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Abstract

Sheet and ®lm processes, which include papermaking, polymer ®lm extrusion, and adhesive coating, are of substantial industrial
importance. The processes are poorly conditioned and truly large scale, with up to hundreds of manipulated variables and thou-

sands of sensor locations. The uncertainties in sheet and ®lm process models require that they be explicitly taken into account
during the control design procedure. Numerically e�cient algorithms are developed that provide robust optimal controllers for a
wide variety of uncertainty descriptions. The robust optimality of the controllers can be relaxed to provide low order controllers
suitable for real time implementation. Robust controllers are designed for a simulated paper machine, based on a realistic descrip-

tion of the interactions across the machine, and the level of model inaccuracies. # 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Sheet and ®lm processes have two main control
objectives (see Fig. 1). One is the maintenance of the
average sheet property pro®le, which is referred to as the
machine-direction (MD) control problem. The other is
the maintenance of ¯at pro®les across the machine web,
referred to as the cross-directional (CD) control pro-
blem. Since the MD problem [1±8] has been extensively
studied and is much less di�cult than the CD problem
[9], only the CD problem is considered here.
Pro®le properties are controlled by actuators which

are almost always located at evenly spaced points along
the cross-direction [10]. The number of actuators can be
200 or more. Pro®le properties that have been con-
trolled include basis weight (weight per unit area),
moisture content, caliper, and opacity. Sensor measure-
ments are taken after processing (e.g. pressing, drying,
stretching) and are located some distance down the
machine. In the past, due to their high cost, a small
number of scanning sensors were used. Each sensor

measured a zigzag portion of the sheet/®lm, as illu-
strated in Fig. 1. From this limited number of measure-
ments, the pro®le properties were estimated at each
sampling time for use by the control algorithm (for
instance, by using a time-varying Kalman ®lter, as has
been described by numerous authors [11±13]. Recently
sensors have become available which simultaneously
measure the CD pro®le as ®nely as every millimeter at
rates of up to 120,000 times per minute [14]. This could
result in as many as 10,000 sensors across the machine.
The control problem is to calculate the 100+control
moves based on the measured or estimated pro®le of
500±10,000 sensor positions at each sampling time. The
large dimensionality and the poor conditioning of sheet
and ®lm plant matrices makes these processes challen-
ging to control.
Further, it is impossible to generate a highly accurate

sheet/®lm process model, either phenomenologically or
via input-output identi®cation, because of unknown
disturbances, inaccurate values for the physical para-
meters, cross-directional movement of the web [15,16],
lack of complete understanding of the underlying phy-
sical phenomena (for example, during drying) [10], static
friction, and equipment wear [16±19]. The large scale
nature makes accounting for model uncertainty more
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important and more challenging [20±22]. The popular
robust controller synthesis and model reduction soft-
ware packages have demonstrated numerical inaccura-
cies for processes with large numbers of inputs and
outputs [23].
This paper presents computationally e�cient algo-

rithms for designing robust optimal CD controllers for
sheet and ®lm processes. Further, it is shown how the
optimality of the controllers can be relaxed to give low
order controllers that are easier to implement.

1.1. Relationship to previous work

There is an extensive literature on non-robust optimal
control strategies for sheet and ®lm processes. This lit-
erature includes papers on controlling processes with
symmetries, one of the early papers being by Roger
Brockett and Jan Willems [24], and several recent
papers which have proposed model predictive control
(MPC) strategies [25±30]. The fast MPC algorithm of
VanAntwerp and Braatz [31±33] was designed to avoid
exciting uncontrollable plant directions, but does not
actually guarantee robustness to all common types of
model uncertainties. The reader is referred to [10,34] for
a detailed review of optimal control design algorithms
for sheet and ®lm processes that do not explicitly
address model uncertainty.
Laughlin, Morari and Braatz (LMB) [35] used circu-

lant matrix theory to develop methods for designing
conservative robust multivariable controllers based on
the design of only one single loop controller. The LMB
results applied to sheet and ®lm processes with very
highly structured interactions. Circulant symmetric,
Toeplitz symmetric, and centrosymmetric symmetric
models were all covered by the theory. The controllers
were restricted to be either decentralized or decen-
tralized controller in series with a constant decoupler
matrix. Forcing the controllers to have these particular
structures restricts the performance that can be achieved
with these algorithms.

There are substantial di�erences between the results
of LMB and the results presented here. First, LMB
treated only restrictive types of interaction matrices,
while our approach handles arbitrary interaction matri-
ces. Second, LMB considered only parametric uncer-
tainties in the interaction matrices, whereas here we
treat nonparametric uncertainties. Third, the robust
controller synthesis and analysis theorems presented
here are much less conservative. Fourth, application of
the LMB approach to a process with a di�erent number
of sensors than actuators would require squaring-up to
give a square transfer function matrix. Although squar-
ing-up procedures have been applied industrially for at
least the last 15 years [36], they introduce an unneces-
sary approximation and can result in a loss of perfor-
mance [22].
Duncan [19] developed a robust controller design

algorithm for sheet and ®lm processes with arbitrary
interactions across the machine. Su�cient conditions
for robust performance with multiplicative input and
output uncertainties were derived in terms of satisfying
robust performance for single-input single-output
(SISO) subsystems similar to those treated here. The
robust controller synthesis and analysis theorems pre-
sented here are potentially less conservative, and treat
much broader types of uncertainty.
Hovd, Braatz and Skogestad (HBS) [23,37,38] pre-

sented several robust control results that are applicable
to CD processes. Stewart et al. [39] proposed a variation
on the robust CD control algorithms of HBS, but with
more stringent assumptions on the model uncertainties,
performance objectives, and interactions across the
machine. A variation of the control algorithms has been
implemented by Honeywell-Measurex on industrial CD
control hardware working with a hardware-in-the-loop
paper machine simulator [39].
The algorithms presented here are extensions and

re®nements of results by HBS. There are six signi®cant
new contributions. First, the HBS results are specialized
for application to sheet and ®lm processes, leading to
substantially simpli®ed statements of both the theory
and the resulting algorithms. Second, the theorems here
provide explicit expressions for lower dimension robust
control problems whose solutions can be used to con-
struct the robust controller for the original large scale
control problem, whereas HBS provided only conditions
for the existence of the lower dimension problems.
Third, for many uncertainty types, we provide a much
more complete model reduction. For example, where
HBS may reduce the multivariable robust control pro-
blem to a large number of single-input single-output
(SISO) robust control problems, in many cases our
results can reduce the multivariable problem to a single
SISO robust control problem. Fourth, algorithms for
the design of low order robust controllers are investigated
in detail. Fifth, nonlinear as well as linear perturbations

Fig. 1. Generic sheet and ®lm process with scanning gauge (not drawn

to scale).
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are addressed. Sixth, the algorithms are applied to a
simulated paper machine, based on a realistic descrip-
tion of the interactions across the machine, and the level
of model inaccuracies. This simulated example is of
substantially higher dimensionality than that of any
robust control problem ever considered.

2. Background on the robust control formulation for
sheet and ®lm processes

Here we describe sheet and ®lm process models, the
performance objective, appropriate uncertainty descrip-
tions, and provide some background on robustness
analysis and synthesis.

2.1. Sheet and ®lm process models

The process model relates the manipulated variable
moves to the pro®le properties measured downstream.
All reported sheet and ®lm process models have the
form

y s� � � P s� �u s� �; P s� � � p s� �PCD; �1�

where y is a vector of measurements, u is a vector of
actuator positions, p�s� represents scalar dynamics, and
PCD is a constant matrix representing interactions
between inputs and outputs. Taking the singular value
decomposition (SVD) [40] of the interactions matrix
PCD allows the process transfer function to be decom-
posed into the pseudo-SVD form

P s� � � p s� �PCD

� p s� �U�VT

� U p s� ��� �VT

� U�P s� �VT: �2�

where U and V are real orthogonal matrices. The ele-
ments of the diagonal matrix �P s� � are transfer func-
tions and are not ordered in any particular manner.
These diagonal elements �P;ii s� � are referred to as
pseudo-singular values [41]. The pseudo-SVD form is
su�ciently general to allow for non-square PCD with
arbitrary interactions. For non-square PCD, ®rst aug-
ment P with rows or columns of zeros to make a square
matrix. Then compute the SVD of the square matrix to
result in square U and V. The pseudo-singular values
corresponding to the additional rows or columns will be
equal to zero. Although there are more compact ways to
de®ne the pseudo-SVD for a non-square interactions
matrix, this de®nition leads to the simplest notation
throughout the manuscript.
For symmetric PCD PCD � PT

CD

ÿ �
, an orthogonal

decomposition of PCD (e.g. Theorem 3 of [42]) allows U

to be chosen equal to V. In this case, UT � Uÿ1 and the
diagonal elements of �P s� � can be interpreted as pseudo-
eigenvalues.
While many modern polymer ®lm extruders have

square interaction matrices, modern paper machines
have many more sensors than actuators, resulting in a
non-square interactions matrix [32]. Although almost all
of the results in this manuscript will apply to the general
model (1), somewhat stronger results will be reported
for symmetric models.

2.2. Performance objective

A block diagram of the closed loop system is shown in
Fig. 2. The objective of the controller K s� � is to mini-
mize the e�ect of disturbances d on the pro®le proper-
ties y. Since the sensitivity function I� PK� �ÿ1 is the
transfer function between d and y, this objective can be
quanti®ed by

WP s� � I� P s� �K s� �� �ÿ1

 


1

� sup
s�j!

�� WP s� � I� P s� �K s� �� �ÿ1ÿ �
; �3�

where �� A� � refers to the maximum singular value of A,
and the weight WP s� � is selected to de®ne the desired
performance (e.g. bandwidth). The weight is also used
to normalize the desired performance objective:

WP s� � I� P s� �K s� �� �ÿ1

 


141: �4�

The goal of the CD control problem is to maintain
¯at pro®les across the entire width of the machine,
implying that the performance weight WP s� � should be
selected as a scalar weight wP s� � multiplied by the iden-
tity matrix. The most commonly used weight has the
form

wP s� � � b
as� 1

as
; �5�

where a and b are constant real scalars [35]. With this
performance weight, the maximum disturbance ampli®-
cation will be less than 1=b at all frequencies, and the
closed loop system will have a bandwidth of at least 1=a.

Fig. 2. Standard feedback control system.
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A physically meaningful performance weight must
satisfy 0 < b < 1 and a > 0.
The performance objective in (3) is selected for several

reasons. First, the objective allows the direct speci®ca-
tion of the closed loop bandwidth, or equivalently, the
closed loop speed of response [this is equal to a in (5)].
Second, the objective (3) is the worst-case gain for
sinusoidal inputs at any frequency, which allows the
engineer to directly specify a bound on the e�ect of
oscillatory disturbances on the closed loop system.
Third, the objective (3) bounds the integral of the
squared pro®le deviations across the machine subject to
disturbances bounded by the integral-squared-error
norm (this can be interpreted for deterministic or sto-
chastic disturbances, in which case the expected value is
used [43]). Minimizing the squared pro®le deviations is
the stated goal of most CD control systems [10,35,44].
Fourth, it is simpler mathematically to develop robust
control algorithms based on the performance objective
(3) than for most other performance objectives. Detailed
discussions on selecting performance objectives and
performance weights are available [43,45].

2.3. Uncertainty descriptions

Due to their poor conditioning and the limited input-
output data available, a sheet/®lm process model is only
an approximation of the true process. The inaccuracy is
represented by describing the process model as a set of
plants P̂, given by a nominal model P and a set of norm
bounded perturbations �. The six major types of mul-
tivariable uncertainty descriptions are listed in Table 1
[43,46].
Through weights each perturbation is normalized to

be of size one

�i s� �


 



141; �6�

where �i s� � is a stable transfer function representing
unmodeled dynamics. In the more general case where �i

is not treated as being linear time invariant, other norms
on �i are used [47±49]. Uncertainties which have been
carefully characterized include nonlinear time invariant

(NLTI), nonlinear time varying (NLTV), linear time
varying (LTV) [49], and arbitrarily-slow time varying
(SLTV) [48].
Multiplicative input uncertainty represents inaccura-

cies associated with the actuators, whereas multi-
plicative output uncertainty represents inaccuracies
associated with the measurements. Additive and multi-
plicative output uncertainties are the most commonly
used to represent unmodeled process dynamics. The
``inverse'' uncertainties allow for processes in which it is
not known with certainty whether poles near the ima-
ginary axis are unstable or stable. Inverse multiplicative
output uncertainty provides a convenient mathematical
means to address performance speci®cations within the
context of robust stability (this is explained in Section
2.4).
Each uncertainty block is of dimension compatible

with the nominal model P. This implies that �A has the
same dimensions as P, �I and �II are square matrices
of dimensions equal to the number of actuators, and �O

and �IO are square matrices of dimensions equal to the
number of sensing locations.
Each uncertainty block can have structure. In the lit-

erature, additive uncertainty (typically representing
unmodeled process dynamics) is normally represented
as a full matrix, whereas multiplicative uncertainties are
treated as being either full or diagonal. Further, diag-
onal uncertainty blocks can be represented as having
diagonal elements that are independent scalars,
�i � diag �ij

� 	
, or repeated scalars, �i � �iI. A repeated

diagonal uncertainty description may be appropriate for
modeling inaccuracies in the sensor model, since the
sensor is usually of the tracking type, with the same
sensor being used to take all measurements. An inde-
pendent diagonal uncertainty description would be
more appropriate for representing inaccuracies in the
actuator models [19] since each actuator is expected to
have somewhat di�erent dynamic response.
The uncertainty weights in Table 1 assume that com-

ponents of the same type (for example, slice lip screws)
have the same level of uncertainty associated with their
respective models. This is a good assumption for sheet/
®lm machine components, since each component of a
particular type is almost always manufactured by the
same company to provide the same level of reproduci-
bility. Note that this assumption does not necessarily
require that the models for each component of a parti-
cular type are precisely equal for all plants within the
uncertainty description, only that the level of inaccuracy
of each component is the same. The selection of uncer-
tainty weights is described in several references
[43,45,46]. Procedures have been developed for sheet
and ®lm processes for identifying both nominal models
and uncertainty weights based on process data [41,50].
Now we de®ne a non-traditional additive uncertainty

description for a sheet and ®lm process, in which the

Table 1

Six major types of multivariable uncertainty descriptions (dependence

on s suppressed for brevity)

Uncertainty type Mathematical representation

Additive P̂ � P� wA�A

Multiplicative input P̂ � P I� wI�I� �
Multiplicative output P̂ � I� wO�O� �P
Inverse additive P̂ � I� wIAP�IA� �ÿ1P
Inverse multiplicative input P̂ � P I� wII�II� �ÿ1
Inverse multiplicative output P̂ � I� wIO�IO� �ÿ1P
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pseudo-singular values in (2) are uncertain. The uncer-
tainty description is represented as independent diag-
onal additive uncertainty (that is, �DA � diag �kf g,
k � 1; . . . ; n)

P̂ � U � s� � ��DA�DA� �VT � P�U�DA�DAV
T; �7�

where �DA is a diagonal weighting matrix, not necessa-
rily equal to a scalar multiplied by the identity matrix.
Theoretical justi®cations of this uncertainty description,
including methods to compute �DA from experimental
data, are provided elsewhere [41,50].

2.4. Robust stability and performance

Algebraic manipulations performed either by hand
[43,46,51] or with programs [52±55] can be used to col-
lect the uncertainties associated with various compo-
nents in the system into the block-diagonal � s� � shown
in Fig. 3. The generalized plant G s� � is de®ned by the
nominal model P s� �, the performance speci®cations, and
the magnitude and location of the uncertainties. The
generalized plant G s� � and the controller K s� � can be
combined to produce the nominal closed loop system
matrix M s� �. If G s� � is partitioned to be compatible with
K s� �, then M s� � is described by the linear fractional
transformation (LFT), where s has been suppressed for
brevity,

M � Fl G;K� � � G11 � G12K Iÿ G22K� �ÿ1G21: �8�

The LFT Fl G;K� � is de®ned for any well-posed system
[this is equivalent to the existence of the inverse of
(Iÿ G22K)].
Eq. (6) implies that each block-diagonal matrix � s� �

within the uncertainty description is in the set D , where

D � diag
�
�k s� �� 	j �k s� �

 



1
41; �k s� � stable; k � 1; . . . ; u

	 �9�

where each �k s� � has the same dimensions as P s� �, and u
is the number of uncertainty types. The structure of
each �k s� � can be repeated diagonal, independent diag-
onal, or full block.

The closed loop system is said to satisfy robust stability
if it is stable for all stable norm-bounded perturbations
� s� � 2 D . The closed loop system is said to be satisfy
robust performance if the performance speci®cation (3)
holds for all � 2 D . The closed loop system is robustly
stable to linear time invariant (LTI) perturbations if and
only if the nominal closed loop system is stable (that is,
the poles of M s� � are in the open left half plane) and the
structured singular value �D M j!� �� � is less than 1 for all
frequencies (see [43,46,56,57] for more details). The
value of the matrix function �D M j!� �� � at each fre-
quency depends on both the elements of the matrix M s� �
and the structure of D . The corresponding test for
robust performance is exactly as for the robust stability
test, except with the performance speci®cation treated as
though it were an additional inverse multiplicative out-
put uncertainty (that is, wIO is set equal to wP, with full
block �IO representing the performance speci®cation).
It is a key idea that � provides a general analysis tool

for determining robust stability and performance with
respect to LTI uncertainty [58±60]. Any system with
uncertainty adequately modeled as in (6) can be put into
Mÿ� form, with robust stability and robust perfor-
mance written as a �-test. Although exact computation
of the matrix function � can be computationally
expensive [61,62], upper and lower bounds for � can be
computed in polynomial time (M can always be aug-
mented with zeros to a square matrix with the same
value of �, so without loss of generality M will be taken
to be square in what follows):

max
U2U

� MU� � � �D M� �4 inf
D2D

�� DMDÿ1
ÿ �

; �10�

where U is the set of unitary matrices with the same
block diagonal structure as D , � A� � is the spectral
radius of A, and D is the set of all matrices that com-
mute with every � 2 D , that is, D � fD j D� � �D for
all � 2 D g [56,63]. This de®nition implies that each D 2
D is a block-diagonal matrix with u blocks, the structure
of each block de®ned by the corresponding block of
� 2 D . In particular, Dk is full block for repeated scalar
�k, Dk is repeated scalar for full block �k, and Dk is
independent scalar for independent scalar �k.
The maximization in (10) is not convex, and existing

algorithms either provide only a local maximum or are
computationally expensive [64,65], hence the reference
to the maximization as being a ``lower bound,''
although the equality in (10) holds [52]. The upper
bound can be formulated as a linear matrix inequality
and is solvable in polynomial time using either ellipsoid
or interior point algorithms [66,67]. The computed
lower and upper bounds are usually tight. However,
computational experience indicates that the bounds
become more conservative as the system dimension
increases [64,65]. Robust suboptimal controllers are
almost always computed using the upper bound.

Fig. 3. Equivalent system representations (dependence on s sup-

pressed by brevity).
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The H1-optimal control problem is to compute a
stabilizing K s� � that minimizes Fl G;K� �

 



1 (see Fig. 3).
The state-space approach for solving the H1 control
problem is implemented in o�-the-shelf software [52,53].
The DK-iteration method (often called �-synthesis) is
an ad hoc method that attempts to minimize the upper
bound of �, that is, it attempts to solve [52,53]

inf
K s� �2Kn

s

inf
D s� �2Dnu

s

sup
s�j!

�� D s� �Fl G s� �;K s� �� �Dÿ1 s� �ÿ �
; �11�

where Kn
s is the set of all internally stabilizing controllers

of dimension n� n, and Dnu
s is the set of all nu� nu

stable minimum phase transfer functions that satisfy
D� � �D at each frequency. The approach in DK-
iteration is to alternatively minimize

sup
s�j!

�� D s� �M s� �Dÿ1 s� �ÿ �
� sup

s�j!
�� D s� �Fl G s� �;K s� �� �Dÿ1 s� �ÿ � �12�

for either K s� � or D s� � while holding the other constant.
For ®xed D s� �, the controller synthesis is solved via H1-
optimization. For ®xed K s� �, the quantity (12) is mini-
mized for each D s� � using linear matrix inequalities
[66,67] or some other approach [52,53]. The resulting
invertible stable minimum-phase transfer function D s� �
is wrapped back into the nominal interconnection
structure G s� �. This increases the number of states of the
scaled G s� �, which causes the second H1-synthesis step
to produce a higher order controller. The iterations
between D s� � and K s� � stop after the quantity (12) is less
than 1 or is no longer diminished. The resulting high-
order controller is typically reduced using Hankel model
reduction [68]. Although the DK-iteration method is
not guaranteed to converge to a global minimum, it has
been used to design robust controllers for many
mechanical systems, e.g. ¯exible space structures [69],
missile autopilots [70,71], and rockets [72].
Besides being an approximation to the original �

condition for LTI perturbations, (11) is also interesting
in its own right, as its objective less than one is a neces-
sary and su�cient condition for robustness to arbi-
trarily slow linear time varying (SLTV) perturbations
[48] when all the perturbations are full block. Also, the
objective in (11) less than one is a necessary and su�-
cient condition for robustness to fast linear time varying
(FLTV), nonlinear time invariant (NLTI), or nonlinear
time varying (NLTV) perturbations when the matrices
in D are restricted to be constant matrices [49].

3. Optimal robust controller design

To state the results, it is useful to recall that G is an
open loop transfer function matrix de®ned by the

uncertainty weights wj s� �, the uncertainty locations (in
Table 1), and the open loop nominal model P s� �. For
the uncertainty types in Table 1 and in (7), G s� � can be
written in terms of submatrices that include only the
following terms (including multiplications of the terms):
P s� �, wj s� �In, In, 0n, U, and V, where In is the n� n
identity matrix, and 0n is the n� n matrix of zeros.
De®ne the n lower dimension transfer functions G~ i s� �,
which are constructed from G s� � by the following sub-
stitutions [see (45) and (49) for example]:

P s� �  ! �P;ii s� �
wj s� �In ! wj s� �

In ! 1

0n ! 0

U ! 1

V ! 1 �13�

Each of the G~ i s� � corresponds to a pseudo-singular
value �P;ii s� � of the plant P s� �. To simplify the statement
of the results, P s� � will be treated as being square. As
discussed earlier, this is without loss in generality.
The results of this section are of two types. First, it is

shown that for various uncertainty types the robust
controller of the form

K s� � � V�K s� �UT �14�

is optimal. Second, it is shown how controllers of this
form simplify robustness analysis and synthesis by either
partially or completely decoupling the MIMO controller
design problem into SISO control problems, or a single
SISO control problem. The robustness analysis and
synthesis results are ®rst presented for sheet and ®lm
processes with general interactions. Then somewhat
stronger results are stated for symmetric nominal models.

3.1. Processes with general interactions matrix

For the case where all the uncertainty blocks are full
and arbitrarily-slow linear time varying, the following
theorem provides conditions for which the robust optimal
controller has the form K s� � � V�K s� �UT, and describes
how this simpli®es the computation of the robust opti-
mal controller. Proofs of all results are in the appendix.

Theorem 1 (Robust optimality with SLTV �). Consider
a nominal model P s� � � U�P s� �VT, where U and V are
real orthogonal matrices and �P s� � is a diagonal transfer
function matrix. Suppose there are multiple full block
uncertainties of the forms listed in Table 1 and a diagonal
additive uncertainty of the form (7). Then a controller of
the form K s� � � V�K s� �UT minimizes

inf
D s� �2Dnu

s

D s� �Fl G s� �;K�s�� �Dÿ1 s� �

 


1 �15�
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where u is the number of uncertainties and

Dnu
s � diag Dkf g; k � 1; . . . ; u;

D1 � diag d1i s� �
� 	

; i � 1; . . . ; n;

Dk � diag dk s� �In
� 	

; k � 2; . . . ; u: �16�

The generalized plant G s� � is constructed from the
nominal model P s� �, the types of uncertainties, and the
uncertainty weights, with the rows and columns of G s� �
arranged such that the independent diagonal additive
uncertainty is the upper block of D .
Furthermore,

inf
K s� �2Kn

s

inf
D s� �2Dnu

s

D s� �Fl G s� �;K s� �� �Dÿ1 s� �

 


1

� inf
dk s� �

k�2;...;u

max
i�1;...;n

(
inf

�K;ii s� �2K1
s

inf
d1i s� �





D̂i s� �Fl G~ i s� �;�K;ii s� �
� �

� D̂i s� �
� �ÿ1





1

)
;

�17�

where Ĝi s� � is constructed from G s� � as de®ned in (13),
D̂i={diag d1i s� �; d2 s� �; . . . ; du s� ��� ��dk s� � stable and mini-
mum phase; k � 1i; 2; . . . ; u}, and �K;ii s� � are the diag-
onal elements of �K s� �. For the case with no independent
diagonal additive uncertainty, the d1i and the correspond-
ing in®mum in (17) are dropped.

Theorem 2 (Robust optimality with NLTV, NLTI, and
LTV �). Consider the assumptions of Theorem 1, except
with the SLTV perturbations replaced by NLTV, NLTI,
or LTV perturbations. All results of Theorem 1 hold, with
the scaling matricesDnu

s restricted to be constant matrices.

For SLTV, NLTV, NLTI, and LTV full block uncer-
tainties, Theorems 1 and 2 indicate that the robust con-
troller synthesis problem for K s� � can be reduced to n
mildly coupled SISO robust controller synthesis pro-
blems for the �K;ii s� �. If DK-iteration is used to design
to a robust suboptimal controller, then the K step con-
sists of n independent SISO H1-optimal control pro-
blems, one for each of the SISO subplants �P;ii s� � of
P s� �. The D step is coupled, since many of the elements
of D s� � enter in more than one of the SISO H1-optimal
control problems. After the DK iterations have con-
verged to result in the ®nal �K;ii s� �, they are collected
into a diagonal matrix �K s� �, and the ®nal controller
computed from (14).
The next result is for the case where the uncertainties

are linear time invariant.

Theorem 3 (Robust optimality with LTI �). Consider a
nominal model P s� � � U�P s� �VT, where U and V are real

orthogonal matrices and �P s� � is a diagonal transfer
function matrix. Suppose there is any combination of
uncertainties of the following forms: (i) one full block
uncertainty of any type, (ii) any number of repeated
diagonal multiplicative and inverse multiplicative uncer-
tainties of the forms listed in Table 1, (iii) an independent
diagonal additive uncertainty of the form (7). Then a
controller of the form K s� � � V�K s� �UT minimizes

sup
s�j!

�D Fl G s� �;K s� �� �� � �18�

where the generalized plant G s� � is constructed from the
nominal model P s� �, the types of uncertainties, and the
uncertainty weights. Furthermore,

inf
K s� �2Kn

s

sup
s�j!

�D Fl G s� �;K s� �� �� �

� max
i�1;...;n

inf
�K;ii s� �2K1

s

sup
s�j!

�
D~ Fl G~ i s� �;�K;ii s� �

� �� �( )
;

�19�

where D~ � diag �kf g
� �� �kj41; �k 2 C; k � 1; . . . ; uj g and

G~ i s� � is constructed from G s� � as de®ned in (13).

For some sheet and ®lm processes, Theorem 3 indi-
cates that the robust controller synthesis problem for
K s� � can be reduced to n completely independent SISO
robust controller synthesis problems for �K;ii s� �, one for
each of the SISO subplants �P;ii s� � of P s� �. To make the
comparison with Theorem 1 clearer, consider the
Corollary.

Corollary 1 (Robust optimality with LTI �). Consider
the conditions in Theorem 3, with the additional condition
that � is equal to its upper bound. Then

inf
K s� �2Kn

s

sup
s�j!

�D Fl G s� �;K�s�� �� �

� max
i�1;...;n

(
inf

�K;ii s� �2K1
s

inf
D̂i s� �2D̂u

s



D̂i s� �Fl G~ i s� �;�K;ii s� �
� �

D̂i s� �
� �ÿ1





1

)
�20�

where D̂u
s � D̂ s� �

n ���D̂ s� � � diag dk s� �� 	
; dk s� � stable and

minimum phase; k � 1; . . . ; ug:

It is much simpler to solve for the controller in (20)
than in (17), although (17) has fewer variables to opti-
mize over. The SISO problems in (17) are coupled while
those in (20) are completely decoupled. If DK-iteration
were applied in both cases, the computation for D in
(17) is coupled, while the computation for each D in
(20) is not. In both cases, the K step is decoupled.
As discussed in the Background section, it is common

for � to be equal to or nearly equal to its upper bound.
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The next result assumes this to generalize Theorem 1 to
address a wider range of uncertainty structures.

Theorem 4 (Robust optimality with SLTV or LTI �).
Consider a nominal model P s� � � U�P s� �VT, where U
and V are real orthogonal matrices and �P s� � is a diag-
onal transfer function matrix. Suppose there is any com-
bination of uncertainties of the following forms: (i)
multiple full block uncertainties and repeated diagonal
multiplicative and inverse multiplicative uncertainties of
the forms listed in Table 1, (ii) an independent diagonal
additive uncertainty of the form (7). Assume that � is
equal to its upper bound. Then a controller of the form
K s� � � V�K s� �UT minimizes

sup
s�j!

�D Fl G s� �;K s� �� �� �

� inf
D s� �2Dnu

s

D s� �Fl G s� �;K s� �� �Dÿ1 s� �

 


1 �21�

where the generalized plant G s� � is constructed from the
nominal model P s� �, the types of uncertainties, and the
uncertainty weights.
Let f refer to the number of full blocks, and d refer to

the number of repeated and independent scalar diagonal
blocks, and let the rows and columns of G be arranged
such that all the full blocks appear as the lower blocks in
D . Then

inf
K s� �2Kn

s

inf
D s� �2Dnu

s

D s� �Fl G s� �;K s� �� �Dÿ1 s� �

 


1

� inf
D̂f s� �2D̂f

s

max
i�1;...;n

inf
�K;ii s� �2K1

s

inf
D̂i

d
s� �2D̂d

s

8><>:
D̂i

d s� �

D̂i
f s� �

264
375Fl G~ i s� �;�K;ii s� �

� �







D̂i

d s� �
� �ÿ1

D̂i
f s� �

� �ÿ1
264

375








1

9>=>; �22�

where

D̂f
s �

�
diag df;k s� �� 	jdf;k s� � stable and minimum phase;

k � 1; . . . ; f
	
; �23�

D̂d
s � diag

�
dd;k s� �� 	��dd;k s� � stable and minimum phase;

k � 1; . . . ; d
	
; �24�

G~ i s� � is constructed from G s� � as de®ned in (13), and
�K;ii s� � are the diagonal elements of �K s� �.

The upper bound is not exactly equal to � for many
problems, at which case the assumption of Theorem 4
will be an approximation. However, this approximation
is a widely accepted one, and is used in all existing
o�-the-shelf software for robust controller synthesis
[52,53].
The next results show that, under increased restric-

tions on the uncertainties, it is possible to construct the
multivariable robust optimal controller by solving a
single SISO robust synthesis problem.

Theorem 5 (Robust optimality with multiplicative LTI
uncertainties). Consider the conditions of Theorem 3 with
the additional conditions that: (i) all the uncertainties are
multiplicative or inverse multiplicative (the full block
uncertainty must correspond to a multiplicative or inverse
multiplicative uncertainty), (ii) the �P;ii s� � 6� 08i, and
(iii) the �P;ii s� � have same right half plane (RHP) poles
and zeros, 8i. De®ne �K;ii;opt as the optimal controller for
any of the SISO robust synthesis problems in the right
hand side of (19). Then the other nÿ 1 SISO robust
optimal controllers can be computed by

�K;ii;opt s� � �
�K;ii;opt s� ��P;ii s� �

�P;ii s� � �25�

Theorem 6 (Robust optimality with additive LTI uncer-
tainties). Consider the conditions of Theorem 3 with the
additional conditions that: (i) there is one additive,
inverse additive, or diagonal additive uncertainty, (ii) the
�P;ii s� � 6� 08i, and (iii) the �P;ii s� � have same RHP poles
and zeros, 8i. De®ne �K;ii;opt as the optimal controller for
any of the SISO robust synthesis problems in the right
hand side of (19). Then the other nÿ 1 SISO robust
optimal controllers can be computed by

�K;ii;opt s� � �
�K;ii;opt s� ��P;ii s� �

�P;ii s� � �26�

Assumption (iii) of Theorems (5) and (6) is not
restrictive, as sheet and ®lm processes have the same
dynamics for each pseudo-singular value, and so share
the same poles and zeros. Assumption (ii) only requires
that a pseudo-singular value is not precisely equal to
zero so that the ratios in (25) and (26) are well-de®ned
[note that this assumption does allow �P;ii s� � to have
zeros]. When a pseudo-singular value is exactly zero,
which occurs for some square and all non-square inter-
actions matrices, then the corresponding SISO con-
troller �K;ii s� � should be set equal to zero, since that
pseudo-singular value and the corresponding columns
of U and V are uncontrollable [41,50,73].
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3.2. Symmetric nominal models

Somewhat broader uncertainty types than those con-
sidered in Theorems 3 and 4 are applicable to sheet and
®lm processes with symmetric nominal models. More
speci®cally, in this case the results hold for diagonal
uncertainties of any of the forms listed in Table 1.

Corollary 2 (Robust optimality with LTI � for sym-
metric nominal models). Assume the conditions of Theo-
rem 3 with the additional condition that U � V. Then
the results of Theorem 3 hold for any combination of
uncertainties of the following forms: (i) one full block
uncertainty of any type, (ii) any number of repeated
diagonal uncertainties of the forms listed in Table 1, (iii)
an independent diagonal additive uncertainty of the form
(7).

Corollary 3 (Robust optimality with SLTV or LTI � for
symmetric nominal models). Assume the conditions of
Theorem 4 with the additional condition that U � V.
Then the results of Theorem 4 hold for any combination
of uncertainties of the following forms: (i) multiple full
block uncertainties and repeated diagonal uncertainties of
the forms listed in Table 1, (ii) an independent diagonal
additive uncertainty of the form (7).

3.3. Remarks

All of the results in this section yield controllers that
are superoptimal [74±76], that is, the H1 norm is mini-
mized in n directions. This is in contrast to the H1
controllers computed by commercial software packages,
which only minimize the H1 norm in the worst-case
direction [52]. From a practical point of view, this
means that the superoptimal H1 will give much better
closed loop response to most disturbances, although it
will have the same overall H1-norm as a non-super-
optimal controller.
The controller design theorems in Sections 3 and 4

yield controllers of the form K s� � � V�K s� �UT. The
robustness for the overall system is by minimizing the
robustness margin for the SISO control problems. The
pseudo-singular values of PCD that are nearly zero can-
not be reliably controlled [41,50]. Separate relationships
for the SISO controllers �K;ii s� � are given depending on
the magnitude of �P;ii 0� �. For �P;ii 0� � close to zero the
corresponding SISO controller �K;ii s� � is set equal to
zero. Otherwise, �K;ii s� � is computed according to the
appropriate theorem from Section 3 or 4. The para-
meter � de®nes the boundary between controllable and
e�ectively uncontrollable pseudo-singular values, and
can be computed from experimental data using a Monte
Carlo algorithm [50]. The SISO robust control problems
associated with the uncontrollable pseudo-singular
values should not be included in the robustness margin

calculations, that is, the multivariable performance
speci®cation is only applied to the controllable plant
directions.
It was shown in previous work that explicit constraint

handling is not always needed when robust control
design methods are used [41,50,77]. This is because
directions corresponding to low gains are not manipu-
lated by the SVD controller. Also, designing of the SVD
controller to be robust prevents overly large dynamic
excursions in the manipulated variables. A recent paper
provides explicit criteria for determining when con-
straint-handling is necessary [78]. In cases where con-
straint-handling is needed, any of the well-established
multivariable anti-windup procedures can be applied
[79±83]. This results in a simple controller imple-
mentation (see the end of the next section for more
details).
When used for controller design via DK-iteration,

the theorems in Section 3 may yield controllers of
unacceptably high order. In practice, low order con-
trollers are often desirable. Low order controllers can be
achieved by using model reduction techniques to reduce
the controller order or by ®xing the controller order in
the synthesis step. The theorems provided above are
suitable for the former approach, while the theorems in
the next section are suitable for the latter. Fixing the
controller order in the synthesis step leads to further
simpli®cations in robust controller design. As will be
seen in the examples section, this simpli®cation can be
with a small loss in closed loop performance.

4. Algorithms for low order robust controller design

The results of the previous section can be used to
compute robust suboptimal controllers using the DK-
iteration method. It is unlikely, however, that any
controller design method, irrespective of complexity,
will produce a controller that gives precisely the desired
stability and performance for all disturbances and all
operating conditions (for example, during startup or
grade changes). This motivates the development of con-
trollers which have parameters that can be tuned (or
detuned) on-line when necessary. Secondly, controllers
produced by DK-iteration tend to have very high order,
while low order controllers are easier to implement.
That an SVD controller optimizes robust perfor-

mance for a variety of uncertainty types suggests that
such low order tunable controllers should be selected to
have the SVD structure. In this way, the low order tun-
able controller will have the optimal directionality. The
algorithms for low order robust controller design for the
LTI uncertainty types considered in Theorem 3 require
less computation and are presented ®rst, followed by
the algorithms for the uncertainty types considered in
Theorems 1, 2, and 4±6.
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4.1. Low order robust controller design for LTI uncertainty

For the LTI uncertainty types covered by Theorem 3,
the following result shows that any SVD controller (14)
decouples the multivariable robust control synthesis
into independent SISO control problems.

Corollary 4 (Robustness analysis with LTI �). Consider
the conditions and notation in Theorem 3. Then

sup
s�j!

�D Fl G s� �;K s� �� �� �

� sup
s�j!

max
i

�
D̂

Fl G~ i s� �;�K;ii s� �
� �� �n o

� max
i

sup
s�j!

�
D̂

Fl G~ i s� �;�K;ii s� �
� �� �( )

�27�

holds for any controller of the form K s� � � V�K s� �UT.

The robustness for the overall system is optimized by
minimizing the robustness margin for the SISO control
problems. A low order multivariable controller can be
designed by designing low order SISO controllers
�K;ii s� �. The controller �K;ii s� � for each SISO problem
can be designed by any robust controller design method;
here we describe the use of internal model control
(IMC) tuning [46] for scalar dynamics described by ®rst
order plus time delay (this is by far the most commonly
used model for describing sheet and ®lm process
dynamics [10,84], for more complex models see [46]:

p s� � � eÿ�s

�s� 1
: �28�

Without loss of generality, the steady-state gain of
p s� � has been scaled so that p 0� � � 1.
The internal model control-proportional integral

derivative (IMC-PID) control form is

�K;ii s� � �

1

�P;ii 0� ��
1� �Ds� 1

�Is
�F;is� 1

� 2� � �
2 li � �� � if �P;ii 0� �

�� �� > �

0 if �P;ii 0� �
�� ��4�

8>>>><>>>>: �29�

�I � � � �
2

; �D � ��

2� � � ; �F;i � li�
2 li � �� � ; �30�

where � is the tolerance as described in Section 3.3. If a
lower order controller is desired, the IMC-PI form is

�K;ii s� � �
�

li�P;ii 0� � 1� 1

�s

� �
if �P;ii 0� �
�� �� > �

0 if �P;ii 0� �
�� ��4�

8<: �31�

The SISO controllers �K;ii s� � are stacked up as the
diagonal elements of a matrix �K s� �, with the overall
SVD controller computed from (14). The number of
states in K s� � constructed using the IMC-PID form (29)
is less than or equal to 2n, whereas using the IMC-PI
form (31) results in K s� � having not greater than n
states.
The IMC tuning parameters li can be selected either

as fast as possible while maintaining robust stability
[43], or to maximize robust performance. If the li are
used to optimize robust performance, then care must be
taken to ensure that the combined uncertainty-perfor-
mance description is not too conservative.
The IMC tuning rules used in (29) and (31) are known

to provide poor load disturbance suppression for pro-
cesses which have the open loop time constant � larger
than the desired closed loop time constant l [85]. For
most sheet and ®lm processes, the time delay dominates
the open loop dynamics and � is relatively small, so that
l will be greater than � for a robust control system [10].
For those rare sheet and ®lm processes where robust
performance allows l < �, the IMC-tuning rules used in
(29) should be replaced by the modi®ed IMC-PID rules
[86].

4.2. Low order robust controller design for the SLTV,
NLTV, NLTI, LTV uncertainties

Here we consider low order controller design for the
uncertainty types considered by Theorems 1, 2, and 4.

Corollary 5 (Robustness analysis with SLTV �). Con-
sider the conditions and notation in Theorem 1. Then

inf
D s� �2Dnu

s

D s� �Fl G s� �;K s� �� �Dÿ1 s� �

 


1

� inf
dk s� �

k�2;...;u

max
i

inf
d1i s� �

D̂i s� �Fl G~ i s� �;�K;ii s� �
� �

D̂i s� �
� �ÿ1



 





1

� �
;

�32�

holds for any controller of the form K s� � � V�K s� �UT

Corollary 6 (Robustness analysis with NLTV, NLTI,
and LTV �). Consider the conditions and notation in
Theorem 2. Then

inf
D2Dnu

DFl G s� �;K s� �� �Dÿ1

 


1

� inf
dk

k�2;...;u

max
i

inf
d1i

D̂iFl G~ i s� �;�K;ii s� �
� �

D̂i
� �ÿ1



 





1

� �
;

�33�

158 J.G. VanAntwerp et al. / Journal of Process Control 11 (2001) 149±177



holds for any controller of the form K s� � � V�K s� �UT,
where Dnu is the set of constant matrices with the same
structure as Dnu

s .

Corollary 7 (Robustness analysis with SLTV or LTI �).
Consider the conditions and notation in Theorem 4. Then

inf
D s� �2Dnu

s

D s� �Fl G s� �;K s� �� �Dÿ1 s� �

 


1

� inf
D̂f s� �2D̂f

s

max
i

inf
D̂i

d
s� �2D̂d

s

8><>:
D̂i

d s� �

D̂i
f s� �

264
375Fl G~ i s� �;�K;ii s� �

� �







D̂i

d s� �
� �ÿ1

D̂i
f s� �

� �ÿ1
264

375








1

9>=>; �34�

holds for any controller of the form K s� � � V�K s� �UT.

If � de®nes a robust performance objective (with �IO

representing the performance speci®cation), then low
order tunable controllers can be designed by solving the
appropriate optimization problem (32), (33), or (34),
with the �K;ii s� � restricted to be a low order controllers,
such as (29) or (31). A procedure similar to DK-itera-
tion can be used to compute a high quality suboptimal
solution to the nonconvex optimization problems. In
the K step, the H1 optimization over the controller is
replaced by an optimization over the li. The optimiza-
tions over the li are independent, and can be easily
automated. Moreover, since the SISO control problems
are nearly decoupled, each li behaves similarly as in
tuning a SISO IMC controller. In particular, for rea-
sonable uncertainty and performance weights, the SISO
robust performance objectives will be large when li is
either small (poor stability robustness) or large (poor
performance). Extensive experience with IMC tuning of
time delay processes indicates that the optimization of
the � upper bound over li will usually have a unique
minimum. Also, given that the �P;ii s� � have the same
dynamics with a nearly continuous range of gains from
low to high singular values of PCD, the minimizing li for
one optimization can be used as an initial condition for
the adjacent optimization (li�1). In the D step, ®tting
the D-scale at each frequency to a transfer function is
unnecessary, since the IMC-PI/PID �K;ii s� �'s are not
computed from the transfer functions di s� �, but only
from their values at each frequency. Thus the modi®ed
DK-iteration procedure avoids both the D-®tting and
the H1-synthesis procedures, which are the steps in

standard DK-iteration that can cause numerical inac-
curacies [23].
An alternative to the modi®ed DK-iteration proce-

dure will be to directly optimize the overall � upper
bound over the li using a generic optimization proce-
dure. This would require re-computing the D-scales
every time the li are updated. The modi®ed DK-itera-
tion procedure, on the other hand, requires a limited
number of D-scale computations if properly initialized.
The independent design procedure in Section 4.1 can be
used to initialize the algorithm.
If the � robustness measure de®nes a robust stability

objective (without inverse multiplicative input or output
uncertainties), then it is desired to select the IMC tuning
parameters li as fast as possible while maintaining
robust stability. This optimization problem can be
posed as:

inf
D̂ s� �2D̂s

max
i

inf
�K;ii s� �2K1

s

D̂Fl G~ i s� �;�K;ii s� �
� �

D̂ÿ1



 




1
ÿ1

��� ���( )
:

�35�

A modi®ed DK-iteration procedure similar to that
described in the previous section can be used to solve
this optimization problem. The robust stability objec-
tive is achievable if and only if the optimal value of the
objective function in (35) is zero (in practice, some tol-
erance close to zero is used). If the optimal value of the
objective function in (35) is greater than zero, then the
uncertainty set must be reduced (for example, through
increased data collection [77]).

4.3. Low order robust controller design for multiplicative
or additive LTI uncertainties

Here we consider low order controller design for the
uncertainty types considered by Theorems 5 and 6.

Corollary 8 (Robustness analysis with multiplicative
LTI uncertainties). Consider the conditions and notation
in Theorem 5. Then

sup
s�j!

�D Fl G s� �;K s� �� �� �

� max
i

sup
s�j!

�
D~ Fl G~ i s� �;�K;ii s� �

� �� �( )
; �36�

holds for any controller of the form K s� � � V�K s� �UT.
Furthermore, all SISO controllers �K;ii s� � can be con-
structed from a single SISO controller design problem.
Let the low order controller designed be denoted i�. The
other controllers are given by

�k;ii;opt s� � �
�K;ii;opt s� ��P;ii s� �

�P;ii s� � �37�
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Corollary 9 (Robustness analysis with additive LTI
uncertainties). Consider the conditions and notation in
Theorem 6. Then

sup
s�j!

�D Fl G s� �;K s� �� �� �

� max
i

sup
s�j!

�
D~ Fl G~ i s� �;�K;ii s� �

� �� �( )
; �38�

holds for any controller of the form K s� � � V�K s� �UT.
Furthermore, all SISO controllers �K;ii s� � can be con-
structed from a single SISO controller design problem.
Let the low order controller designed be denoted i�. The
other controllers are given by

�K;ii;opt s� � �
�K;ii;opt s� ��P;ii s� �

�P;ii s� � �39�

For the uncertainty descriptions treated by Theorems
5 and 6, a controller of the form K s� � � V�K s� �UT

decouples the process into n independent SISO pro-
blems. If low order controllers are desired, �K;ii s� � may
be selected to have the form of (29) or (31) and only one
�K;ii s� � needs to be synthesized. The other controllers
are constructed as multiples of that one controller.

4.4. Implementation

SVD controllers (14) can be implemented in the form
of a static decoupler UT in series with a diagonal
dynamics matrix �K s� � in series with another static
decoupler V. The implementation for the PI and PID
SVD controllers is particularly simple Ð the technology
for implementing static decouplers and noninteracting
PI/PID controllers has been available for over two
decades.
Sheet and ®lm processes usually have min-max and

second-order spatial constraints on their manipulated
variables to prevent excessive stresses (such as in a die
or slice lip) or ¯ow instabilities [10]. These constraints
can be addressed by applying any of the well-established
multivariable anti-windup procedures [79±83] to the
SVD controllers. The SVD controllers with anti-windup
are implementable in real time on large scale sheet and
®lm processes using existing hardware [10].

5. Applications

Here the robust controller design theorems developed
in the previous sections are applied to a model devel-
oped from industrial data that captures many of the
realities of an industrial paper machine.

5.1. Paper machine model

Many of the features of this model are common to
other sheet and ®lm processes (e.g. constant interaction
matrix, scalar dynamics, edge e�ects). The model was
developed from industrial identi®cation data reported
by Heaven et al. [84] who studied the slice lip to weight
pro®le transfer function of a ®ne paper machine (see
[32] for details):

y s� � � eÿ2s

0:533s� 1
Pu s� �: �40�

where y is the vector of measurements of basis weight
(in lbs), u is the vector of actuator positions (in mils),
and PCD is the interaction matrix (with units of lbs/mil).
The actuators are motors which change the slice lip
openings and the weight pro®le is measured by a scan-
ning sensor at the reel of the machine. The interaction
matrix PCD is of the form

PCD � C�G �41�

where the matrix

C �

c2 c7 c12 � � � c37 0 � � � � � � 0 0
c1 c6 c11 � � � c36 0 � � � � � � 0 0
c0 c5 c10 � � � c35 0 � � � � � � 0 0
c1 c4 c9 � � � c34 0 � � � � � � 0 0
c2 c3 c8 � � � c33 c38 0 � � � 0 0
c3 c2 c7 � � � c32 c37 0 � � � 0 0
c4 c1 c6 � � � c31 c36 0 � � � 0 0
c5 c0 c5 � � � c30 c35 0 � � � 0 0
c6 c1 c6 � � � c29 c34 0 � � � 0 0
c7 c2 c7 � � � c28 c33 c38 � � � 0 0

..

. ..
. ..

. . .
. ..

. ..
. ..

. . .
. ..

. ..
.

c35 c30 c25 � � � c0 c5 c10 � � � ..
. ..

.

c36 c31 c26 � � � c1 c4 c9 � � � ..
. ..

.

c37 c32 c27 � � � c2 c3 c8 � � � ..
. ..

.

c38 c33 c28 � � � c3 c2 c7 � � � ..
. ..

.

0 c34 c29 � � � c4 c1 c6 � � � ..
. ..

.

0 c35 c30 � � � c5 c0 c5 � � � ..
. ..

.

..

. ..
. ..

. . .
. ..

. ..
. ..

. . .
. . .

. ..
.

..

. ..
. ..

. � � � ..
. ..

. ..
. � � � c2 c3

..

. ..
. ..

. � � � ..
. ..

. ..
. � � � c3 c2

..

. ..
. ..

. � � � ..
. ..

. ..
. � � � c4 c1

..

. ..
. ..

. � � � ..
. ..

. ..
. � � � c5 c0

..

. ..
. ..

. � � � ..
. ..

. ..
. � � � c6 c1

0 0 0 � � � 0 0 0 � � � c7 c2

26666666666666666666666666666666666666666666666666666664

37777777777777777777777777777777777777777777777777777775
�42�
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ci �

ÿ0:1322i� 1 i � 0; 1; . . . ; 10

ÿ 1:3178� 10ÿ8i6

� 2:1221� 10ÿ6i5

ÿ 1:4006� 10ÿ4i4

� 4:8607� 10ÿ3i3

ÿ 9:4066� 10ÿ2i2

� 0:97362iÿ 4:3108

9>>>>>>>>>>=>>>>>>>>>>;
i � 11; 12; . . . ; 38

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
�43�

represents the interactions between 130 actuators and
650 downstream measurement locations, and the diag-
onal matrix �G captures the variation of the actuator
gains across the machine:

LG;ii �

7:4167� 10ÿ4 i2
ÿ �

ÿ 2:1971� 10ÿ3i
� 0:3015

9>=>; i � 1; 2; . . . ; 10

ÿ 1:1392� 10ÿ6i6

� 4:1401� 10ÿ8i5

ÿ 5:9244� 10ÿ6i4

� 4:2284� 10ÿ4i3

ÿ 1:5624� 10ÿ2i2

� 0:2751iÿ 1:2015

9>>>>>>>>>>=>>>>>>>>>>;
i � 11; 12; . . . ; 43

0:4692 i � 44; 45; . . . ; 87

LG;130ÿi�1;130ÿi�1 i � 88; 89; . . . ; 130

8>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>:
�44�

We consider the case where there is uncertainty in both
the input and the output of the process (see Fig. 4). This
uncertainty includes inaccuracies in the actuators and
sensors, as well as uncertainty associated with the actual
process. The operators �I and �O are unity norm
bounded and assumed to be linear time invariant (LTI).
The magnitude of the uncertainty is set by the weights

WI and WO. Each uncertainty weight (WI, WO) was
chosen to represent up to 10% steady state error and up
to 100% dynamic error. The uncertainty weights also

cover model error due to replacing the time delay with a
3rd order Pade approximation.
The performance weight is selected to ensure less than

0.4% steady-state error and a closed loop time constant
of �p � 5 min. Eq. (5) indicates that the maximum dis-
turbance ampli®cation will be less than 2 at all fre-
quencies, and that the bandwidth of the closed loop
system will be at least 0.2. Rearranging the block dia-
gram in Fig. 4 and including a performance block
results in the generalized plant matrix

G �
0 0 0 ÿWI

WOP 0 0 ÿWO

WPP WP ÿWP ÿWPP
P I ÿI ÿP

2664
3775 �45�

where

WI �WO � 0:1 10s� 1� �
s� 1

I �46�

WP �
0:5 �ps� 1
ÿ �

�ps� 0:002
I �47�

�p � 5 �48�

Controllers designed to be robust to the uncertainty
description will also be insensitive to measurement
noise, as the uncertainty speci®cations require a rollo�
of the complementary sensitivity function.

5.1.1. The inadequacy of commercial software
The commercial software packages for designing

robust controllers are the Matlab �-toolbox [52] and the
Robust Control Toolbox [53]. It is impossible to even
form the G matrix (45) for the large scale paper machine
in Matlab on a Sparc Ultra 2200 computer with 64 MB
of RAM and 240 MB of swap space Ð the computer
runs out of memory.
It is instructive however to estimate the time required

to design a robust controller using the standard DK-
iteration procedure [43,46,52,53,87] if it were possible to
perform these calculations. For only 20 actuators, one
DK-iteration step took 77 min. One H1 synthesis step
took 20 min, � analysis took 57 min for 50 frequency

Fig. 4. Block diagram with both input and output uncertainty.
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points, and the D-®tting step took 2 s. Assuming that
scaling up to 130 actuators follows an O n3

ÿ �
increase in

computation time, and that six DK-iteration steps are
necessary, then DK-iteration for 130 actuators would
require more than 2000 h of computation. Note that
assuming an O n3

ÿ �
increase in computation time is a

lower boundÐ it is likely that a higher order would occur
in practice. For example, for 40 actuators the � analysis
step took more than 30 min per frequency point.
The conservative timing estimates above are for the

case where the uncertainties are all full block. DK
iteration for repeated scalar uncertainties is not imple-
mented in the commercial software packages. If it were
implemented, the D-®tting step for repeated scalar
uncertainties would take much longer, as in this case the
number of degrees of freedom to be computed grows
very rapidly (quadratically) as a function of plant input-
output dimension. This high computational expense is
likely why the D-®tting step for repeated scalar uncer-
tainties is not implemented in commercial packages.
Even if a supercomputer with GBs of RAM and/or

swap space were available, and if time to compute the
robust optimal controller was not a concern, the paper
machine control problem has a large enough dimen-
sionality that the DK iteration algorithm would likely
produce highly suboptimal results (the algorithm would
have di�culty converging). This behavior has been
demonstrated on much smaller problems in past work
[23]. Also, the resulting controller would be of very high
order and would be expensive to implement.
This motivates the robust controller design proce-

dures presented in this manuscript. The dimensionality
reduction theorems given here allow robust controllers
to designed for systems in which no other design tech-
niques are suitable. The total computation time of the
following algorithms is on the order of minutes on a
Sun Workstation or Pentium II.

5.2. Full order controller design for repeated scalar input
and output uncertainties

If DI and DO are treated as being repeated scalar, then
the input±output uncertainty description satis®es the
conditions of Theorem 5, and the robust controller
design problem reduces to the design of a single �K;ii s� �.
The n lower dimensional transfer functions G~ i s� � are
constructed as shown in (13):

G~ i s� � �
0 0 0 ÿwI s� �

wO s� ��P;ii s� � 0 0 ÿwO s� ��P;ii s� �
wP s� ��P;ii s� � wP s� � ÿwP s� � ÿwP s� ��P;ii s� �

�P;ii s� � 1 ÿ1 ÿ�P;ii s� �

2664
3775;

�̂ �
�I 0 0
0 �O 0
0 0 �P

24 35:
�49�

The multivariable robust control problem decouples
into independent SISO robust control problems as
de®ned in (19), where

Fl G~ i s� �;�K;ii s� �
� �

�

ÿwI s� ��K;ii s� ��P;ii

1��K;ii s� ��P;ii s� �
ÿwI s� ��K;ii s� �

1��P;ii s� ��K;ii s� �
wI s� ��K;ii s� �

1��P;ii s� ��K;ii s� �

wO s� ��P;ii s� �
1��K;ii s� ��P;ii s� �

ÿwO s� ��P;ii s� ��K;ii s� �
1��K;ii s� ��P;ii s� �

ÿwO s� ��P;ii s� ��K;ii s� �
1��K;ii s� ��P;ii s� �

wP s� ��P;ii s� �
1��K;ii s� ��P;ii s� �

wP s� �
1��K;ii s� ��P;ii s� �

ÿwP s� �
1��K;ii s� ��P;ii s� �

2666666666664

3777777777775
�50�

Since the number of uncertainties in the SISO problem
(49) is less than four, � is equal to its upper bound. DK-
iteration can be used to compute a �-suboptimal solu-
tion for the SISO controller design problem.
Using the �-toolbox [52], DK-iteration was applied to

one of the SISO robust control problems de®ned in (49).
The frequency-dependent D scales, D s� �, were allowed
to be up to third order. The DK-iteration procedure
was stopped after six steps, at which point the max-
imum value of � was 0.96. DK-iteration for this SISO
system required about 10 s of computation per iteration
on Sparc Ultra 2200. The state space matrices for the
SISO controller are given in the Appendix. The other
robust SISO controllers �K;jj s� � were constructed as
shown in (25), and the robust multivariable controller
constructed as shown in (14). The value of � for the
SISO problem is equal to � for the multivariable system
(see Fig. 5).

Fig. 5. � as a function of frequency for the full order controller with

repeated scalar uncertainties (dashed), the low order controller with

repeated scalar uncertainties (solid), and the full order controller with

full block uncertainties (dotted).

162 J.G. VanAntwerp et al. / Journal of Process Control 11 (2001) 149±177



Fig. 7 is the closed loop response to the disturbance in
Fig. 6, where the controller attempts to control all of the
pseudo-singular values of the paper machine. For
industrial paper machines, some of the pseudo-singular
values are usually uncontrollable (see Section 4.1). The
controller used in the closed loop simulations shown in
Fig. 8 does not attempt to control the pseudo-singular
values of the paper machine corresponding to the sin-
gular values of the interaction matrix PCD (42) smaller
than � � 0:12 (algorithms to compute � directly from
experimental data are provided in [50]). In this case, �
for robust performance applies only for the controllable
pseudo-singular values. The loss in closed loop time
domain performance in not controlling the smallest
pseudo-singular values is negligible. Both controllers are
insensitive to high frequency measurement noise (mea-
surement noise was not included in the time domain

simulations so that the details of the closed loop
responses would be clear).
Figs. 9 and 10 illustrate the robustness of the control

to model uncertainties. The dynamic perturbations were
selected to be time delays because the dynamics asso-
ciated with time delays are known to be particularly
di�cult to handle by most control systems. The closed
loop responses demonstrate similar robustness for a
wide variety of other model perturbations [88].

5.3. Low order robust controller design

Here the same uncertainty description for the paper
machine is assumed as in Section 5.2, but the SISO robust
controllers are designed to be in the IMC-PI form (31).
For the selected input±output uncertainty description

with the SVD control structure, Corollary 8 holds. Only

Fig. 7. The closed loop response of the paper machine to the process

disturbance in Fig. 6 for the nominal model. The controller was

designed via DK-iteration to control all the pseudo-singular values of

the process.

Fig. 6. The process disturbance, which represents a streak down the

middle of the paper machine. Such disturbances are commonly

encountered in industrial paper machines.

Fig. 8. The closed loop response of the paper machine to the process

disturbance in Fig. 6 for the nominal model. The controller was

designed via DK-iteration to control a subset of the pseudo-singular

values of the process.

Fig. 9. The closed loop response of the paper machine to the process

disturbance in Fig. 6 for repeated scalar input uncertainty �I and

output uncertainty �O equal to a 3rd order Pade approximation for a

time delay of 2 min times the identity matrix. The controller was

designed via DK-iteration to control a subset of the pseudo-singular

values of the process.
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one SISO PI controller �K;ii s� � needs to be designed.
The multivariable robustness margin reduces to the cal-
culation of � for a single 3�3 transfer function matrix,
which took less than 0.2 seconds for each frequency on
a Sparc Ultra 2200. The single IMC tuning parameter
l � li was selected to minimize the value of �. This
resulted in li � 8:26 min, with a multivariable � value
of 1.028 (see Fig. 5). A rescaling of the uncertainty and
performance weights by 3% would give � < 1. The low
order controller has � greater than one for the given
uncertainty and performance weights because restricting
the controller to be low order is suboptimal. The multi-
variable SVD controller was constructed from the SISO
controller as described in the last section.
The multivariable closed loop responses to a variety

of perturbations are similar to those for the full order
controller in Figs. 7±10 [88]. The low order controller
required less computations to design, and has a simple
tuning parameter, l, which can be re-tuned on-line
should the uncertainty description have been too opti-
mistic or too conservative.

5.4. Full-block input and output uncertainties

Now let �I and �O be full blocks. In this case, since
there are less than four full blocks, the robustness mar-
gins for LTI and SLTV are equal [56] and Theorem 1
applies. The multivariable robust control synthesis pro-
blem can be replaced by the coupled SISO problems in
(17) with G~ i de®ned by (49).
If DK-iteration is used to compute a �-suboptimal

controller, only two transfer functions d1 s� � and d2 s� �
need to be ®tted in the D-step. It is more expensive to
compute each dk s� � than in the repeated scalar case
(5.2), since each dk s� � appears in multiple SISO H1-
synthesis problems. All the G~ i s� � and �K;ii s� � are used to

compute the d1 s� � and d2 s� � for the next iteration. The
D-scale computation could be posed as a highly struc-
tured Linear Matrix Inequality (LMI) optimization (for
more details, see [66,89,90]), the dimension of which is
equal to the dimension of the original multivariable
robust control synthesis problem. The K-step, on the
other hand, consists of independent SISO robust con-
troller synthesis problems.
The wide range of gains of the pseudo-singular values

in the coupled SISO problems caused the optimization
over the dynamics of d1 and d2 to provide negligible
improvement over constant D-scales. Optimization over
even a constant d2 had negligible e�ect as well. This is
not surprising since the robustness of the overall system
is much more sensitive to full-block input uncertainty
than full-block output uncertainty when the plant is
poorly conditioned, as it is in this case. This restricted
the number of degrees of freedom in the D-scales
enough that it was necessary to relax the performance
weight to �p � 8 in order to get � < 1. The optimization
over the D-scales gave d1 � 0:15 and d2 � 1, with � �
0:99 (see Fig. 5). With the D-scales ®xed, about 10 s was
required to compute the H1 controller for each SISO
subproblem on a Sparc Ultra 2200.
The nominal closed loop response to the disturbance

in Fig. 6 was similar to those in the previous sections. A
closed loop response is shown in Fig. 11 for the paper
machine model with full block input and output per-
turbations. That is, the input and output uncertainties
are full random matrices with norm one. Attempts to
simulate a process with anti-diagonal time delay per-
turbations failed because the computer did not have
enough memory to create the uncertain transfer function.
It was possible to create the transfer function matrix in
Matlab for a constant anti-diagonal perturbation, but
the time domain simulation would not converge.

Fig. 10. The closed loop response of the paper machine to the process

disturbance in Fig. 6 for repeated scalar input uncertainty �I and

output uncertainty �O equal to minus one times a 3rd order Pade

approximation for a time delay of 2 min times the identity matrix. The

controller was designed via DK-iteration to control a subset of the

pseudo-singular values of the process.

Fig. 11. The closed loop response of the paper machine to the process

disturbance in Fig. 6 for full block input uncertainty �I and output

uncertainty �O equal to a worst-case norm random matrix. The con-

troller was designed via DK-iteration to control a subset of the

pseudo-singular values of the process.
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Time domain responses for other random full block
uncertainties demonstrated similar robustness [88]. In
all cases, the robust controllers derived from the theorems
in this paper achieved monotonic or near monotonic
rejection of the disturbance within the desired settling time.

6. Conclusions

Control algorithms for sheet and ®lm processes based
on modi®ed DK-iteration procedures were presented
that address model uncertainties in a numerically e�-
cient and e�ective manner. Alternative algorithms
requiring less computations were presented for the
design of robust low order tunable controllers. The low
order controllers were of the form of two static decou-
pling matrices in series with either a diagonal PI or PID
controller. The algorithms are applicable to large scale
sheet and ®lm processes with arbitrary interaction
matrices and very general uncertainty structures. These
results, based on re®nements of theorems by Hovd,
Braatz, and Skogestad [23,37,38], are substantially more
general and less conservative than previous approaches.
Contributions of this manuscript include:

. The theorems are constructive.

. In many cases a more complete model reduction is
derived, in that the robust multivariable controller

can be constructed from the solution of a single
SISO robust control problem.

. Low order tunable controllers can be designed.
For the simple types of dynamics usually asso-
ciated with sheet and ®lm processes, the resulting
controllers will give nearly the same robust per-
formance as high order controllers, while being
simpler to implement.

. More general processes and uncertainty structures
are considered. This includes non-square processes
and other processes with a singular interactions
matrix, and perturbations which are nonlinear
and/or time-varying.

. For the ®rst time, these algorithms are applied to a
simulated paper machine which has a realistic
description of interactions across the machine.
This example is of substantially higher dimension-
ality than that of any robust control problem ever
considered.
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Appendix

The Appendix contains some preliminary mathematics need in the proofs of the theorems and corollaries, and the
state space matrices for the robust controllers computed in the examples.

A1. Preliminary mathematics

First we present a Lemma that will be used in proving our results.

Lemma 1 (Optimality of the SVD controller). Consider the robust synthesis problem

inf
K~ s� �2Kn

s

sup
s�j!

�� Fl G~ s� �;K~ s� �
� �� �

; �51�

where G~ s� � is composed of diagonal sub-blocks of dimension n� n. Then a diagonal controller K~ s� � is optimal.

Note that the Lemma also holds if the H1 norm is replaced by a � problem which has a single full block D , since
these objectives are equivalent [56].
Without loss in generality, each proof considers one of each type of uncertainty D � diag D kf g ��

diag DDA;D A;D IA;D O;D IO;D I;D IIf g. Below is some preliminary algebra which is used in the proofs. For brevity,
dependence on s will be suppressed.
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The G matrix for the system shown in Fig. 12 is:

G �

0 0 0 0 0 VT ÿVT ÿVT

0 0 0 0 0 wAI ÿwAI ÿwAI

0 0 ÿwIAP 0 0 wIAP ÿwIAP ÿwIAP

wOU�DA wOI ÿwOP 0 0 wOP -wOP ÿwOP

wIOU�DA wIOI ÿwIOP wIOI ÿwIOI wIOP -wIOP ÿwIOP

0 0 0 0 0 0 ÿwII ÿwII

0 0 0 0 0 0 ÿwIII ÿwIII

U�DA I ÿP I ÿI P ÿP ÿP

266666666666666664

377777777777777775
: �52�

This can be written as G � UwG~V
T
w where

Uw � diag I;V;U;U;U;V;V;U� � �53�

VT
w � diag I;UT;VT;UT;UT;VT;VT;VT

ÿ �
: �54�

and G~ is partitioned compatibly with G and has diagonal n� n sub-blocks. Also de®ne

Uw1 � diag I;V;U;U;U;V;V;� � �55�

VT
w1 � diag I;UT;VT;UT;UT;VT;VT

ÿ � �56�

The scaled G~ is also partitioned compatibly with G and has diagonal sub-blocks:

D 0

0 I

� �
G~

Dÿ1 0

0 I

� �
�

0 0 0 0 0
1

d6
D1

ÿ1
d7

D1 ÿD1

0 0 0 0 0
d2wAI

d6

ÿd2wA

d7
I ÿd2wAI

0 0 ÿwIA�P 0 0
d3wIA

d6
�P

ÿd3wIA

d7
�P ÿd3wIA�P

d4wO�DAD
ÿ1
1

d4wO

d2
I
ÿd4wO

d3
�P 0 0

d4wO

d6
�P

ÿd4wO

d7
�P ÿd4wO�P

d5wIO�DAD
ÿ1
1

d5wIO

d2
I

-d5wIO

d3
�P

d5wIO

d4
I ÿwIOI

d5wIO

d6
�P

ÿd5wIO

d6
�P ÿd5wIO�P

0 0 0 0 0 0
ÿd6wI

d7
I ÿd6wII

0 0 0 0 0 0 ÿwIII ÿd7wIII

�DAD
ÿ1
1

1

d2
I

-1

d3
�P

1

d4
I
ÿ1
d6

�P
1

d6
�P

ÿ1
d7

�P ÿ�P

266666666666666666666666666664

377777777777777777777777777775

�57�
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A2. Proof of Lemma 1
This Lemma essentially shows that a decentralized controller is optimal for a decentralized plant with decentralized

weights (costs).
The optimal controller solves

inf
K~2Ks

Fl G~ ;K~
� �


 




1
�58�

where Ks represents the set of all stabilizing controllers.
The key to a rigorous proof that a diagonal controller K~ can be chosen to be optimal is to reparameterize the above

optimization over K~ as an optimization over the Youla matrix Q, and then use matrix dilation theory to show that Q
can be taken to be diagonal. The set of all stabilizing K~ is given by

Ks � K : K � Yÿ TQ� � Xÿ SQ� �ÿ1;Q 2 RH1
� 	 �59�

� K : K � X~ ÿQS~
� �ÿ1

Y~ ÿQT~
� �

;Q 2 RH1
� �

�60�

where S;T� � and (S~ ;T~ ) are right and left coprime factors of G~ 22, respectively (i.e. G~ 22 � STÿ1 � T~ÿ1S~ ), and
X;Y;X~ ;Y~
� �

is a solution to the following Bezout identity:

X~ ÿY~
ÿS~ T~

� �
T Y
S X

� �
� I �61�

Note that, since G~ 22 is diagonal, we may choose T;S;X~ ;Y~ ;X;Y;T~ ;S~ to all be diagonal (to do this, ®rst construct
the right and left coprime factors of each subsystem and stack these on the diagonal to construct right and left coprime
factors of the overall system).
Using the parameterization (59) and (60), (58) becomes

inf
Q2RH1

G11 � G12QG21



 


1 �62�

where

G11 � G~ 11 � G~ 12TY~G~ 21 �63�

G12 � G~ 12T �64�

G21 � T~G~ 21 �65�
The only restriction on Q is that it should be analytic in the closed RHP.
The matrix G11 consists of diagonal blocks because G~ 11, G~ 12, and G~ 21 consist of diagonal blocks and T and Y~ are

diagonal. Similarly, G12 and G21 also consist of diagonal blocks. Thus, each entry of G11 � G12QG21 will have one Qij

in it, and the rows and columns of this matrix can be permuted so that the permuted matrix can be partitioned with
only one Qij in each partition (permuting the rows and columns of a matrix does not change the value of its unitary-
invariant norm). Call this permuted matrix P Q� � and let Pij Qij

ÿ �
be the partition containing Qij. Then

inf
Q2RH1

G11 � G12QG21



 


1� inf

Q2RH1
P Q� �

 



1 �66�

The maximum singular value of a matrix [in this case, P Q� �] is greater than the maximum singular values of each
partition Pij of P Q� � [40], that is,

inf
Q2RH1

P Q� �

 


1� inf

Q2RH1 andQ full
sup
!

P Q� ���
s�j!

� �
�67�
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5 inf
Qij2RH1

max
i;j

sup
!
�� Pij Qij

ÿ ���
s�j!

� �� �
�68�

5 inf
Qii2RH1

max
i

sup
!
�� Pii Qii� �

��
s�j!

� �� �
�69�

� inf
Q2RH1 andQ diagonal

sup
!
�� P Q� ���

s�j!
� �

�70�

� inf
Q2RH1 andQ diagonal

sup
!
�� G11 � G12QG21� ��

sÿj!
�
: �71�

Thus minimizing over diagonal Q gives an H1-norm less than or equal to the value obtained by minimizing over full
Q. Since Q being diagonal is more restrictive than allowing Q to be full, the above inequalities are equalities and the
optimal Q can be taken to be diagonal. That diagonal Q corresponds to diagonal K can be seen from (59) and (60),
that is

inf
Q2RH1 andQdiagonal

sup
!
�� G11 � G12QG21

��
s�j!

� �
�72�

� inf
K~2Ks andK~ diagonal

Fl G~ ;K~
� �


 




1
: �73�

QED.

A3. Proof of Theorem 1
The necessity and su�ciency of (15) as a test for robustness to arbitrarily-slow linear time varying full block

uncertainties was shown by Poolla and Tikku [48]. Now

inf
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s

inf
D2Dnu

s

DFl G;K� �Dÿ1
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inf
dk

k�2;...;u

max
i�1;...;n

inf
�K;ii2K1

s

inf
d1i

DiFl G~ i;�K;ii

� �
Di
ÿ �ÿ1


 




1

( )
: �83�

The fact that (80) is equal to (81) follows from Lemma 1. QED.

A4. Proof of Theorem 2
That constant scaling matrices provide a necessary and su�cient condition for robustness to LTV, NLTI, and

NLTV uncertainties was shown in [49]. The rest of the proof follows the same steps as that of Theorem 1. QED.

A5. Proof of Theorem 3
Consider G � UwG~V

T
w where G~ has diagonal sub-blocks. Then

inf
K2Kn

s

sup
s�j!

�D Fl G;K� �� � � inf
K2Kn

s

sup
s�j!

�D Fl UwG~V
T
w;K

� �� �
�84�

� inf
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sup
s�j!

�D Uw1Fl G~ ;VTKU
� �

VT
w1

� �
�85�

� inf
�K2Kn

s

sup
s�j!

�D Fl G~ ;VTKU
� �� �

�86�

The last step follows from two observations. For the sub-blocks of � which are repeated diagonal, the corre-
sponding sub-blocks of Uw1 and VT

w1 commute with the sub-block of � and cancel. The sub-blocks of Uw1 and VT
w1

corresponding to a full uncertainty block can be absorbed into the uncertainty to produce an equivalent full uncer-
tainty block (that is, it will have the same set).
By assumption � has at most one full block. Absorb uÿ 1 diagonal blocks of � into G. The remaining block can be

either full or diagonal without a�ecting the value of �. By taking the remaining block as full, Lemma 1 implies that a
diagonal VTKU � �K is optimal for all values of the diagonal uncertainties, and hence is optimal for (86). Now by
taking the remaining block as diagonal, (86) is equivalent to

inf
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QED.

A6. Proof of Corollary 1

inf
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QED.
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A7. Proof of Theorem 4
The equations are given ®rst and comments follow.
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1
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In (97) we have absorbed the diagonal blocks of � into G~ which produces a diagonally scaled G~ denoted by G~ s (this
scaling is the same as that used in skewed-�, for details see [91±94]. For any ®xed values of the diagonal blocks of �,
Theorem 1 may be applied to show that a diagonal controller is optimal. If it is optimal for any ®xed values, it is
optimal for the worst case values.
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In (99) we replaced �� with ��~BF
where �~ BF is one large full block [56]. The step from (102) to (103) holds as a direct

application of Corollary 1. The step from (104) to (105) holds since Dd has a extra degree of freedom (thus dBF may be
set to one without loss of generality). QED.

A8. Proof of Theorem 5
Under the assumptions, (19) of Theorem 3 holds. Pick any i� 2 1; n� � and de®ne

�̂K;ii � �K;ii�P;ii

�P;ii
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since, for the assumed uncertainty types, the above matrices contain �P;ii and �K;ii only as the product �P;ii�K;ii. Since
(112) is the SISO control problem for �P;ii, we have

�̂K;ii;opt � �K;ii;opt ) �K;ii;opt �
�P;ii;opt�K;ii

�P;ii
: �113�

Note that assumptions (ii) and (iii) were required to ensure complete SISO control problem equivalence (that is,
internal stability as well as the � condition is satis®ed). At the surface it may appear that it would also be required that
�P;ii have no zeros or poles at s � 0. However, the continuity of � allows the construction of a limit argument to show
that zeros or poles at s � 0 are allowed [95].
QED

A6. Proof of Theorem 6
Under the assumptions, (19) of Theorem 3 holds. Pick any i� 2 1; n� � and de®ne

�̂K;ii � �K;ii�P;ii

�P;ii

: �114�
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For any i

arg inf
�K;ii2K1

s

sup
s�j!

�
D~ Fl G~ i;�K;ii

� �� �
� arg inf

�̂K;ii2K1
s

sup
s�j!

�
D~ Fl G~ i�; �̂K;ii

� �� �
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Now apply that same argument as used in the proof of Theorem 5. QED.

A10. Proof of Corollary 2
Similar to the proof of Theorem 3. QED.

A11. Proof of Corollary 3
Similar to the proof of Theorem 4. QED.

A12. Proof of Corollary 4
Similar to the proof of Theorem 3. QED.

A13. Proof of Corollary 5
Similar to the proof of Theorem 1. QED.

A14. Proof of Corollary 6
Similar to the proof of Theorem 2. QED.

A15. Proof of Corollary 7
Similar to the proof of Theorem 4. QED.

A.16. Proof of Corollary 8
Similar to the proof of Theorem 5. QED.

A.17. Proof of Corollary 9
Similar to the proof of Theorem 6. QED.

A.18. State space matrices of the controller designed in Section 5.2

Ak �

Columns 1ÿ3

ÿ5:880071907852288e� 02 6:148744672296147e� 02 4:604740029212040e� 02
5:604233917995811e� 01 ÿ6:283292865721634e� 01 ÿ1:691823275285767e� 01
ÿ1:546954497030094e� 01 2:191712894846478� 01 ÿ3:890468609915896eÿ 01
9:311545220904512eÿ 16 ÿ1:002746785079390eÿ 15 ÿ7:189989990010580eÿ 16
1:747568665938097eÿ 15 ÿ1:881931322784988eÿ 15 ÿ1:349400224867352eÿ 15
5:168031888201593eÿ 01 ÿ1:164315286585576e� 00 ÿ8:021795349521191eÿ 01
ÿ1:138880502746125e� 00 2:565804560859658e� 00 1:767765083154003e� 00
3:016528151784629e� 00 ÿ6:795991037819960e� 00 ÿ4:682241136113864e� 00
ÿ1:490982062881223eÿ 01 3:359060558044675eÿ 01 2:314295506872773eÿ 01
4:534129462957375eÿ 01 ÿ1:021502258360954e� 00 ÿ7:037854917868097eÿ 01
ÿ2:408891108259889e� 00 5:427034510893976e� 00 3:73906909275055e� 00
2:227914152170288e� 00 ÿ5:019308240907330e� 00 ÿ3:458158109630253e� 00
ÿ3:218198676091172eÿ 15 3:465631428124776eÿ 15 2:484959877015252eÿ 15
ÿ1:301471937665606eÿ 15 1:401536233143548eÿ 15 1:004942786841387eÿ 15
1:740120485458225eÿ 15 ÿ1:873910485368964eÿ 15 ÿ1:343649048040776eÿ 15
6:361093229963488eÿ 16 ÿ6:850168940399087eÿ 16 ÿ4:911773026273162eÿ 16
6:277618792368714eÿ 16 ÿ6:760276530547976eÿ 16 ÿ4:847317518998088eÿ 16
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Columns 4ÿ6

ÿ2:518737189454669e� 02 ÿ8:207425911351102e� 02 4:016757110238605e� 03
1:540021980744796e� 01 5:018235472019094e� 01 ÿ2:455950651373719e� 02
ÿ4:364834033951118e� 00 ÿ1:422302100393165e� 01 6:960820769347728e� 01
ÿ8:265644312716370e� 01 ÿ1:347353451334145e� 00 ÿ6:634331338467195eÿ 15
1:786532630293183e� 00 ÿ5:903219215036291eÿ 02 ÿ1:190116941665417eÿ 14
ÿ5:954429810346211eÿ 01 1:454723830235523e� 00 ÿ7:174092503276716e� 00
ÿ1:512726989370992e� 00 ÿ3:228108488833820e� 00 1:712162732350863e� 01
ÿ5:555230480618331e� 00 8:474637242388923e� 00 ÿ4:179160438722221e� 01
ÿ4:334599934426976eÿ 01 ÿ4:244734476200322eÿ 01 2:065637361398801e� 00
8:606041586127435eÿ 01 1:287221971883328e� 00 ÿ6:281676656796931e� 00
ÿ2:092695851781515e� 00 ÿ6:819149782834415e� 00 3:337327521665450e� 01
8:896187620953473e� 00 6:361857614333061e� 00 ÿ3:086598306768993e� 01
1:838522761346047e� 01 1:454077465700355eÿ 01 2:199019483247496eÿ 14
3:037564364282468e� 00 2:401086839222032eÿ 02 8:874789698245302eÿ 15
ÿ6:705799569379678e� 00 ÿ5:300696598177999eÿ 02 ÿ1:187920560130718eÿ 14
ÿ3:294305308792737eÿ 01 ÿ2:604031445170019eÿ 03 ÿ4:376380741688733eÿ 15
2:931507431542018eÿ 01 2:317252597418788eÿ 03 ÿ4:277264465118866eÿ 15

Columns 7ÿ9

1:504246426113544e� 02 1:525070510577801e� 03 ÿ3:329230683724810e� 03
ÿ9:197357193003622e� 00 ÿ9:324681107297295e� 01 2:035578961303343e� 02
2:606776929184614e� 00 2:642863930629627e� 01 ÿ5:769375009046735e� 01
2:234494381634972eÿ 14 ÿ1:546415674605307eÿ 14 ÿ5:687376785619688eÿ 01
ÿ7:641468864095658eÿ 16 ÿ4:332731699650277eÿ 15 5:050899772695990eÿ 03
ÿ1:572125549019853e� 00 ÿ2:885616450796306e� 00 5:941956540594664e� 00
4:422437901327094eÿ 01 3:628293611098791e� 00 ÿ1:305437165084760e� 01
1:013673413206383e� 00 ÿ1:808353651471117e� 01 3:451939524547544e� 01
7:735662210222391eÿ 02 1:198427614464494e� 00 ÿ1:744775419349829e� 00
ÿ2:352442381169413eÿ 01 ÿ3:644460983966932e� 00 5:318505537686632e� 00
1:249804969396672e� 00 1:267106685255740e� 01 ÿ2:766095355491361 � 01
ÿ1:155908695591889e� 00 ÿ1:790761880431088e� 01 2:599254552566666e� 01
ÿ4:568064743158970eÿ 15 1:142558079306990eÿ 14 1:468590234726399eÿ 01
ÿ5:389191681212471eÿ 16 3:860318418220820eÿ 15 2:928977227012811eÿ 02
1:520714377337405eÿ 15 ÿ5:631857556122544eÿ 15 ÿ5:350055242693297eÿ 02
1:883703905232138eÿ 16 ÿ1:948351299877517eÿ 15 6:509477441801849eÿ 02
ÿ2:391325201017346eÿ 16 ÿ1:581266453034795eÿ 15 4:186260809490598eÿ 03

Columns 10ÿ12

ÿ6:033542782401723e� 02 ÿ2:361824502053449e� 03 ÿ9:699111577159437e� 02
3:689066308928619e� 01 1:444081448057488e� 02 5:930291213016883e� 01
ÿ1:045580022885556e� 01 ÿ4:092912913639285e� 01 ÿ1:680803082128656e� 01
2:148937879454401e� 01 ÿ1:276600856798962eÿ 11 ÿ9:597327131896650e� 01
ÿ2:849345083709308eÿ 01 1:757648657146881eÿ 13 1:349787265190995e� 00
1:322063592077839e� 00 4:016883123307948e� 00 1:900748850110523eÿ 01
ÿ2:305584665278505e� 00 ÿ8:852015563970417e� 00 ÿ4:871374333183550e� 00

8:749969190898078� 00 2:344614214078176e� 01 7:095440459624101eÿ 01
ÿ5:698009108790048eÿ 02 ÿ1:158874560974575e� 00 ÿ8:359547880219935eÿ 01
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1:354668360317635eÿ 02 3:524178742052303e� 00 2:956546775033679e� 00
ÿ5:012976345900557e� 00 ÿ1:972324754951022e� 01 ÿ8:0585186292282359e� 00
1:693829607087231e� 00 1:731659353430797e� 01 1:030008363738264e� 01
ÿ5:195583450271068e� 00 3:076586046944202eÿ 12 2:291375800934379e� 01
ÿ8:732600801466369eÿ 01 5:150827891630203eÿ 13 3:708399980908524e� 00
1:893891079549973e� 00 ÿ1:119196544599048eÿ 12 ÿ8:353515348056909e� 00
ÿ1:129085201254176eÿ 01 8:346623946347433eÿ 14 ÿ1:422334750303090e� 00
08:84114471291422eÿ 02 5:546306742616683eÿ 14 3:375768808475222eÿ 01

Columns 13ÿ15

2:612824770728370e� 02 ÿ2:458118279523622e� 02 ÿ1:509455164352034e� 02
ÿ1:597549595727122e� 01 1:502957989259916e� 01 9:229204784776213e� 00
4:527882675403263e� 00 ÿ4:259784772648334e� 00 ÿ2:615803388170683e� 00
ÿ4:126827894911816eÿ 16 3:882476620161116eÿ 16 2:384110005444475eÿ 16
ÿ7:745132464884936eÿ 16 7:286539802651294eÿ 16 4:474440968520103eÿ 16
6:832400925277543eÿ 02 4:708152797602322eÿ 01 2:598064579192431eÿ 01
ÿ1:505657931120921eÿ 01 ÿ1:037536830486723e� 00 ÿ5:725361526643380eÿ 01
3:988003592324785eÿ 01 2:748101359299717e� 00 1:516464122673138e� 00
ÿ1:971154096305844eÿ 02 ÿ1:358306512495912eÿ 01 ÿ7:495440758842742eÿ 02
5:994349688429951eÿ 02 4:130658397146136eÿ 01 2:279390183732075eÿ 01
2:170868632911270e� 00 ÿ2:042330556869504e� 00 ÿ1:254132655885890e� 00
2:945415787680354eÿ 01 2:029662446995587e� 00 1:120013376358902e� 00
1:536076500855985e� 00 ÿ1:999611752484199e� 01 5:253082020888732e� 00
1:999611752484184e� 01 ÿ2:401527592458446e� 01 1:091516833465946e� 01
ÿ5:253082020888680e� 00 1:091516833465946e� 01 ÿ8:277776883445661e� 00
ÿ2:819203081848754eÿ 16 2:652276841071862eÿ 16 1:628681991585485eÿ 16
ÿ2:782207649897801eÿ 16 2:617471924739046eÿ 16 1:607309358241906eÿ 16

Columns 16ÿ17

ÿ3:521949820207279e� 02 1:202207848415532e� 03
2:153412496114261e� 01 ÿ7:350614108273361e� 01
ÿ6:103346750693381e� 00 2:083360564419734e� 01
1:649825182048802eÿ 01 1:304128260855715eÿ 03
3:305304236890853eÿ 02 2:612725707489746eÿ 04
6:440432501452810eÿ 01 ÿ2:142815582291262e� 00
ÿ1:352629057058886e� 00 4:722655003392209e� 00
3:770668974448044e� 00 ÿ1:250730815729212e� 01
ÿ1:533177392850852eÿ 01 6:184611286261353eÿ 01
4:203244851449394eÿ 01 ÿ1:881125263626151e� 00
ÿ2:926216284012265e� 00 9:988558504203477e� 00
2:533748524177969e� 00 ÿ9:239495217611880e� 00
ÿ1:722476028671700eÿ 01 ÿ1:361556177024859eÿ 03
ÿ9:413569841909747eÿ 02 ÿ7:441092910887845eÿ 04
6:232887804508652eÿ 02 4:926876629717610eÿ 04
ÿ6:996318151809803e� 00 ÿ7:492870120896803eÿ 01
7:155243215128683eÿ 01 ÿ6:749813277420426eÿ 02
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Bk �

4:628508634446622eÿ 16
1:346687187543125eÿ 15
1:164045765169753eÿ 15
7:163600221044353eÿ 01
1:435174976090861eÿ 01
7:057191151708615eÿ 02
1:338802016092666eÿ 01
4:616522236195802eÿ 01
ÿ2:289907570187057e� 00
ÿ9:773274724129235eÿ 01
2:846333616870248eÿ 13
ÿ8:272529134556158eÿ 01
7:479052807530189eÿ 01
ÿ4:087405849665713eÿ 01
2:706342280378746eÿ 01
ÿ3:820079746246349e� 00
ÿ1:164024408225487eÿ 01

Ck �

Columns 1ÿ3

ÿ3:278655389103304eÿ 01 7:386542249660075eÿ 01 5:089113829393147eÿ 01

Columns 4ÿ6

ÿ2:848293353182419eÿ 01 ÿ9:281300473869561eÿ 01 4:542316930222445e� 00

Columns 7ÿ9

1:701064769673434eÿ 01 1:724613515296431e� 00 ÿ3:764833293193810e� 00

Columns 10ÿ12

ÿ6:822982514891273eÿ 01 ÿ2:548354148065294e� 00 ÿ1:096816101047014e� 00

Columns 13ÿ15

2:954691525044453eÿ 01 ÿ2:779742954611004eÿ 01 ÿ1:706955028714858eÿ 01

Columns 16ÿ17

ÿ3:982768152683027eÿ 01 1:359506914068743e� 00

Dk � 0
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