequality by applying the
Schur complement lemma:

ÿATPÿ PAÿQ PB
BTP R

� �
> 0: �35�

The next two sections provide examples of algebraic
Riccati inequalities for analyzing the properties of linear
or nonlinear systems.

4.8. Bounded real lemma

The Bounded real lemma forms the basis for LMI
approaches to robust process control which have been
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applied to reactive ion etching [140,143], polymer
extruders [141], and paper machines [141], and gain
scheduling which has been applied to chemical reactors
[12,13]. Although the Bounded real lemma has applica-
tion to the control of both linear and nonlinear pro-
cesses, the actual result is based on the state space
system representation of a linear system

x
: � Ax� Bu; y � Cx�Du; x 0� � � 0; �36�

where A 2 Rn�n;B 2 Rn�p;C 2 Rp�n, and D 2 Rp�p

are given data. Assume that A is stable and that
A;B;C� � is minimal [74]. The transfer function matrix is

G s� � � C sIÿ A� �ÿ1B�D: �37�

The worst-case performance of a system measured in
terms of the integral squared errors of the input and
output is quanti®ed by the H1 norm [157]:

k G s� � k1� sup
Re s� �>0

� G s� �� � � sup
!2R

�� G j!� �� �: �38�

The H1 norm can be written in terms of an LMI. To
see this, we will use a result from the literature [158] that
the H1 norm of G s� � is less than 
 if and only if 
2Iÿ
DTD > 0 and there exists P � PT > 0 such that

ATP� PA� CTC
ÿ �� PB� CTD

ÿ �
� 
2IÿDTD
ÿ �ÿ1

BTP�DTC
ÿ �

< 0 �39�

The Schur complement lemma implies that this Ric-
cati inequality is equivalent to the existence of P � PT >
0 such that the following LMI holds:

ÿ ATP� PA� CTC
� � ÿ PB� CTD

� �
ÿ BTP�DTC
� �


2IÿDTD

" #
> 0 �40�

which is equivalent to

ATP� PA� CTC PB� CTD

BTP�DTC DTDÿ 
2I

" #
< 0: �41�

It is common to incorporate weights on the input u
and output y so that the condition of interest is whether
the H1 norm of W1 s� �G s� �W2 s� � is less than 1. A sys-
tem with an H1 norm less than one is said to be strictly
bounded real. This condition is checked by testing the
feasibility of the LMI using the state-space matrices for
the product W1 s� �G s� �W2 s� �.

4.9. Positive real lemma

Robustness analysis has been widely applied in the
process control literature. Examples include distillation

columns [129], packed bed reactors [46] and a reactive
ion etching [143]. A property that is regularly exploited
in the development of robustness analysis tools [14,72]
for linear systems subject to linear or nonlinear pertur-
bations is passivity. The linear system (36) is said to be
passive if��
0

u t� �Ty t� �dt50 �42�

for all u and �50. This property is equivalent to the
existence of P � PT > 0 such that [22]

ATP� PA PBÿ CT

BTPÿ C ÿDT ÿD

" #
40: �43�

It is instructive to show the connection between the
bounded real lemma and the positive real lemma [5],
especially since it is often referred to in the robust con-
trol literature. A standard result from network theory
[10,45,125] is that passivity is equivalent to G s� � in (37)
being positive real, that is,

G s� ���G s� �50 8Re sf g > 0 �44�

where G s� �� is the complex conjugate transpose of G s� �.
The relationship between bounded real and positive

real is that Iÿ G s� �� � I� G s� �� �ÿ1 is strictly positive real
if and only if G s� � is strictly bounded real. This follows
from [87]

�� A� � < 1() A�A < I �45�

() I� A�� �ÿ1 2Iÿ 2A�A� � I� A� �ÿ1> 0 �46�

() I� A�� �ÿ1 Iÿ A�� � I� A� � � I� A�� � Iÿ A� �� �

� I� A� �ÿ1 > 0 �47�

() I� A�� �ÿ1 Iÿ A�� � � Iÿ A� � I� A� �ÿ1> 0 �48�

() Iÿ A� � I� A� �ÿ1� ��� Iÿ A� � I� A� �ÿ1> 0 �49�

4.10. The S procedure

The S procedure greatly extends the usefulness of
LMIs by allowing non-LMI conditions that commonly
arise in nonlinear systems analysis to be represented as
LMIs (although with some conservatism). This techni-
que has been applied to the analysis of pH neutraliza-
tion processes [119] and crystallization processes [116].
First we will describe the S procedure as it applies to

quadratic functions, and then discuss its application to
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quadratic forms. Let �0; . . . ; �p be quadratic scalar
functions of x 2 Rn:

�i x� � � xTTix� 2uTi x� �i; i � 0; . . . ; p; Ti � TT
i

�50�
The existence of �150; . . . ; �p50 such that

�0 x� � ÿ
Xp
i�1
�i�i x� �50; 8x; �51�

implies that

�0 x� �50; 8x such that �i x� �50; i � 1; . . . ; p: �52�

To see why this is true, assume there exists
�150; . . . ; �p50 such that (51) holds for all
�i x� �50; i � 1; . . . ; p. Then

�0 x� �5
Xp
i�1
�i�i x� �50; 8x: �53�

Note that (51) is equivalent to

T0 u0
uT0 �0

� �
ÿ
Xp
i�1
�i

Ti ui
uTi �i

� �
50 �54�

since

xTTx� 2uTx� �50; 8x �55�

() x
1

� �T
T u
uT �

� �
x
1

� �
50; 8x �56�

() �x
�

� �T
T u
uT �

� �
�x
�

� �
50; 8x; � �57�

() T u
uT �

� �
50: �58�

Hence the above S procedure can be equivalently
written in terms of quadratic forms. Instead of writing
the above version which is completely in terms of non-
strict inequalities, we will provide here a version that
applies to the case where the main inequality is strict
(the proof is similar). Let T0; . . . ;Tp be symmetric
matrices. If there exists �150; . . . ; �p50 such that

T0 ÿ
Xp
i�1
�iTi > 0; �59�

then

xTT0x > 08x 6� 0 such that xTTix50; i � 1; . . . ; p: �60�

4.11. Stability of linear systems with nonlinear
perturbations

The derivation of LMI feasibility problems to analyze
the stability or performance of linear systems subject to
linear/nonlinear time invariant/varying perturbations is
rather straightforward conceptually [22], although the
algebra can be messy for more complex systems
[115,118]. For continuous time systems, the basic
approach is to postulate a positive de®nite Lyapunov
function of the state and some undetermined matrices,
and then apply the S procedure (if necessary) to derive
LMI conditions on the undetermined matrices which
imply that the time derivative of the Lyapunov function
is negative de®nite. For discrete time systems, the divi-
ded di�erence of the Lyapunov function is used instead
of the time derivative. Here we show how this approach
is applied to a system of especial relevance to process
control applications.
Consider a discrete time system subject to slope-

restricted static nonlinearities:

x k� 1� � � Ax k� � � B� q k� �� �
q k� � � Cx k� � �61�

with the nonlinearities described by

�i qi k� �� � �i qi k� �� � ÿ qi k� �� �40; for i � 1; . . . ;m �62�

with the local slope restrictions

0 <
�i qi k� 1� �� � ÿ �i qi k� �� �

qi k� 1� � ÿ qi k� � < Tii; for i � 1; . . . ;m �63�

where Tii is the maximum slope of the ith nonlinearity.
This can be used to represent a linear process with
actuator limitation nonlinearities which is controlled by
an antiwindup compensator [36,78,30], or a closed loop
system with each component being either a linear sys-
tem or a dynamic arti®cial neural network [117,120].
Both of these types of closed loop systems have been
extensively studied in the process control literature (see
the above references and citations therein).
The Lur'e-Lyapunov function is de®ned by

V x k� �� � � xT k� �Px k� � � 2
Xm
i�1

�qi k� �
0

�i �� �Qiid� �64�

where P is positive de®nite and the Qii are nonnegative
so that the Lyapunov function is positive de®nite. The
®rst term is the standard quadratic Lyapunov function
which is discussed in many state space systems text-
books [100] and in textbooks on process analysis
[70,108], which describe applications to polymerization
and other chemical reactors. The second term was
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introduced by Lur'e [86] to include the nonlinearities
(62) explicitly in the Lyapunov function.
The method of Lyapunov for discrete time systems is

to write the divided di�erence for the Lyapunov function:

V x k� 1� �� � ÿ V x k� �� � �65�

with the state vector substituted in using (61). The
overall system is globally asymptotically stable if the
undetermined matrices P and Qii can be computed so
that V x k� 1� �� � ÿ V x k� �� � is less than zero. The non-
linearities are bounded in the divided di�erence using
(63) and the mean value theorem, and the S procedure is
used to convert the divided di�erence subject to the
inequalities (62) to an LMI. With some algebra to col-
lect the terms [115,118], it is found that a su�cient con-
dition for the global asymptotic stability of (61)±(63) is
the existence of a positive-de®nite matrix P and diag-
onal positive semide®nite matrices Q and R 2 Rh�h such
that

M1;1 M1;2

M2;1 M2;2

� �
> 0 �66�

where

M1;1 � ÿATPA� Pÿ Aÿ I� �TCTTQC Aÿ I� � �67�

M1;2 � ÿATPBÿ Aÿ I� �TCTTQCB

ÿ Aÿ I� �TCTQÿ CTR �68�

M2;1 � ÿBTPAÿ BTCTTQC Aÿ I� � ÿQC Aÿ I� � ÿ RC

�69�

M2;2 � ÿBTPBÿ BTCTTQCBÿQCBÿ BTCTQ� 2R

�70�

and T � diag Tiif g. The new matrix R is introduced by
the S procedure. This is an LMI feasibility problem that
has been applied to the analysis of pH neutralization
processes [119] and crystallization processes [116] under
nonlinear feedback control.

4.12. Variable reduction lemma

The variable reduction lemma allows the solution of
algebraic Riccati inequalities that involve a matrix of
unknown dimension. This often arises when ®nding the
controller that minimizes the H1 norm (see Section 7.5
for an example).
Given a symmetric matrix A 2 Rn�n and two matrices

P and Q of column dimension n, consider the problem

of ®nding some matrix � of compatible dimensions
such that

A� PT�TQ�QT�P < 0 �71�

This equation is solvable for some � if and only if the
following two conditions hold:

WT
PAWP < 0 �72�

WT
QAWQ < 0 �73�

where WP and WQ are matrices whose columns are
bases for the null spaces of P and Q, respectively. A
proof of this result is given in [58].

4.13. Bilinear matrix inequality

Bilinear inequalities arise in pooling and blending
problems [147], systems analysis [140], and nonlinear
programming. A bilinear matrix inequality (BMI) is of
the form:

F x; y� � � F0 �
Xm
i�1

xiFi �
Xn
j�1

yjGj �
Xm
i�1

Xn
j�1

xiyjHij > 0

�74�

where Gj and Hij are symmetric matrices of the same
dimension as Fi, and y 2 Rn. Bilinear matrix inequal-
ities were popularized by Safonov and co-workers in a
series of proceedings papers [63±65,125], and ®rst
applied to a nontrivial process description (i.e., a che-
mical reactive ion etcher) by VanAntwerp and Braatz
[140], and was later applied to paper machines [141].
A BMI is an LMI in x for ®xed y and an LMI in y for

®xed x, and so is convex in x and convex in y. The
bilinear terms make the set not jointly convex in x and y.
To see this, consider the simplest BMI which is the
bilinear inequality

1ÿ xy > 0; �75�

where x and y are scalar variables. One way to see that
this set is nonconvex is to graph the set in the xy-plane
and apply the de®nition of convexity. Another way to
see this is to consider two elements of the set that con-
tradict the de®nition of convexity. For example, con-
sider x; y� � equal to the values 0:1; 7:9� � and 7:9; 0:1� �.
Both values satisfy the bilinear inequality since
1ÿ 0:1� � 7:9� � � 1ÿ 7:9� � 0:1� � � 0:21 > 0. But the point
on the line half way between the two values
1=2�0:1; 7:9� � 1=2 7:9; 0:1� � � 4; 4� �� � does not satisfy
the bilinear inequality: 1ÿ 4�4 � ÿ15 < 0.
Besides bilinear and general quadratic inequalities

xTQx� cTx� p > 0; �76�
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general polynomial inequalities can also be written as
BMIs. Consider, for example, the nonlinear inequality

x3 � yz < 1 �77�

By de®ning x2 � w, and x � v, this inequality is
equivalent to:

1ÿ xwÿ yz > 0 �78�
xÿ v50

vÿ x50

wÿ vx50

vxÿ w50

Since a BMI describes sets that are not necessarily
convex, they can describe much wider classes of con-
straint sets than LMIs, and can be used to represent
more types of optimization and control problems. The
main drawback of BMIs is that they are much more
di�cult to handle computationally than LMIs.

5. Optimization problems

Many optimization and control problems can be
written in terms of ®nding a feasible solution to a set of
LMIs or BMIs. Most problems, however, are best writ-
ten in terms of optimizing a simple objective function
over a set of LMIs or BMIs. There is a fundamental
di�erence between the computational requirements for
optimization problems over LMIs, and those over
BMIs. This section begins with an introduction to con-
vex optimization and computational complexity, which
provides a fundamental framework for understanding
the relative complexities of optimization problems. This
is followed by the de®nition of some optimization pro-
blems that appear when formulating and solving control
problems using LMIs/BMIs.

5.1. Computational complexity and convexity

Optimization problems are generally characterized as
being in one of two classes: P and NP-hard [62,104]. The
class P refers to problems in which the time needed to
exactly solve the problem can always be bounded by a
single function which is polynomial in the amount of
data needed to de®ne the problem. Such problems are
said to be solvable in polynomial time. Although the
exact consequences of a problem being NP-hard is still a
fundamental open question in the theory of computa-
tional complexity, it is generally accepted that a pro-
blem being NP-hard means that its solution cannot be
computed in polynomial time in the worst case. It is

important to understand that being NP-hard is a property
of the problem itself, not of any particular algorithm. It
is also important to understand that having a problem
be NP-hard does not imply that practical algorithms are
not possible. Practical algorithms for NP-hard problems
exist and typically involve approximation, heuristics,
branch-and-bound, or local search [35,62,104]. Deter-
mining whether a problem is polynomial time or NP-
hard informs the systems engineer what kind of accu-
racy and speed can be expected by the best algorithms,
and what kinds of algorithms to investigate for provid-
ing practical solutions to the problem.
Suppose that a real valued function f x� � is de®ned on

a convex set C 2 Rn. The function f x� � is convex on C if
[107]

f lx� 1ÿ l� �y� �4lf x� � � 1ÿ l� �f y� � �79�

for all x; y 2 C and l 2 0; 1� �. A convex optimization
problem has the form

inf
x2C

f x� �; �80�

where f x� � is a convex function in x, C is a convex set,
and inf refers to the in®mum over C. If the in®mum is
achieved by an element in C, then the minimization
problem will be written as min.
Well known problems that can be formulated as con-

vex optimization problems include linear programming
and convex quadratic programming. The advantage of
formulating control problems in terms of convex opti-
mization problems (when possible) is that wide classes
of convex optimization problems are in the class P [97].
Being in P means that these problems can be provably
solved e�ciently on a computer. This makes convex
optimization problems desirable for solving large scale
systems problems. Convex optimization problems often
occur in engineering practice and many can be written
as LMIs. This is the strength of using LMI formula-
tions. Convex optimizations over LMIs are solvable in
polynomial time.
Other systems engineering problems cannot be written

in terms of LMIs, but can be written in terms of BMIs.
Nearly every control problem of interest can be written
in terms of an optimization problems over BMIs. These
optimization problems, however, are NP-hard [135],
which implies that it is highly unlikely that there exists a
polynomial-time algorithm for solving these problems.
This means that algorithms for solving optimization
problems over BMIs are currently limited to problems
of modest size. Algorithms and their expected perfor-
mance will be discussed in more detail in Section 6. For
the rest of this section we review the most common LMI
and BMI optimization problems that appear in control
applications.
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5.2. Semide®nite programming

The following optimization problem is commonly
referred to as a semide®nite program (SDP) [4]:

inf
x

F x� �>0
cTx �81�

One SDP which often arises in control applications is
the LMI eigenvalue problem (EVP). It is the minimiza-
tion of the maximum eigenvalue of a matrix that
depends a�nely on the variable x, subject to an LMI
constraint on x. Many performance analysis tests, such
as computing the H1 norm in (38), can be written in
terms of an EVP [144]. Two common forms of the EVP
are presented so that readers will recognize them:

inf
x;l

lIÿA x� �>0
B x� �>0

l �82�

inf
x;l

A x;l� �>0

l �83�

where A x; l� � is a�ne in x and l.
The equivalence of (81), (82), and (83) will now be

demonstrated. The LMI eigenvalue problem (82) can be
written in the form (83) by de®ning A x; l� � �
diag lIÿ A x� �;B x� �f g (recall that multiple LMIs can be
written as a single LMI of larger dimension). To show
that a problem in the form (83) can be written in the
form (81), de®ne x̂ � xT l� �T, F x̂� � � A x̂� �, and cT �
0T1� �T where 0 is a vector of zeros. To see that (81)
transforms to (82) consider

inf
F x� �>0

cTx � inf
cTx<l
F x� �>0

l � inf
1lÿcTx>0
F x� �>0

l � inf
lIÿA x� �>0
F x� �>0

l: �84�

QED.

5.3. Generalized eigenvalue problems

A large number of the control properties can be
computed as a generalized eigenvalue problem (GEVP),
including many robustness margins and the minimized
condition number discussed in Section 7. A GEVP is,
given square matrices A and B, B > 0, to ®nd scalars l
and nonzero vectors y such that

Ay � lBy �85�

The computation of the largest generalized eigenvalue
can be written in terms of an optimization problem with
LMI-like constraints. Consider that the positive de®-
niteness of B implies that for su�ciently large l,

lBÿ A > 0. As l is reduced from some su�ciently high
value, at some point the matrix lBÿ A will lose rank, at
which point there exists a nonzero vector y that solves
(85), implying that this value of l is the largest general-
ized eigenvalue. Hence

lmax � min
lBÿA50

l � inf
lBÿA>0

l �86�

Often it is desired to minimize the largest generalized
eigenvalue of two symmetric matrices which depend
a�nely on a variable x, subject to an LMI constraint on
x.

inf
B x� �>0
C x� �>0

lmax A x� �;B x� �� �: �87�

Here lmax A x� �;B x� �� � is the largest generalized eigen-
value of two matrices, A and B, each of which depend
a�nely on x. From (86) this optimization problem is
equivalent to

inf
lB x� �ÿA x� �>0

B x� �>0
C x� �>0

l: �88�

The problem of minimizing the maximum generalized
eigenvalue is a quasiconvex objective function subject to
a convex constraint, where quasiconvexity means that

lmax A �x� 1ÿ �� �z� �;B �x� 1ÿ �� �z� �� �
4max lmax A x� �;B x� �� �; lmax A z� �;B z� �� �� 	 �89�

for all � 2 0; 1� � and all feasible x and z. To see that this
is true, ®rst de®ne l̂ equal to the right hand side of (89).
Then

l̂5lmax A x� �;B x� �� � and l̂5lmax A z� �;B z� �� �: �90�

From (86), this implies that

l̂B x� � ÿ A x� �50 and l̂B z� � ÿ A z� �50: �91�

It follows that, for all � 2 0; 1� �,

� l̂B x� � ÿ A x� �
h i

� 1ÿ �� � l̂B z� � ÿ A z� �
h i

50 �92�

() l̂B �x� 1ÿ �� �z� � ÿ A �x� 1ÿ �� �z� �50: �93�

This and (86) imply that

l̂5lmax A �x� 1ÿ �� �z� �;B �x� 1ÿ �� �z� �� �: �94�

QED.
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5.4. Convex determinant optimization problem

We will refer to the following as a convex determinant
optimization problem (CDOP):

inf
A x� �>0
B x� �>0

log det A x� �ÿ1ÿ � �95�

where A and B are symmetric matrices which are a�ne
functions of x. As we will see in Section 7, this problem
appears in a variety of ellipsoidal approximation pro-
blems associated with state and parameter estimation
problems, and in optimal experimental design. The
proof that log det A x� �ÿ1

� �
� ÿ log det A� �� � is con-

vex, which implies that a CDOP can be solved relatively
e�ciently on a computer, is given in the appendix.

5.5. BMI problem

An optimization over BMI constraints is called a BMI
problem:

inf
x;y

A xTyT� �T� �>0
F x;y� �>0

cTx� dTy �96�

where F x; y� � is de®ned in (74).
Many important problems in control that cannot be

stated in terms of LMIs can be stated in terms of BMIs.
Examples include robustness analysis [43,109], a large
number of robust controller synthesis problems includ-
ing low order and decentralized control [125,63], bilin-
ear programming, and linear complementarity problems
[2,3,42]. Additionally, a large number of process design
problems can be written exactly or approximately in this
form [124,147,148].
In the same way that the EVP (82) is an optimization

over LMI constraints, there is a corresponding optimi-
zation over BMI constraints called the BMI eigenvalue
problem (BEVP):

inf
x;y;


A xTyT� �T� �>0
lmax F x;y� �� �<



 �97�

where lmax is the maximum eigenvalue of F x; y� �.
Using algebra similar as for the LMI eigenvalue pro-

blem, it can be shown that this is a special case of the
BMI optimization problem.

6. Solving optimizations over LMI or BMI constraints

Here we outline the algorithms and review software
used to solve optimization problems over LMIs and
BMIs.

6.1. Solving LMI problems

The easiest algorithm to implement for solving LMI
problems is the ellipsoid algorithm (see Fig. 3) [18]. It
solves a convex objective function with convex con-
straints. In the ®rst step, an ellipsoid is computed that
contains the optimum point. Often this means comput-
ing an ellipsoid that covers the constraint set (see Fig.
3a). The next step is to compute a plane that passes
through the center of the ellipsoid such that the solution
is guaranteed to lie on one side of the plane (Fig. 3b).
Boyd et al. [22] gives analytical expressions for this cut-
ting plane for each of the LMI problems. The main
point is that for each of the LMI problems there is a
half space which is de®nitely ``uphill,'' so that any points
in that half space can be discarded. The remaining half
ellipsoid is itself covered by an ellipsoid of minimal
volume (Fig. 3c) and the process is repeated (Fig. 3d)
until the algorithm converges to the optimal solution.
A more computationally e�cient algorithm for sol-

ving LMI problems is the interior point method [97].
The interior point method uses the constraints to de®ne
a barrier function which is convex within the feasible
region and in®nite outside it. This barrier function is
incorporated into an objective function, which allows
the constrained optimization problem to be replaced
with an unconstrained optimization problem which can
be solved using Newton's method. The analytic center is
de®ned to be the point which minimizes the uncon-
strained optimization problem. A scalar in the objective
to the unconstrained optimization problem is iterated
until the analytic center is optimal for the original problem.
The interior point method is, in some ways, similar to

the penalty function method [107]. In both cases, the
constraint set is incorporated into the objective function
of an unconstrained optimization problem which can be
solved using Newton's method. Also, in both cases a
scalar in the objective is iterated until the solution to the
unconstrained optimization problem is equal to the
solution to the original problem. However, both the
objective functions and the scalar that is iterated are dif-
ferent in the two methods. The ellipsoid algorithm, on
the other hand, works more like a standard branch and
bound algorithm [90], in that it is continually discarding
infeasible regions from the search. For an optimization
over a single scalar variable, the ellipsoid algorithm is
equivalent to the bisection algorithm [44].
A modi®cation to the LMIs that can be critical for

obtaining convergence of these algorithms is to include
a constraint that keeps the numerics well conditioned
and the variables bounded. It is simplest to illustrate
this modi®cation with an example. Consider, for exam-
ple, the search for a P � PT > 0 that satis®es the LMI
feasibility problem

AT
i P� PAi < 0; 8i � 1; . . . ;L �98�
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This was a su�cient condition for stability of a class
of systems described earlier (26). Now consider aug-
menting the above LMIs with

�I < P < I �99�

This limits the condition number of P to 1=� while
bounding the set of feasible matrices P. The bounding
of P does not a�ect the feasibility of the original problem,
and the condition number limit does not appreciably
restrict P provided that � is small. The advantage of the
condition number limit is that it will prevent the LMI
solution algorithm from converging to a P that could
lead to roundo� problems [145].

6.2. Numerical software for solving LMI problems

Several research groups have produced publicly
available software packages for solving LMI problems.
Gahinet and Nemirovskii wrote a software package
called LMI-Lab [59] which evolved into the Matlab's
LMI Control Toolbox [60]. The LMI Control Toolbox
accepts problem statements in a high level mathematical
form and solves the problem with a projective interior
point algorithm. Kojima, Shindoh, and Hara wrote SDPA
(Semi-De®nite Programming Algorithm) [57], which is
based on a Mehrotra type predictor-corrector infeasible
primal-dual interior-point method. It does not allow the
user to state LMI problems in a high level language.

Vandenberghe and Boyd produced the code SP [23]
which is an implementation of Nesterov and Todd's
primal-dual potential reduction method for semide®nite
programming (this is an interior point algorithm). SP
can be called from within Matlab [94]. Boyd and Wu
extended the usefulness of the SP program by writing
SDPSOL [25,26], which is a parser/solver that calls SP.
The advantages of SDPSOL are that the problem can be
speci®ed in a high level language, and SDPSOL can run
without Matlab. SDPSOL can, in addition to linear
objective functions, handle trace and convex determi-
nant objective functions.
LMITOOL is another software package for solving

LMI problems that uses the SP solver for its computa-
tions [50]. LMITOOL interfaces with Matlab, and there
is an associated graphical user interface known as
TKLMITOOL [49]. The Induced-Norm Control Tool-
box [17] is a Matlab toolbox for robust and optimal
control based on LMITOOL.
The 1996 IEEE International Symposium on Com-

puter Aided Control System Design in Dearborn,
Michigan [1] included a session on algorithms and soft-
ware for LMI problems. The presentations were focused
more on algorithms than providing comparisons
between software packages or other computational
results. The numerical results that were presented
showed that the currently available software can handle
problems with F x� � in (2) up to size 100� 100. The sol-
vers that call SP are the easiest to use and can handle

Fig. 3. The ellipsoid algorithm algorithm (the vectors shown in (b) and (d) are perpendicular to the half spaces).
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bigger problems than the other software. As of the
publication of this tutorial, none of the above LMI sol-
vers exploit matrix sparsity to a high degree.

6.3. Solving BMI problems

Consider the following BMI problem, where we have
de®ned l and r as those variables which appear in the
BMI constraint:

inf
A l;r;x;y;
� �>0

F0�
P
i

P
j

li;rjFij>0

li4li4li

rj4rj4rj


 �100�

where A is jointly a�ne in l, r, x, y, and 
.
A global optimization approach such as branch and

bound is required for guaranteed convergence to the global
optimum of a BMI problem because the BMI problem
is not convex. While several branch and bound algo-
rithms have been developed for solving BMI problems
[64,155,156], what appears to be the most e�cient algo-
rithm was developed relatively recently [136,140,141,
142,143]. The art to developing an e�cient branch and
bound algorithm is to derive tight upper and lower
bounds for the objective function over any given part of
the domain. Reducing the ranges of all problem vari-
ables as much as possible is frequently the key to tight
objective function bounding. The approach uses LMI
relaxations as lower bounds for the BMI.

inf
A l;r;x;y;
� �>0

F0�
P
i

P
j

li;rjFij>0

l
�
i4li4l

�
i

r
�
j4rj4r�j


 � inf
A l;r;x;y;
� �>0

F0�
P
i

P
j

wijFij>0

l
�
i4li4l

�
i

r�j4rj4r�j
wij�lirj


5 inf
A l;r;x;y;
� �>0

F0�
P
i

P
j

wijFij>0

l
�
i4li4l�i

r
�
i4ri4r�i

wij2 w
�
ij;w� ij

h i




�101�

where the overbar (underbar) indicates the upper
(lower) bound for a variable and

w
�
ij � min l

�
ir
�
j; l�ir

�
j; l

�
ir�j; l�ir�j

n o
�102�

w� ij � max l
�
ir
�
j; l�ir

�
j; l

�
ir�j; l�ir�j

n o
: �103�

Further, because wij is a bilinear term the following
additional constraints may be included in the lower
bound (101) [90]:

wij4r
�
jli � l�irj ÿ r

�
jl�i

wij4l
�
irj � r�jli ÿ l

�
ir�j

wij5l�irj � r�jli ÿ r�jl�i
wij5l

�
irj � r

�
jli ÿ l

�
ir
�
j

: �104�

An LMI upper bound is derived by local optimization
or by ®xing some of the variables. For instance:

inf
A l;r;x;y;
� �>0

l
�
i4li4l�i

r
�
j4rj4r�j

F0�
P
i

P
j

lirjFij>0


 4 inf
A l;r;x;y;
� �>0

li�l
�
i

r
�
j4rj4r�j

F0�
P
i

P
j

lirjFij>0


 �105�

With these polynomial-time computable LMI upper
and lower bounds, the nonconvex optimization (100) is
ideal for the application of the branch and bound algo-
rithm. Interested readers are referred to [137] for more
details.

7. Applications

This section lists a variety of LMI and BMI problems
that have been or should be studied in process control.

7.1. Control structure selection

Assume that the matrix M 2 Rn�m; n5m is full rank.
The condition number of M is the ratio of its largest
singular value to its smallest

� M� � � �� M� �
�
�
M� � : �106�

The condition number appears rather naturally in
many control problems, including control structure
selection [121,96,102,130,149] and model identi®cation
[121,54,83]. It is certainly the one of the most used (and
misused [82,28,29]) matrix functions in process control.
Its application to chemical processes such as distillation
columns is described in many undergraduate process
control textbooks [102,126].
Another matrix function that is more relevant to many

applications is the minimized condition number:

inf
R;L

� LMR� � �107�

where L 2 Rn�n and R 2 Rm�m are diagonal and non-
singular. The minimized condition number (107) is used
for integral controllability tests based on steady-state
information [67,96] and for the selection of sensors and
actuators using dynamic information [38,112,38,99,98].
The sensitivity of stability to uncertainty in control sys-
tems is given in terms of the minimized condition num-
ber in [127,128]. The minimized condition number is
applied regularly in the process industries, as part of the
Robust Multivariable Predictive Control Technology
sold by Honeywell [89]. The application to a fractio-
nator and a paper machine is described in [89].
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It was shown in [30] how to pose the minimized con-
dition number as a GEVP (88). Here we provide an
alternative derivation that follows the later derivation in
[22]. Note that the de®nition of the condition number
implies that it is greater than or equal to 1. For 
51, we
have that

� LMR� �4
 () �I4 LMR� �T LMR� �4�
2I �108�

() I4 L̂MR
� �T

L̂MR
� �

4
2I �109�

() RRT
ÿ �ÿ1

4MT L̂TL̂
� �

M4
2 RRT
ÿ �ÿ1 �110�

() Q4MTPM4
2Q �111�

for diagonal P > 0 2 Rn�n and diagonal Q > 0 2 Rm�m.
Therefore, solving the minimized condition number
problem (107) is equivalent to solving the GEVP (88):

inf
P>0
Q>0

Q4MTPM4
2Q


2 �112�

where P and Q are diagonal.

7.2. Parameter estimation and model predictive control

The approximation of polytopes with ellipsoids have
numerous applications, including parameter estimation
[39,56,80] and model predictive control [34,138,139].
The model predictive control application has been
implemented on paper machine models constructed
from industrial data [139].
An ellipsoid has the form

" � By� dj k y k41
� 	 �113�

where B � BT > 0. This ellipsoid is centered at d and
has volume proportional to det B� �. Consider the poly-
tope

P � xjAT
i x4bi; i � 1; . . . ;L

� 	 �114�

where AT
i is the ith row of the matrix A. An ellipsoid E is

contained inside the polytope P if

AT
i By� d� �4bi8y; k y k41 �115�

() max
kyk41

AT
i By� AT

i d4bi �116�

() k BAi k �AT
i d4bi �117�

Thus, the maximum volume ellipsoid E contained in
the polytope P is given by

max
B�BT>0;d

kBAik�AT
i
d4bi

log det B� � �118�

This optimization is convex in the variables B and d.
For the case where the center of the ellipsoid is known
(e.g. d � 0 when Ax4b de®nes a symmetric polytope),
(117) can be written as an LMI using the Schur com-
plement lemma:

k BAi k �AT
i d4bi () bi ÿ AT

i d50 and

k BAi k2 4 bi ÿ AT
i d

ÿ �2 �119�

() bi ÿ AT
i d50 and bi ÿ AT

i d
ÿ �2ÿAT

i BI
ÿ1BAi50

�120�

() bi ÿ AT
i d

ÿ �2
AT

i B
BAi I

� �
50; 8i 2 1;L� � �121�

Hence in this case (118) can be written as the CDOP
(95):

max
B�BT>0;d

biÿAT
i d� �2 AT

i B

BAi I

� �
50

log det B� � �122�

In the case where d is unknown, (118) is not an LMI
but is still a convex program that can be solved, for
instance, by interior point methods [76,97].
A related problem of interest is to determine the

smallest ellipsoid which encloses a given polytope. First
de®ne the convex hull of a given set of points T in Rn as
the set of all convex combinations of points in T . An
equivalent de®nition is the smallest convex set contain-
ing T [105]. Let the polytope be described as the convex
hull of its vertices

P � Co v1; . . . ; vLf g �123�

and write the ellipsoid

E � xj k Axÿ b k41;A � AT > 0
� 	

; �124�

where its center is Aÿ1b and its volume is proportional
to det Aÿ1

ÿ �
. Then the minimum volume ellipsoid which

encloses the polytope is given by

inf
A�AT>0
kAviÿbk41

log det Aÿ1
ÿ �

: �125�

J.G. VanAntwerp, R.D. Braatz / Journal of Process Control 10 (2000) 363±385 377



This problem is convex in A and b, and can be written
as a CDOP (95) by applying the results of Section 4.6:

inf
A�AT>0

1 Aviÿb� �T
Aviÿb I

� �
>0

log det Aÿ1
ÿ � �126�

7.3. Optimal design of experiments

The goal of optimal experimental design is to max-
imize the informativeness of data collected from the
process [11]. Optimal experimental design algorithms
have been applied to chemical kinetics [20,19,21,73,113],
synthetic ®ber manufacture [75], petroleum fractiona-
tion [132], crystallization [92], distillation [79], and
polymer ®lm extrusion [53]. While most formulations
require the solution of nonconvex optimization pro-
blems [69,150], here is presented a formulation for linear
parameter estimation which requires only the solution
of a CDOP (95).
The goal is to estimate a vector of parameters x from

some measurement y � Ax� w where A is a matrix of
inputs and w is zero-mean white measurement noise.
The error covariance of the minimum variance esti-
mator is ATA� �ÿ1. If the rows of A � a1; . . . ; aL� �T are
chosen from a set of possible test vectors,

ai 2 v1; . . . ; vLf g; i � 1; . . . ;L; �127�
the goal of D-optimal experimental design is to select
the vectors so that the determinant of the error covar-
iance is minimized.
We can write

ATA �
XL
i�1

livivTi �128�

where li50 is the fraction of rows equal to the vector vi,
which implies that

PL
i�1li � 1. When L is a large num-

ber, the li can be treated as continuous variables instead
of integer multiples of 1/L.
Then the D-optimal design problem is the CDOP (95)

[153]:

inf
li50PL

i�1
li�1

log det
XL
i�1

livivTi

 !ÿ1
�129�

7.4. Robust control system analysis

The robustness margin for a variety of linear systems
subject to linear or nonlinear perturbations
[31,71,96,123,130] can be computed by solving

� � inf
D2D

�� DMDÿ1
ÿ � �130�

where M is a complex matrix and D is the set of com-
plex nonsingular block diagonal matrices with some
blocks possibly being repeated. This robustness margin
has been applied to numerous processes over the past 15
years, including distillation columns [29,40,96,130], pH
neutralization [119], packed bed reactors [47], paper
machines [81,122,33], polymer ®lm extrusion [52,55],
and reactive ion etching [143].
This problem can be written in terms of a GEVP (88):

�2 � inf
D2D

DMDÿ1� �� DMDÿ1� �4
2I


2 �131�

� inf
D2D

M�D�DM4
2D�D


2 �132�

� inf
P2P

M�PM4
2P


2 �133�

where P is the set of complex symmetric positive de®nite
n� n block diagonal matrices with the corresponding
blocks from D being repeated.

7.5. Robust nonlinear controller synthesis

BMI formulations arise naturally in the design of
robust optimal inversion-based controllers for nonlinear
processes. Here we present the BMI formulation which was
applied to the nonlinear simulation model of a reactive
ion etcher constructed from experimental data presented
in Section 2. The BMI-based controller demonstrated
substantially improved performance and robustness
over a traditional nonlinear controller [140,143].
After the nonlinear inversion technique removed the

most signi®cant nonlinearities, the control synthesis
problem consisted of designing a linear controller for a
linear plant subject to norm-bounded nonlinear time
varying perturbations. The state space realization for
the plant transfer function G s� � � C sIÿ A� �ÿ1B�D
was represented by

G �
A B1 B2

C1 D11 D12

C2 D21 D22

24 35 �134�

where D22 � 0 without loss of generality [157]. The
controller that optimizes the induced 2-norm perfor-
mance objective subject to the constraint of stability of
the closed loop system with norm-bounded nonlinear
time varying perturbations was computed from the
solution of the BEVP (97) [140,143]:


� � inf
L;R;X;Y� �2B

lmax L1R1� �41


 �135�
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where B is the set such that L, R, X and Y are symmetric
matrices,

L � L1 0
0 
I

� �
; R � R1 0

0 
I

� �
; L1;R1 2 D; �136�

and

B2

D12

� �?
0

0 I

264
375 AX� XAT XCT

1 B1

C1X ÿL D11

BT
1 DT

11 ÿR

24 35

�
B2

D12

� �?T

0

0 I

2664
3775< 0; �137�

CT
2

DT
21

 !?
0

0 I

26664
37775 YA� ATY YB1 CT

1

BT
1Y ÿR D11

C1 DT
11 ÿL

24 35

�
CT

2

DT
21

 !?T

0

0 I

26664
37775< 0; �138�

X I
I Y

� �
> 0: �139�

Here A? is a matrix whose rows form a basis for the
null space of AT. The only nonconvexity in (135) is the
constraint lmax L1R1� �41 (which is a BMI).
As the algebra of this derivation is lengthy and

involved, only a summary is given here. The state space
equations for the closed loop system are written as
functions of the state space matrices of the plant and the
controller. A version of the Bounded real lemma is used
to write the induced 2-norm performance objective in
terms of matrix inequalities, and the variable reduction
lemma of Section 4.12 is used to remove explicit depen-
dence of the matrix inequalities on the controller state
space matrices. Finally, D and Dÿ1 are replaced with L
and R and the additional constraint that lmax R1L1� �
< 1. Readers interested in a detailed derivation are
referred to [137].
A closely related formulation was used in the design

of linear controllers that optimize the robust perfor-
mance for large scale sheet and ®lm processes, such as
polymer ®lm extruders and paper machines [141]. In
those particular applications, the only process non-
linearities were perturbations about the nominal linear
dynamics.

7.6. Robust model predictive control

Here we describe an LMI-based robust model pre-
dictive control algorithm which applied to a non-
isothermal nonadiabatic continuous stirred tank reactor
(CSTR) [77]. The LMI approach provided similar per-
formance as a non-LMI-based model predictive control
algorithm, while having the capability of providing
robustness to model uncertainty.
Consider the discrete time time varying linear system

x k� 1� � � A k� �x k� � � B k� �u k� � �140�

y k� � � C k� �x k� � �141�

where each state space matrix is arbitrarily time varying
and lies within a polytope (see Section 4.3). De®ne
x kjk� � as the state of the uncertain system measured at
sampling time k, x k� ijk� � as the state of the system at
time k� i predicted at time k, u k� ijk� � as the control
move at time k� i computed at time k, and W and R
are positive de®nite weighting matrices. For this control
problem, the objective was to compute the state feed-
back matrix F:

u k� ijk� � � Fx k� ijk� � �142�

so as to minimize an upper bound on the in®nite hor-
izon quadratic objective:X1
i�0

x k� ijk� �TWx k� ijk� � � u k� ijk� �Ru k� ijk� �: �143�

at sampling time k. This state feedback matrix is given
by [77]:

F � YQÿ1 �144�

where Q > 0 and Y are solutions to the following EVP
(82):

inf

;Q;Y


 �145�

subject to

1 x kjk� �T
x kjk� � Q

� �
50 �146�

Q QAT
i � YTBT

i QW1=2 YTR1=2

AiQ� BiY Q 0 0
W1=2Q 0 
I 0
R1=2Y 0 0 
I

2664
377550;

8i � 1; 2; . . . ;L:

�147�
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The derivation uses a positive de®nite quadratic
function of the state to bound the performance objective
(143), and then uses the Schur complement lemma to
manipulate this inequality into the form of the LMI
constraint (147). Input and output constraints can also
be handled by augmenting the EVP with additional
LMI constraints (see [77] for further details).
The state feedback matrix F is computed at each

sampling instance k, and used to compute the control
move u k� � � u kjk� � to be implemented. When a new
measurement is taken, F and the control move are re-
computed. The model predictive controller can be
shown to be stabilizing for all matrices within the matrix
polytope [77].

7.7. Gain-scheduled/linear parameter varying systems

Gain scheduling is discussed in undergraduate process
control textbooks [102,126]. A relatively new approach
to the design of gain-scheduled controllers is to repre-
sent the process as being linear parameter varying
(LPV):

x k� 1� � � A p k� �� �x k� � � B p k� �� �u k� � �148�

y k� � � C p k� �� �x k� � �D p k� �� �u k� � �149�

where the state space matrices are explicit functions of a
time varying parameter vector p k� �. An LPV process
reduces to a linear time varying process for a given tra-
jectory, and reduces to a linear time invariant system for
a constant parameter vector p k� �. This model repre-
sentation forms the basis for a solid theoretical frame-
work for the design of gain-scheduled controllers using
LMIs [103,152,8,7].
It is common to assume that the state space matrices

are a�ne functions of p k� � and that the time varying
parameter p k� � varies within a polytope. Then the gain-
scheduled (or LPV) controller has a form

x̂ k� 1� � � Â p k� �� �x̂ k� � � B̂ p k� �� �y k� � �150�

u k� � � Ĉ p k� �� �x̂ k� � � D̂ p k� �� �y k� � �151�

similar to that for the process. The controller is assumed
to be able to measure or estimate p k� � on-line, so this
information can be used by the controller to provide
improved performance over controllers which do not
exploit such information. The controller matrices that
guarantee global asymptotic stability and minimize an
induced 2-norm performance objective can be computed
as an EVP. The LMIs are derived using a quadratic
Lyapunov function and a generalization of the Bounded
real lemma. The EVP is somewhat similar to the BEVP
in Section 7.5, but with L � R � I, and so will not be
given here (see [6,7] for the exact form of the LMIs).

An interesting variation on the LPV approach is to
treat the parameters as validity functions for linear
models used to represent the nonlinear process dynam-
ics locally [9,12,13]. Each local model is assigned to an
element of the vector p k� � which approaches 1 when the
plant moves into the local region of the model and
approaches 0 as the plant moves into other regions. The
elements of p k� � sum up to 1 at each time instance.
While [13] applies an induced 2-norm approach simi-

lar to that described above, [9] proposes an LPV-based
model predictive control (MPC) design procedure which
is an extension of the approach discussed in Section 7.6
(the LMIs have a similar structure as those in Section
7.6). The LPV-based MPC control algorithm is shown
to asymptotically stabilize the closed loop LPV process.
The algorithm was applied to a continuous stirred tank
reactor with output multiplicity, and to a semibatch
reactor for free-radical polymerization of polymethyl
methacrylate. Although the closed loop performance of
the LMI-based LPV-MPC algorithm was not quite as
good as an LPV-based quadratic programming algo-
rithm (similar to traditional MPC), it had the advantage
of guaranteeing closed loop stability.

8. Conclusions

A tutorial was provided on the mathematical theory
and process control applications of linear and bilinear
matrix inequalities. Many common convex inequalities
occurring in nonlinear programming and several tests
for the stability of linear and nonlinear systems were
written in terms of LMI feasibility problems. Algo-
rithms for solving optimization problems with LMI or
BMI constraints and publicly available software were
reviewed. This was followed by a survey of applications
of LMIs and BMIs to control problems associated with
chemical and mechanical processes. These included
control structure selection, parameter estimation,
experimental design, and optimal linear and nonlinear
feedback control.
The authors believe that LMIs and BMIs form a set

of mathematical tools which are fundamental to the
background of a process control engineer. It is hoped
that the many examples provided throughout the paper
provide a convincing justi®cation for this belief.

Appendix

Proof of the Schur complement lemma

()) Assume

Q x� � S x� �
S x� �T R x� �

� �
> 0 �152�
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and de®ne

F u; v� � � u
v

� �T
Q x� � S x� �
S x� �T R x� �

� �
u
v

� �
�153�

then

F u; v� � > 0 8 u v� � 6� 0 �154�

First, consider u � 0. Then

F 0; v� � � vTR x� �v > 0; 8v 6� 0 ) R x� � > 0:

Next consider

� � ÿR x� �ÿ1S x� �Tu;with u 6� 0:

Then

F u; v� � � uT Q x� � ÿ S x� �R x� �ÿ1S x� �Tÿ �
u > 0; 8u 6� 0

) Q x� � ÿ S x� �R x� �ÿ1S x� �T> 0:

(() Now assume

Q x� � ÿ S x� �R x� �ÿ1S x� �T> 0; R x� � > 0: �155�

with F u; v� � de®ned as in (153).
We will ®x u and optimize over v.

rvFT � 2Rv� 2STu � 0 �156�

Since R > 0, (156) gives a single extrema
v � ÿRÿ1STu. Plugging this into (153) gives
F u� � � uT Qÿ SRÿ1ST

ÿ �
u. Since Qÿ SRÿ1ST

ÿ �
> 0 the

minimum of F u� � occurs for u � 0, which also implies
that v � 0. Thus the minimum of F u; v� � occurs at 0; 0� �
and is equal to zero. Therefore, F u; v� � is positive de®-
nite. QED.

Proof that ÿ log det A� �� � is convex in A for
A � AT > 0. We will use the following lemma [24].

Lemma 1. A function f x� � is convex in x 2 S if and only if
f t� � � f x0 � th� � is convex in t for all x0, h, and t such
that x0 � th 2 S and x0 2 S.

De®ne S � AjA � AT > 0
� 	

. Lemma 1 implies that
ÿ log det A� �� � is convex in A on A � AT > 0 if and only
if ÿ log det A0 � tH� �� � is convex in t for all A0 � AT

0 >
0 and H which satisfy A0 � tH � A0 � tH� �T> 0. Note
that

ÿ log det A0 � tH� �� � �157�

� ÿ log det A0� �� � ÿ log det I� tAÿ1=20 HAÿ1=20

� �� �
�158�

� ÿ log det A0� �� � ÿ
X
i

log 1� tli Aÿ1=20 HAÿ1=20

� �� �
:

�159�

The last step follows because the determinant is the
product of the eigenvalues. The condition AT

0 � A0 > 0
implies that its matrix square root exists, and A0 � tH >
0 implies that I� tAÿ1=20 HAÿ1=20 > 0. Hence

1� tli�Aÿ1=20 HAÿ1=20 � > 0:

The ®rst and second derivatives of

ÿ log�1� tli�Aÿ1=20 HAÿ1=20 ��

are

ÿ d

dt
log 1� tli Aÿ1=20 HAÿ1=20

� �� �
� ÿli Aÿ1=20 HAÿ1=20

� �
= 1� tli Aÿ1=20 HAÿ1=20

� �� �
;

�160�

ÿ d2

dt2
log 1� tli Aÿ1=20 HAÿ1=20

� �� �
� l2i Aÿ1=20 HAÿ1=20

� �
= 1� tli Aÿ1=20 HAÿ1=20

� �� �2
> 0:

�161�

The second derivative greater than zero implies that
ÿ log 1� tli Aÿ1=20 HAÿ1=20

� �� �
is convex in t. The con-

vexity of a constant and the sum of convex functions
implies that ÿ log�det�A0 � tH�� is convex in t for all
allowable t. QED.

References

[1] Algorithms and software tools for LMI problems in control. In

Proceedings of the IEEE International Symp. on Computer-

Aided Control Systems Design, IEEE Press, Piscataway, NJ,

1996, pp. 229±257.

[2] F.A. Al-Khayyal, On solving linear complementarity problems

as bilinear programs, The Arabian J. for Science and Engi-

neering 15 (1990) 639±645.

[3] F.A. Al-Khayyal, Generalized bilinear programming: part one.

models applicatons and linear programming relaxation, Eur-

opean J. of Operational Research 60 (1992) 306±314.

[4] F. Alizadeh, Optimization over the positive semi-de®nite cone:

interior-point methods and combinatorial algorithms, in:

P.M. Pardalos (Ed.), Advances in Optimization and Parallel

Computing, Elsevier Science, 1992, pp. 1±25.

[5] B.D.O. Anderson, The small-gain theorem, the passivity theo-

rem, and their equivalence, J. Franklin Institute 293 (1972)

105±115.

[6] P. Apkarian, J.-M. Biannic, P. Gahinet, Self-scheduled H1
control of missile via linear matric inequalities, J. of Guidance,

Control and Dynamics 18 (1995) 532±538.

J.G. VanAntwerp, R.D. Braatz / Journal of Process Control 10 (2000) 363±385 381



[7] P. Apkarian, P. Gahinet, A convex characterization of gain-

scheduled H1 controllers, IEEE Trans. on Auto. Control 40

(1995) 853±864.

[8] P. Apkarian, P. Gahinet, G. Becker, Self-scheduled H1 control

of linear parameter varying systems: a design example, Auto-

matica 31 (1995) 1251±1261.

[9] Y. Arkun, A. Banerjee, and N.M. Lakshmanan. Self scheduling

MPC using LPV models. In R. Berber, C. Kravaris (Eds.).

Nonlinear Model Based Control. NATO ASI Series. Kluwer

Academic Publishers, London, 1998.

[10] K.J. A
.
stroÈ m, B. Wittenmark, Adaptive Control, 2nd ed, Addi-

son-Wesley, Reading, Massachusetts, 1995.

[11] A.C. Atkinson, A.N. Donev, Optimum Experimental Designs,

Oxford University Press, New York, 1992.

[12] A. Banerjee, Y. Arkun, B. Ogunnaike, R. Pearson, Estimation

of nonlinear systems using linear multiple models, AIChE J. 43

(1997) 1204±1226.

[13] A. Banerjee, Y. Arkun, B. Ogunnaike, R. Pearson. H1 control

of nonlinear processes using multiple linear models. In Local

Approaches to Nonlinear Modeling and Control. Taylor and

Francis, London, 1997.

[14] D. Banjerdpongchai, J.P. How, Parametric robust H-2 control

design with generalized multipliers via LMI synthesis, Int. J. of

Control 70 (1998) 481±503.

[15] J.V. Beck, K.J. Arnold, Parameter Estimation in Engineering

and Science, Wiley, New York, 1997.

[16] R. Bellman, Introduction to Matrix Analysis, McGraw-Hill,

New York, 1960.

[17] E. Beran, The induced norm control box user's manual, 1995.

http:// www.iau.dtu.dk/ Sta�/�ebb/ INCT, computer software.

[18] R.G. Bland, D. Goldfarb, M.J. Todd, The ellipsoid method: a

survey, Operations Research 29 (1981) 1039±1091.

[19] G.E. Blau, R.R. Klimpel, E.C. Steiner, Nonlinear parameter

estimation and model distinguishability of physicochemical

models at chemical equilibrium, Can. J. of Chem. Eng. 50

(1972) 399±409.

[20] I.F. Boag, D.W. Bacon, J. Downie, Using a statistical multi-

response method of experimental design in a reaction study,

Can. J. of Chem. Eng. 56 (1978) 389±395.

[21] M.J. Box, Some experiences with a nonlinear experimental

design criterion, Technometrics 12 (1970) 569±589.

[22] S. Boyd, L. El Ghaoui, E. Feron, V. Balakrishnan, Linear

Matrix Inequalities in System and Control Theory, vol. 15 of

Studies in Applied Mathematics, SIAM, Philadelphia, PA,

1994.

[23] S. Boyd, L. Vandenberghe, SP: Software for Semide®nite Pro-

gramming, Stanford University, Stanford, CA, 1994.

[24] S. Boyd, L. Vandenberghe. Introduction to Convex Optimiza-

tion with Engineering Applications. 1995, in preparation.

[25] S. Boyd, S. Wu, A Parser/Solver for Semide®nite Programs

With Matrix Structure: User's Guide, Stanford University,

Stanford, California, 1996.

[26] S. Boyd, S. Wu, sdpsol: A Parser/Solver for Semide®nite Pro-

grams With Matrix Structure, Stanford University, Stanford,

California, 1996.

[27] R.D. Braatz, O.D. Crisalle, Robustness analysis for systems

with ellipsoidal uncertainty, Int. J. of Robust and Nonlinear

Control 8 (1998) 1113±1117.

[28] R.D. Braatz, J.H. Lee, Physical consistency in control structure

selection and the integration of design and control, in: AIChE

Spring National Meeting, New Orleans, Louisiana, 1996, paper

79d.

[29] R.D. Braatz, J.H. Lee, M. Morari, Screening plant designs and

control structures for uncertain systems, Comp. and Chem.

Eng. 20 (1996) 463±468.

[30] R.D. Braatz, M. Morari, Minimizing the Euclidean condition

number, SIAM J. on Control and Optim. 32 (1994) 1763±1768.

[31] R.D. Braatz, M. Morari, A multivariable stability margin for

systems with mixed time-varying parameters, Int. J. of Robust

and Nonlinear Control 7 (1997) 105±112.

[32] R.D. Braatz, M.L. Tyler, M. Morari, F.R. Pranckh, L. Sartor,

Identi®cation and cross-directional control of coating pro-

cesses, AIChE J. 38 (1992) 1329±1339.

[33] R. D. Braatz, J. G. VanAntwerp, Robust cross-directional

control of large scale paper machines, in: Proc. of the IEEE

International Conf. on Control Applications, IEEE Press, Pis-

cataway, NJ, 1996, pp. 155±160.

[34] R.D. Braatz, J.G. VanAntwerp, Advanced cross-directional

control, Pulp and Paper Canada 98 (7) (1997) T237±239.

[35] R.D. Braatz, P.M. Young, J.C. Doyle, M. Morari, Computa-

tional complexity of � calculation, IEEE Trans. on Auto.

Control 39 (1994) 1000±1002.

[36] P.J. Campo, M. Morari, Robust control of processes subject to

saturation nonlinearities, Comp. & Chem. Eng. 14 (1990) 343±

358.

[37] C.-T. Chen, Linear System Theory and Design. Harcourt Brace

College Publishers, Orlando, Florida, 1984.

[38] J. Chen. A note on block relative gain and euclidean condition

number, in: Proc. of the IEEE Conf. on Decision and Control,

IEEE Press, Piscataway, NJ, 1990, pp. 1239±1240.

[39] M. Cheung, S. Yurkovich, K.M. Passino, An optimal volume

ellipsoid algorithm for parameter estimation, IEEE Trans. on

Auto. Control 38 (1993) 1292±1296.

[40] M.-S. Chiu, Y. Arkun, A methodology for sequential design of

robust decentralized control systems, Automatica 28 (1992) 997.

[41] B.L. Cooley, J.H. Lee. Integrated identi®cation and robust

control, in: Proc. of ADCHEM97, Ban�, Canada, 1997.

[42] R.W. Cottle, J.-S. Pang, R.E. Stone. The linear com-

plementarity problem. Academic Press, San Diego, 1992.

[43] R.R.E. de Gaston, M.G. Safonov, Exact calculation of the

multiloop stability margin, IEEE Trans. on Auto. Control 33

(1988) 156±171.

[44] J.E. Dennis Jr., R.B. Schnabel, Numerical Methods for

Unconstrained Optimization and Nonlinear Equations, Pre-

ntice Hall, Englewood Cli�s, New Jersey, 1983.

[45] P. Dorato, C. Abdallah, V. Cerone, Linear-Quadratic Control,

Prentice Hall, Englewood Cli�s, New Jersey, 1995.

[46] F. J. Doyle III. Robustness Properties of Nonlinear Process

Control and Implications for the Design and Control of a

Packed Bed Reactor. PhD thesis, California Institute of Tech-

nology, Pasadena, 1991.

[47] F.J. Doyle III, A.K. Packard, M. Morari, Robust controller

design for a nonlinear CSTR, Chem. Eng. Sci. 44 (1989) 1929±

1947.

[48] J.W. Eaton, J.B. Rawlings, Model predictive control of chemi-

cal processes, Chem. Eng. Sci. 47 (1992) 705±720.

[49] L. El Ghaoui, J. Commeau, M. Chorier, TKLMITOOL: a

graphical user interface (GUI) of LMITOOL, 1997. ENSTA,

ftp://ftp.ensta.fr/pub/elghaoui/, computer software.

[50] L. El Ghaoui, F. Delebecque, R. Nikoukhah, LMITOOL:

Matlab front-end for semide®nite programming with matrix

variables, 1994. ENSTA, ftp://ftp.ensta.fr/pub/elghaoui/, com-

puter software.

[51] E. Eskinat, S.H. Johnson, W.L. Luyben, Use of Hammerstein

models in identi®cation of nonlinear systems, AIChE J. 37

(1991) 255±268.

[52] A.P. Featherstone, R.D. Braatz, Control-oriented modeling of

sheet and ®lm processes, AIChE J. 43 (1997) 1989±2001.

[53] A.P. Featherstone, R.D. Braatz, Input design for large scale

sheet and ®lm processes, Ind. Eng. Chem. Res. 37 (1998) 449±

454.

[54] A.P. Featherstone, R.D. Braatz, Integrated robust identi®ca-

tion and control of large scale processes, Ind. Eng. Chem. Res.

37 (1998) 97±106.

382 J.G. VanAntwerp, R.D. Braatz / Journal of Process Control 10 (2000) 363±385



[55] A.P. Featherstone, R.D. Braatz. Modal-based cross-directional

control, Tappi J., 82 (1999) 203±207.

[56] E. Fogel, System identi®cation via membership constraints

with energy constrained noise, IEEE Trans. on Auto. Control

24 (1979) 752±758.

[57] K. Fujisawa, M. Kojima. SDPA (Semide®nite Programming

Algorithm) User's Manual, 1995. Computer software.

[58] P. Gahinet, P. Apkarian, A linear matrix inequality approach

to H1 control, Int. J. of Robust and Nonlinear Control 4

(1994) 421±448.

[59] P. Gahinet, A. Nemirovskii, LMI Lab: a package for manip-

ulating and solving LMIs, 1993. Computer software.

[60] P. Gahinet, A. Nemirovskii, A.J. Laub, M. Chilali, LMI Con-

trol Toolbox, 1995. computer software.

[61] C.E. Garcia, D.M. Prett, M. Morari, Model predictive control:

Theory and practice Ð a survey, Automatica 25 (1989) 335±

348.

[62] M.R. Garey, D.S. Johnson, Computers and Intractibility: A

Guide to NP-Completeness, W. H. Freeman and Company,

New York, 1983.

[63] K.-C. Goh, J. H. Ly, L. Turan, M. G. Safonov, �=km-synthesis
via bilinear matrix inequalities, in: Proc. of the IEEE Conf. on

Decision and Control, Lake Buena Vista, Florida, Dec. 1994,

pp. 2032±2037.

[64] K.-C. Goh, M. G. Safonov, G. P. Papvassilopoulos. A global

optimization approach for the BMI problem, in Proc. of the

IEEE Conf. on Decision and Control, IEEE Press, Piscataway,

NJ, 1994, pp. 2009±2014.

[65] K. C. Goh, L. Turan, M. G. Safonov, G. P. Papvassilopoulos,

J. H. Ly. Bia�ne matrix inequality properties and computa-

tional methods, in Proc. of the American Control Conf., IEEE

Press, Piscataway, NJ, 1994, pp. 850±855.

[66] G.H. Golub, C.F. van Loan, Matrix Computations, Johns

Hopkins University Press, Baltimore, Maryland, 1983.

[67] P. Grosdidier, M. Morari, B.R. Holt, Closed-loop properties

from steady-state gain information, Ind. Eng. Chem. Fund. 24

(1985) 221±235.

[68] T.K. Gustafsson, B.O. Skrifvars, K.V. Sandstrom, K.V. Wal-

ler, Modeling of pH for control, Ind. Eng. Chem. Res. 34

(1995) 820±827.

[69] L.M. Haines, The application of the annealing algorithm to the

construction of exact optimal designs for linear-regression

models, Technometrics 29 (1987) 439±447.

[70] D.M. Himmelblau, K.B. Bischo�, Process Analysis and Simu-

lation: Deterministic Systems, John Wiley and Sons, New

York, 1968.

[71] M. Hovd, R.D. Braatz, S. Skogestad, SVD controllers for

H2ÿ, H1ÿ, and �-optimal control, Automatica 33 (1996) 433±

439.

[72] J.P. How, S.R. Hall. Connections between the Popov stability

criterion and bounds for real parameter uncertainty. in: Proc.

of the American Control Conf., IEEE Press, Piscataway, New

Jersey, 1993, pp. 1084±1089

[73] J.A. Juusola, D.W. Bacon, J. Downie, Sequential statistical

design strategy in an experimental kinetic study, Can. J. of

Chem. Eng. 50 (1978) 796±801.

[74] T. Kailath, Linear Systems, Prentice-Hall, Englewood Cli�s,

New Jersey, 1980.

[75] R.W. Kennard, L.A. Stone, Computer aided design of experi-

ments, Technometrics 11 (1969) 137±148.

[76] L.G. Khachiyan, M.J. Todd, On the complexity of approx-

imating the maximal inscribed ellipsoid for a polytope, Math.

Prog. 61 (1993) 137±159.

[77] M.V. Kothare, V. Balakrishnan, M. Morari, Robust

constrained model predictive control using linear matrix inequal-

ities, in: Proc. of the American Control Conf., 1994, pp. 440±

444.

[78] M.V. Kothare, P.J. Campo, M. Morari, C.N. Nett, A uni®ed

framework for the study of anti-windup designs, Automatica

30 (1994) 1869±1883.

[79] C.W. Koung, J.F. MacGregor, Identi®cation for robust multi-

variable control-the design of experiments, Automatica 30

(1994) 1541±1554.

[80] M. Lau, R. Kosut, S. Boyd. Parameter set estimation of sys-

tems with uncertain nonparametric dynamics and disturbances,

in: Proc. of the IEEE Conf. on Decision and Control, IEEE

Press, Piscataway, NJ, 1990, pp. 3162±3167.

[81] D. Laughlin, M. Morari, R.D. Braatz, Robust performance of

cross-directional basis-weight control in paper machines,

Automatica 29 (1993) 1395±1410.

[82] J.H.Lee,R.D.Braatz,M.Morari, A. Packard, Screening tools for

robust control structure selection, Automatica 31 (1995) 229±235.

[83] W. Li, J.H. Lee, Control relevant identi®cation of ill-condi-

tioned systems: estimation of gain directionality, Comp. and

Chem. Eng. 20 (1996) 1023.

[84] R.W. Liu, Convergent systems, IEEE Trans. on Auto. Control

13 (1968) 384±391.

[85] L. Ljung, System Identi®cation: Theory for the User, Prentice-

Hall, Englewood Cli�s, New Jersey, 1987.

[86] A.I. Lur'e, V.N. Postnikov, On the theory of stability of con-

trol systems, Applied Mathematics and Mechanics 8 (1944).

[87] J.H. Ly, M.G. Safonov, F. Ahmad. Positive real Parrott theo-

rem with application to LMI controller synthesis, in: Proc. of

the American Control Conf., IEEE Press, Piscataway, New

Jersey, 1994, pp.50±52.

[88] D.L. Ma, S.H. Chung, R.D. Braatz. Worst-case performance

analysis of optimal batch control trajectories, in: Proc. of the

European Control Conf., Germany, August±September 1999.

IFAC. in press.

[89] J.W. MacArthur. RPMCT: A new robust approach to multi-

variable predictive control for the process industries. In Con-

trol Systems 096 Preprints, CPPA, Montreal, Quebec, April 30±

May 2, 1996, pp. 53±60.

[90] G.P. McCormick, Nonlinear Programming. Theory, Algo-

rithms, and Applications, Wiley Interscience, New York, 1983.

[91] T. Mejdell, S. Skogestad, Estimation of distillation composi-

tions frommultiple temperature measurements using partial least

squares regression, Ind. Eng. Chem. Res. 30 (1991) 2543±2555.

[92] S.M. Miller. Modelling and Quality Control Strategies for

Batch Cooling Crystallizers. Ph.D. thesis, Univ. of Texas at

Austin, 1993.

[93] S.M. Miller, J.B Rawlings, Model identi®cation and control

strategies for batch cooling crystallizers, AIChE J. 40 (1994)

1312±1327.

[94] C. Moler, J. Little, S. Bangert, S. Kleinman, PRO/PC-MATLAB

User's Guides, TheMathworks, Inc, Natick,Massachusetts, 1986.

[95] M. Morari, N.L. Ricker, D.B. Raven, Y. Arkun, N. Bekiaris,

R.D. Braatz, M.S. Gelormino, T.R. Holcomb, S.M. Jalna-

purkar, J.H. Lee, Y. Liu, S.L. Oliveira, A.R. Secchi, S.-Y.

Yang, Z.Q. Zheng, Model predictive control toolbox (MPC-

tools): Matlab functions for the analysis and design of model

predictive control systems, 1995. Computer software.

[96] M. Morari, E. Za®riou, Robust Process Control, Prentice-Hall,

Englewood Cli�s, New Jersey, 1989.

[97] Y. Nesterov, A. Nemirovskii, Interior Point Polynomial Algo-

rithms in Convex Programming, Vol. 13 of Studies in Applied

Mathematics, SIAM, Philadelphia, PA, 1994.

[98] C.N. Nett, V. Manousiouthakis, Euclidean condition and

block relative gain: Connections, conjectures, and clari®ca-

tions, IEEE Trans. on Auto. Control 32 (1987) 405±407.

[99] C.N. Nett, K.D. Minto. A quantitative approach to the selec-

tion and partitioning of measurements and manipulations for

the control of complex systems, in: Proc. of the American

Control Conf., IEEE Press, Piscataway, New Jersey, 1989.

J.G. VanAntwerp, R.D. Braatz / Journal of Process Control 10 (2000) 363±385 383



[100] K. Ogata, Modern Control Engineering, 2nd Edition, Prentice

Hall, Englewood Cli�s, NJ, 1990.

[101] B. Ogunnaike, R.A. Wright, Industrial applications of non-

linear control, in: J.C. Kantor, C.E. Garcia, B. Carnahan

(Eds.), Fifth International Conference on Chemical Process

Control vol. 93 of AIChE Symposium Series No. 316, AIChE,

New York, 1997, pp. 46±59.

[102] B.A. Ogunnaike, W.H. Ray, Process Dynamics, Modeling, and

Control, Oxford University Press, New York, 1994.

[103] A. Packard, G. Becker, Quadratic stabilization of para-

metrically-dependent linear systems using parametrically-

dependent linear dynamic feedback, Advances in Robust and

Nonlinear Control Systems DSC 43 (1992) 29±36.

[104] C.H. Papadimitriou, K. Steiglitz, Combinatorial Optimization:

Algorithms and Complexity, Prentice-Hall, Englewood Cli�s,

New Jersey, 1982.

[105] P.M. Pardalos, J.B. Rosen, Constrained Global Optimization:

Algorithms and Applications, volume 268 of Lecture Notes in

Computer Science, Springer Verlag, Berlin, 1987.

[106] R.K. Pearson and B.A. Ogunnaike. Nonlinear process identi®-

cation, in: M.A. Henson, D.E. Seborg, (Ed.), Nonlinear Pro-

cess Control, chapter 2. Prentice Hall, Upper Saddle River, NJ,

1997 (Chapter 2).

[107] A.L. Peressini, F.E. Sullivan, J.J. Uhl Jr., The Mathematics of

Nonlinear Programming, Springer-Verlag, New York, 1988.

[108] D.D. Perlmutter, Stability of Chemical Reactors, Prentice Hall,

Englewood Cli�s, NJ, 1972.

[109] P. Psarris, C.A. Floudas. Robust stability analysis of linear

and nonlinear systems with real parameter uncertainty, in:

AIChE Annual Meeting, Miami Beach, Florida, 1992, paper

127e.

[110] S.J. Qin, T.A. Badgwell. An overview of industrial model pre-

dictive control technology, in: Proc. of the Fifth Int. Conf. on

Chemical Process Control (CPC-V), Tahoe City, California,

1996.

[111] W.H. Ray, Advanced Process Control, McGraw-Hill, New

York, 1981.

[112] D. Reeves, A Comprehensive Approach to Control Con®gura-

tion Design for Complex Systems, Ph.D. thesis, Georgia Insti-

tute of Technology, Atlanta, 1991.

[113] P.M. Reilly, G.E. Blau, The use of statistical methods to build

mathematical models of chemical reacting systems, Can. J. of

Chem. Eng. 52 (1974) 289±299.

[114] N.L. Ricker, Model predictive control with state estimation,

Ind. Eng. Chem. Res. 29 (1990) 374±382.

[115] E. Rios, R.D. Braatz. Stability analysis of generic nonlinear

systems, in: AIChE Annual Meeting, Los Angeles, CA, 1997.

paper 214g.

[116] E. Rios-Patron. A General Framework for the Control of

Nonlinear Processes, Ph.D. thesis, University of Illinois,

Urbana, Illinois, 1999.

[117] E. Rios-Patron, R.D. Braatz, On the identi®cation and control

of dynamical systems using neural networks, IEEE Trans. on

Neural Networks 8 (1997) 452.

[118] E. Rios-Patron, R.D. Braatz. Global stability analysis for dis-

crete-time nonlinear systems, in: Proc. of the American Control

Conf., IEEE Press, Piscataway, New Jersey, 1998, pp. 338±342.

[119] E. Rios-Patron, R.D. Braatz. Performance analysis and opti-

mization-based control of nonlinear systems with general

dynamics, in: AIChE Annual Meeting, 1998. paper 227g.

[120] E. Rios-Patron, R.D. Braatz. Robust nonlinear control of a

ph neutralization process, in Proc. of the American Control

Conf., IEEE Press, Piscataway, New Jersey, NJ, 1999, pp. 119±

124.

[121] E.L. Russell, R.D. Braatz. The average-case identi®ability of

large scale systems, in: AIChE Annual Meeting, Los Angeles,

CA, 1997, paper 215a.

[122] E.L. Russell, R.D. Braatz, Model reduction for the robustness

margin computation of large scale uncertain systems, Comp.

and Chem. Eng. 22 (1998) 913±926.

[123] E.L. Russell, C.P.H. Power, R.D. Braatz, Multidimensional

realizations of large scale uncertain systems for multivariable

stability margin computation, Int. J. of Robust and Nonlinear

Control 7 (1997) 113±125.

[124] H.S. Ryoo, N.V. Sahinidis, Global optimization of nonconvex

NLPs and MINLPs with applications in process design, Comp.

and Chem. Eng. 19 (1995) 551±566.

[125] M.G. Safonov, K.C. Goh, J.H. Ly, Control system synthesis via

bilinear matrix inequalities, in: Proc. of the American Control

Conf., IEEE Press, Piscataway, NJ, June 1994, pp. 45±49.

[126] D.E. Seborg, T.F. Edgar, D.A. Mellichamp, Process Dynamics

and Control, John Wiley, New York, 1989.

[127] S. Skogestad, M. Morari, Design of resilent processing

plants Ð IX. E�ect of model uncertainty on dynamic resilience,

Chem. Eng. Sci. 42 (1987) 1765±1780.

[128] S. Skogestad, M. Morari, Implications of large RGA elements

on control performance, Ind. Eng. Chem. Res. 26 (1987) 2323±

2330.

[129] S. Skogestad, M. Morari, J.-C. Doyle, Robust control of ill-

conditioned plants: High purity distillation, IEEE Trans. on

Auto. Control 33 (1988) 1092±1105.

[130] S. Skogestad, I. Postlethwaite, Multivariable Feedback Con-

trol: Analysis and Design, Wiley, New York, 1996.

[131] O. Slupphaug, B.A. Foss. Bilinear matrix inequalities and

robust stability of nonlinear multi-model MPC, in: Proc. of the

American Control Conf., IEEE Press, Piscataway, NJ, 1998,

pp. 1689±1694.

[132] R.D. Snee, Computer-aided design of experiments Ð some

practical experiences, Journal of Quality Technology 17 (1985)

222±236.

[133] G. Stephanopoulos, Chemical Process Control-An Introduc-

tion to Theory and Practice, Prentice Hall, Englewood Cli�s,

New Jersey, 1990.

[134] H.T. Su, T.J. McAvoy, Integration of multilayer perceptron

networks and linear dynamic models: a Hammerstein modeling

approach, Ind. Eng. Chem. Res. 32 (1993) 1927±1936.

[135] O. Toker, H. Ozbay. On the NP-hardness of solving bilinear

matrix inequalities and simultaneous stabilization with static

output feedback, in: Proc. of the American Control Conf.,

IEEE Press, Piscataway, NJ, 1995, pp. 2525±2526.

[136] J.G. VanAntwerp. Globally Optimal Robust Control for Sys-

tems with Nonlinear Time-Varying Perturbations, M.S. thesis,

University of Illinois, Urbana, Illinois, http://brahms.scs.uiu-

c.edu/�jva/thesis.pdf, 1997.
[137] J.G. VanAntwerp. Globally Optimal Robust Control for Large

Scale Systems. PhD thesis, University of Illinois, Urbana, Illi-

nois, 1999.

[138] J.G. VanAntwerp, R.D. Braatz. Fast model predictive control

of large scale processes, in: C. Georgakis, C. Kiparissides

(Eds.), Dynamics and Control of Process Systems, Pergamon

Press, Oxford, in press.

[139] J.G. VanAntwerp, R.D. Braatz. Fast model predictive control

of sheet and ®lm processes. IEEE Trans. on Control Systems

Tech., 1999. in press.

[140] J.G. VanAntwerp, R.D Braatz, N.V. Sahinidis, Globally

optimal robust control for systems with nonlinear time-varying

perturbations, Comp. and Chem. Eng. 21 (1997) S125±S130.

[141] J.G. VanAntwerp, R.D. Braatz, N.V. Sahinidis. Globally opti-

mal robust reliable control of large scale paper machines, in:

Proc. of the American Control Conf., IEEE Press, Piscataway,

NJ, 1997, pp. 1473±1477.

[142] J.G. VanAntwerp, R.D. Braatz, N.V. Sahinidis. Robust non-

linear control of plasma etching, in: Proc. of the Electrochemical

Society, Vol. 10,Montreal, Canada,May 4±9, 1997, pp. 454±462.

384 J.G. VanAntwerp, R.D. Braatz / Journal of Process Control 10 (2000) 363±385



[143] J.G. VanAntwerp, R.D. Braatz, N.V. Sahinidis. Globally optimal

robust process control, J. of Process Control 9 (1999) 375±383.

[144] L. Vandenberghe, S. Boyd, Semide®nite programming, SIAM

Review 38 (1996) 49±95.

[145] L. Vandenberghe, S. Boyd. A polynomial-time algorithm for

determining quadratic Lyapunov functions for nonlinear sys-

tems, 1997. preprint, available by ftp at isl.stanford.edu.

[146] T.L. Vincent, P.P. Khargonekar, B.A. Rashap, F. Terry, M.

Elta. Nonlinear system identi®cation and control of a reactive

ion etcher, in: Proc. of the American Control Conf., IEEE

Press, Piscataway, NJ, 1994, pp. 902±906.

[147] V. Visweswaran, C.A. Floudas, A global optimization algo-

rithm (GOP) for certain classes of nonconvex NLPs Ð I. The-

ory, Comp. and Chem. Eng. 14 (1990) 1397±1417.

[148] V. Visweswaran, C.A. Floudas, A global optimization algo-

rithm (GOP) for certain classes of nonconvex NLPs Ð II.

Application of theory and test problems, Comp. and Chem.

Eng. 14 (1990) 1419±1434.

[149] R. Weber, C. Brosilow, The use of secondary measurements to

improve control, AIChE J. 18 (1972) 614±623.

[150] W.J. Welch, Branch-and-bound search for experimental designs

based on D-optimality and other criteria, Technometrics 24

(1982) 41±48.

[151] J.C Willems, The least squares stationary optimal control and

the algebraic Riccati equation, IEEE Trans. on Auto. Control

16 (1971) 621±634.

[152] F. Wu, Z.H. Yang, A. Packard, G. Becker, Induced l2-norm

control for LPV systems with bounded parameter variation

rates, Int. J. of Robust and Nonlinear Control 6 (1996) 983±

998.

[153] S. Wu, S. Boyd. Design and implementation of a parser/solver

for SDPs with matrix structure, 1997. preprint, available by ftp

at isl.stanford.edu.

[154] C.R. Wylie, L.C. Barrett, Advanced Engineering Mathematics,

6th ed, McGraw-Hill, New York, 1995.

[155] Y. Yamada, S. Hara. Global optimization for H1 control

problem with constant diagonal scaling-robust performance

synthesis, in: Proc. SICE Symp. on Control Theory, Kariya,

Japan, May 1995, pp. 29±34.

[156] Y. Yamada, S. Hara. Global optimization for H1 control

problem with block-diagonal constant scaling, in: Proc. of the

IEEE Conf. on Decision and Control, IEEE Press, Piscataway,

NJ, 1996

[157] K. Zhou, J.C. Doyle, K. Glover, Robust and Optimal Control,

Prentice-Hall, New Jersey, 1995.

[158] K. Zhou, P.P. Khargonekar, An algebraic Riccati equation

approach to h1 optimization, Systems and Control Letters 11

(1988) 85±91.

J.G. VanAntwerp, R.D. Braatz / Journal of Process Control 10 (2000) 363±385 385


