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Abstract

Sheet and film processes, which include papermaking, polymer film extrusion, and adhesive coating, are of substantial industrial
importance. The processes are poorly conditioned and truly large scale, with up to hundreds of manipulated variables and thou-
sands of sensor locations. The uncertainties in sheet and film process models require that they be explicitly taken into account
during the control design procedure. Numerically efficient algorithms are developed that provide robust optimal controllers for a
wide variety of uncertainty descriptions. The robust optimality of the controllers can be relaxed to provide low order controllers
suitable for real time implementation. Robust controllers are designed for a simulated paper machine, based on a realistic descrip-
tion of the interactions across the machine, and the level of model inaccuracies. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Sheet and film processes have two main control
objectives (see Fig. 1). One is the maintenance of the
average sheet property profile, which is referred to as the
machine-direction (MD) control problem. The other is
the maintenance of flat profiles across the machine web,
referred to as the cross-directional (CD) control pro-
blem. Since the MD problem [1-8] has been extensively
studied and is much less difficult than the CD problem
[9], only the CD problem is considered here.

Profile properties are controlled by actuators which
are almost always located at evenly spaced points along
the cross-direction [10]. The number of actuators can be
200 or more. Profile properties that have been con-
trolled include basis weight (weight per unit area),
moisture content, caliper, and opacity. Sensor measure-
ments are taken after processing (e.g. pressing, drying,
stretching) and are located some distance down the
machine. In the past, due to their high cost, a small
number of scanning sensors were used. Each sensor
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measured a zigzag portion of the sheet/film, as illu-
strated in Fig. 1. From this limited number of measure-
ments, the profile properties were estimated at each
sampling time for use by the control algorithm (for
instance, by using a time-varying Kalman filter, as has
been described by numerous authors [11-13]. Recently
sensors have become available which simultaneously
measure the CD profile as finely as every millimeter at
rates of up to 120,000 times per minute [14]. This could
result in as many as 10,000 sensors across the machine.
The control problem is to calculate the 100+ control
moves based on the measured or estimated profile of
500-10,000 sensor positions at each sampling time. The
large dimensionality and the poor conditioning of sheet
and film plant matrices makes these processes challen-
ging to control.

Further, it is impossible to generate a highly accurate
sheet/film process model, either phenomenologically or
via input-output identification, because of unknown
disturbances, inaccurate values for the physical para-
meters, cross-directional movement of the web [15,16],
lack of complete understanding of the underlying phy-
sical phenomena (for example, during drying) [10], static
friction, and equipment wear [16-19]. The large scale
nature makes accounting for model uncertainty more

0959-1524/01/$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved.

PII: S0959-1524(00)00045-7



150 J.G. VanAntwerp et al. | Journal of Process Control 11 (2001) 149-177

actuators time delay

\
/

Cross-
direction

sensing

interactions

machine direction

Fig. 1. Generic sheet and film process with scanning gauge (not drawn
to scale).

important and more challenging [20-22]. The popular
robust controller synthesis and model reduction soft-
ware packages have demonstrated numerical inaccura-
cies for processes with large numbers of inputs and
outputs [23].

This paper presents computationally efficient algo-
rithms for designing robust optimal CD controllers for
sheet and film processes. Further, it is shown how the
optimality of the controllers can be relaxed to give low
order controllers that are easier to implement.

1.1. Relationship to previous work

There is an extensive literature on non-robust optimal
control strategies for sheet and film processes. This lit-
erature includes papers on controlling processes with
symmetries, one of the early papers being by Roger
Brockett and Jan Willems [24], and several recent
papers which have proposed model predictive control
(MPCQC) strategies [25-30]. The fast MPC algorithm of
VanAntwerp and Braatz [31-33] was designed to avoid
exciting uncontrollable plant directions, but does not
actually guarantee robustness to all common types of
model uncertainties. The reader is referred to [10,34] for
a detailed review of optimal control design algorithms
for sheet and film processes that do not explicitly
address model uncertainty.

Laughlin, Morari and Braatz (LMB) [35] used circu-
lant matrix theory to develop methods for designing
conservative robust multivariable controllers based on
the design of only one single loop controller. The LMB
results applied to sheet and film processes with very
highly structured interactions. Circulant symmetric,
Toeplitz symmetric, and centrosymmetric symmetric
models were all covered by the theory. The controllers
were restricted to be either decentralized or decen-
tralized controller in series with a constant decoupler
matrix. Forcing the controllers to have these particular
structures restricts the performance that can be achieved
with these algorithms.

There are substantial differences between the results
of LMB and the results presented here. First, LMB
treated only restrictive types of interaction matrices,
while our approach handles arbitrary interaction matri-
ces. Second, LMB considered only parametric uncer-
tainties in the interaction matrices, whereas here we
treat nonparametric uncertainties. Third, the robust
controller synthesis and analysis theorems presented
here are much less conservative. Fourth, application of
the LMB approach to a process with a different number
of sensors than actuators would require squaring-up to
give a square transfer function matrix. Although squar-
ing-up procedures have been applied industrially for at
least the last 15 years [36], they introduce an unneces-
sary approximation and can result in a loss of perfor-
mance [22].

Duncan [19] developed a robust controller design
algorithm for sheet and film processes with arbitrary
interactions across the machine. Sufficient conditions
for robust performance with multiplicative input and
output uncertainties were derived in terms of satisfying
robust performance for single-input single-output
(SISO) subsystems similar to those treated here. The
robust controller synthesis and analysis theorems pre-
sented here are potentially less conservative, and treat
much broader types of uncertainty.

Hovd, Braatz and Skogestad (HBS) [23,37,38] pre-
sented several robust control results that are applicable
to CD processes. Stewart et al. [39] proposed a variation
on the robust CD control algorithms of HBS, but with
more stringent assumptions on the model uncertainties,
performance objectives, and interactions across the
machine. A variation of the control algorithms has been
implemented by Honeywell-Measurex on industrial CD
control hardware working with a hardware-in-the-loop
paper machine simulator [39].

The algorithms presented here are extensions and
refinements of results by HBS. There are six significant
new contributions. First, the HBS results are specialized
for application to sheet and film processes, leading to
substantially simplified statements of both the theory
and the resulting algorithms. Second, the theorems here
provide explicit expressions for lower dimension robust
control problems whose solutions can be used to con-
struct the robust controller for the original large scale
control problem, whereas HBS provided only conditions

for the existence of the lower dimension problems.

Third, for many uncertainty types, we provide a much
more complete model reduction. For example, where
HBS may reduce the multivariable robust control pro-
blem to a large number of single-input single-output
(SISO) robust control problems, in many cases our
results can reduce the multivariable problem to a single
SISO robust control problem. Fourth, algorithms for
the design of low order robust controllers are investigated
in detail. Fifth, nonlinear as well as linear perturbations
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are addressed. Sixth, the algorithms are applied to a
simulated paper machine, based on a realistic descrip-
tion of the interactions across the machine, and the level
of model inaccuracies. This simulated example is of
substantially higher dimensionality than that of any
robust control problem ever considered.

2. Background on the robust control formulation for
sheet and film processes

Here we describe sheet and film process models, the
performance objective, appropriate uncertainty descrip-
tions, and provide some background on robustness
analysis and synthesis.

2.1. Sheet and film process models

The process model relates the manipulated variable
moves to the profile properties measured downstream.
All reported sheet and film process models have the
form

y(s) = P(s)u(s),  P(s) = p(s)Pcp, &
where y is a vector of measurements, u is a vector of
actuator positions, p(s) represents scalar dynamics, and
Pcp is a constant matrix representing interactions
between inputs and outputs. Taking the singular value
decomposition (SVD) [40] of the interactions matrix
Pcp allows the process transfer function to be decom-
posed into the pseudo-SVD form

P(s) = p(s)Pcp
= ps)Uzv’
= Up@s)z)vT
= Usp(s)V7. )

where U and V are real orthogonal matrices. The ele-
ments of the diagonal matrix ¥p(s) are transfer func-
tions and are not ordered in any particular manner.
These diagonal clements Xp,;(s) are referred to as
pseudo-singular values [41]. The pseudo-SVD form is
sufficiently general to allow for non-square Pcp with
arbitrary interactions. For non-square Pcp, first aug-
ment P with rows or columns of zeros to make a square
matrix. Then compute the SVD of the square matrix to
result in square U and V. The pseudo-singular values
corresponding to the additional rows or columns will be
equal to zero. Although there are more compact ways to
define the pseudo-SVD for a non-square interactions
matrix, this definition leads to the simplest notation
throughout the manuscript.

For symmetric Pcp (Pcp = PLp), an orthogonal
decomposition of Pcp (e.g. Theorem 3 of [42]) allows U

to be chosen equal to V. In this case, U7 = U~! and the
diagonal elements of Xp(s) can be interpreted as pseudo-
eigenvalues.

While many modern polymer film extruders have
square interaction matrices, modern paper machines
have many more sensors than actuators, resulting in a
non-square interactions matrix [32]. Although almost all
of the results in this manuscript will apply to the general
model (1), somewhat stronger results will be reported
for symmetric models.

2.2. Performance objective

A block diagram of the closed loop system is shown in
Fig. 2. The objective of the controller K(s) is to mini-
mize the effect of disturbances d on the profile proper-
ties y. Since the sensitivity function (I+ PK)~! is the
transfer function between d and y, this objective can be
quantified by

| Wes)(I + POKE) ™

= sup 6 (We(s)(I + P(s)K(s)) "), 3)

S=jw

where (A) refers to the maximum singular value of 4,
and the weight Wp(s) is selected to define the desired
performance (e.g. bandwidth). The weight is also used
to normalize the desired performance objective:

[ We(s)I + P(s)K(s) ™| <. (4)

The goal of the CD control problem is to maintain
flat profiles across the entire width of the machine,
implying that the performance weight Wp(s) should be
selected as a scalar weight wp(s) multiplied by the iden-
tity matrix. The most commonly used weight has the
form

1
wp(s) = b st ) (5)
as

where @ and b are constant real scalars [35]. With this
performance weight, the maximum disturbance amplifi-
cation will be less than 1/b at all frequencies, and the
closed loop system will have a bandwidth of at least 1/a.
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Fig. 2. Standard feedback control system.
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A physically meaningful performance weight must
satisfy 0 < b < 1 and a > 0.

The performance objective in (3) is selected for several
reasons. First, the objective allows the direct specifica-
tion of the closed loop bandwidth, or equivalently, the
closed loop speed of response [this is equal to « in (5)].
Second, the objective (3) is the worst-case gain for
sinusoidal inputs at any frequency, which allows the
engineer to directly specify a bound on the effect of
oscillatory disturbances on the closed loop system.
Third, the objective (3) bounds the integral of the
squared profile deviations across the machine subject to
disturbances bounded by the integral-squared-error
norm (this can be interpreted for deterministic or sto-
chastic disturbances, in which case the expected value is
used [43]). Minimizing the squared profile deviations is
the stated goal of most CD control systems [10,35,44].
Fourth, it is simpler mathematically to develop robust
control algorithms based on the performance objective
(3) than for most other performance objectives. Detailed
discussions on selecting performance objectives and
performance weights are available [43,45].

2.3. Uncertainty descriptions

Due to their poor conditioning and the limited input-
output data available, a sheet/film process model is only
an approximation of the true process. The inaccuracy is
represented by describing the process model as a set of
plants P, given by a nominal model P and a set of norm
bounded perturbations A. The six major types of mul-
tivariable uncertainty descriptions are listed in Table 1
[43,46].

Through weights each perturbation is normalized to
be of size one

|Ais)] o <1, (6)

where A;(s) is a stable transfer function representing
unmodeled dynamics. In the more general case where A;
is not treated as being linear time invariant, other norms
on A; are used [47-49]. Uncertainties which have been
carefully characterized include nonlinear time invariant

Table 1
Six major types of multivariable uncertainty descriptions (dependence
on s suppressed for brevity)

Uncertainty type Mathematical representation

13 =P+ walAa

IA) = P(I+ wiAy)

P =(I+wolAo)P

f) =+ WIAPAIA)ilP
ﬁ = P(1+ W]]A[[)il

i) =+ WI()AI())ilP

Additive

Multiplicative input
Multiplicative output
Inverse additive

Inverse multiplicative input
Inverse multiplicative output

(NLTI), nonlinear time varying (NLTYV), linear time
varying (LTV) [49], and arbitrarily-slow time varying
(SLTV) [48].

Multiplicative input uncertainty represents inaccura-
cies associated with the actuators, whereas multi-
plicative output uncertainty represents inaccuracies
associated with the measurements. Additive and multi-
plicative output uncertainties are the most commonly
used to represent unmodeled process dynamics. The
“inverse” uncertainties allow for processes in which it is
not known with certainty whether poles near the ima-
ginary axis are unstable or stable. Inverse multiplicative
output uncertainty provides a convenient mathematical
means to address performance specifications within the
context of robust stability (this is explained in Section
2.4).

Each uncertainty block is of dimension compatible
with the nominal model P. This implies that A has the
same dimensions as P, Ay and Ay are square matrices
of dimensions equal to the number of actuators, and Ag
and Ajp are square matrices of dimensions equal to the
number of sensing locations.

Each uncertainty block can have structure. In the lit-
erature, additive uncertainty (typically representing
unmodeled process dynamics) is normally represented
as a full matrix, whereas multiplicative uncertainties are
treated as being either full or diagonal. Further, diag-
onal uncertainty blocks can be represented as having
diagonal elements that are independent scalars,
A; = diag{s;}, or repeated scalars, A; = §;1. A repeated
diagonal uncertainty description may be appropriate for
modeling inaccuracies in the sensor model, since the
sensor is usually of the tracking type, with the same
sensor being used to take all measurements. An inde-
pendent diagonal uncertainty description would be
more appropriate for representing inaccuracies in the
actuator models [19] since each actuator is expected to
have somewhat different dynamic response.

The uncertainty weights in Table 1 assume that com-
ponents of the same type (for example, slice lip screws)
have the same level of uncertainty associated with their
respective models. This is a good assumption for sheet/
film machine components, since each component of a
particular type is almost always manufactured by the
same company to provide the same level of reproduci-
bility. Note that this assumption does not necessarily
require that the models for each component of a parti-
cular type are precisely equal for all plants within the
uncertainty description, only that the level of inaccuracy
of each component is the same. The selection of uncer-
tainty weights is described in several references
[43,45,46]. Procedures have been developed for sheet
and film processes for identifying both nominal models
and uncertainty weights based on process data [41,50].

Now we define a non-traditional additive uncertainty
description for a sheet and film process, in which the
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pseudo-singular values in (2) are uncertain. The uncer-
tainty description is represented as independent diag-
onal additive uncertainty (that is, Apa = diag{dx},
k=1,...,n)

P = U(Z(s) + Spalpa)VT = P+ USpadpaV?,  (7)

where ¥pa is a diagonal weighting matrix, not necessa-
rily equal to a scalar multiplied by the identity matrix.
Theoretical justifications of this uncertainty description,
including methods to compute Xps from experimental
data, are provided elsewhere [41,50].

2.4. Robust stability and performance

Algebraic manipulations performed either by hand
[43,46,51] or with programs [52-55] can be used to col-
lect the uncertainties associated with various compo-
nents in the system into the block-diagonal A(s) shown
in Fig. 3. The generalized plant G(s) is defined by the
nominal model P(s), the performance specifications, and
the magnitude and location of the uncertainties. The
generalized plant G(s) and the controller K(s) can be
combined to produce the nominal closed loop system
matrix M(s). If G(s) is partitioned to be compatible with
K(s), then M(s) is described by the linear fractional
transformation (LFT), where s has been suppressed for
brevity,

M = F(G, K) = Gi1 + G,K(I — GnK) ' Gyy. (8)

The LFT F)(G, K) is defined for any well-posed system
[this is equivalent to the existence of the inverse of
(I — GnK)].

Eq. (6) implies that each block-diagonal matrix A(s)
within the uncertainty description is in the set A, where

A = {diag{ A} A,

9
<1; A(s) stable,k=1,...,u} ©)

where each Af(s) has the same dimensions as P(s), and u
is the number of uncertainty types. The structure of
each Ax(s) can be repeated diagonal, independent diag-
onal, or full block.

+t

Fig. 3. Equivalent system representations (dependence on s sup-
pressed by brevity).

The closed loop system is said to satisfy robust stability
if it is stable for all stable norm-bounded perturbations
A(s) € A. The closed loop system is said to be satisfy
robust performance if the performance specification (3)
holds for all A € A. The closed loop system is robustly
stable to linear time invariant (LTI) perturbations if and
only if the nominal closed loop system is stable (that is,
the poles of M(s) are in the open left half plane) and the
structured singular value ua(M(jw)) is less than 1 for all
frequencies (see [43,46,56,57] for more details). The
value of the matrix function ua(M(jw)) at each fre-
quency depends on both the elements of the matrix M(s)
and the structure of A. The corresponding test for
robust performance is exactly as for the robust stability
test, except with the performance specification treated as
though it were an additional inverse multiplicative out-
put uncertainty (that is, wig is set equal to wp, with full
block Ajp representing the performance specification).

It is a key idea that u provides a general analysis tool
for determining robust stability and performance with
respect to LTI uncertainty [58—60]. Any system with
uncertainty adequately modeled as in (6) can be put into
M — A form, with robust stability and robust perfor-
mance written as a u-test. Although exact computation
of the matrix function w can be computationally
expensive [61,62], upper and lower bounds for u can be
computed in polynomial time (M can always be aug-
mented with zeros to a square matrix with the same
value of u, so without loss of generality M will be taken
to be square in what follows):

_ e s ~1
max p(MU) = (M) < inf a(DMD™), (10)

where U is the set of unitary matrices with the same
block diagonal structure as A, p(A) is the spectral
radius of 4, and D is the set of all matrices that com-
mute with every A € A, thatis, D ={D | DA = AD for
all A € A} [56,63]. This definition implies that each D €
D is a block-diagonal matrix with u blocks, the structure
of each block defined by the corresponding block of
A € A. In particular, Dy is full block for repeated scalar
Ag, Dy is repeated scalar for full block Ag, and Dy is
independent scalar for independent scalar Ay.

The maximization in (10) is not convex, and existing
algorithms either provide only a local maximum or are
computationally expensive [64,65], hence the reference
to the maximization as being a “lower bound,”
although the equality in (10) holds [52]. The upper
bound can be formulated as a linear matrix inequality
and is solvable in polynomial time using either ellipsoid
or interior point algorithms [66,67]. The computed
lower and upper bounds are usually tight. However,
computational experience indicates that the bounds
become more conservative as the system dimension
increases [64,65]. Robust suboptimal controllers are
almost always computed using the upper bound.
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The H.-optimal control problem is to compute a
stabilizing K(s) that minimizes |F(G, K)|_ (see Fig. 3).
The state-space approach for solving the H,, control
problem is implemented in off-the-shelf software [52,53].
The DK-iteration method (often called w-synthesis) is
an ad hoc method that attempts to minimize the upper
bound of u, that is, it attempts to solve [52,53]

. . - —1
kB o SuP 6(DWFIG(s). K)D™(), (11)

where K is the set of all internally stabilizing controllers
of dimension #n x n, and D!* is the set of all nu x nu
stable minimum phase transfer functions that satisfy
DA = AD at each frequency. The approach in DK-
iteration is to alternatively minimize

sup G(D(s)M(s)D~(s))

s=jw

= sup G(D(s)Fi(G(s), K(s))D ™' (s)) (12)

S=jw

for either K(s) or D(s) while holding the other constant.
For fixed D(s), the controller synthesis is solved via Hoo-
optimization. For fixed K(s), the quantity (12) is mini-
mized for each D(s) using linear matrix inequalities
[66,67] or some other approach [52,53]. The resulting
invertible stable minimum-phase transfer function D(s)
is wrapped back into the nominal interconnection
structure G(s). This increases the number of states of the
scaled G(s), which causes the second H-synthesis step
to produce a higher order controller. The iterations
between D(s) and K(s) stop after the quantity (12) is less
than 1 or is no longer diminished. The resulting high-
order controller is typically reduced using Hankel model
reduction [68]. Although the DK-iteration method is
not guaranteed to converge to a global minimum, it has
been used to design robust controllers for many
mechanical systems, e.g. flexible space structures [69],
missile autopilots [70,71], and rockets [72].

Besides being an approximation to the original u
condition for LTI perturbations, (11) is also interesting
in its own right, as its objective less than one is a neces-
sary and sufficient condition for robustness to arbi-
trarily slow linear time varying (SLTV) perturbations
[48] when all the perturbations are full block. Also, the
objective in (11) less than one is a necessary and suffi-
cient condition for robustness to fast linear time varying
(FLTV), nonlinear time invariant (NLTI), or nonlinear
time varying (NLTV) perturbations when the matrices
in D are restricted to be constant matrices [49].

3. Optimal robust controller design

To state the results, it is useful to recall that G is an
open loop transfer function matrix defined by the

uncertainty weights w;(s), the uncertainty locations (in
Table 1), and the open loop nominal model P(s). For
the uncertainty types in Table 1 and in (7), G(s) can be
written in terms of submatrices that include only the
following terms (including multiplications of the terms):
P(s), wi(s)l,, 1, 0,, U, and V, where I, is the n xn
identity matrix, and 0, is the n x n matrix of zeros.
Define the n lower dimension transfer functions G'(s),
which are constructed from G(s) by the following sub-
stitutions [see (45) and (49) for example]:

P(s) <— Zpi(s)
wi(s)I, <— w;(s)
I, <— 1
0, «—0
U<«—1

Vs 1 (13)

Each of the Gi(s) corresponds to a pseudo-singular
value X p ;(s) of the plant P(s). To simplify the statement
of the results, P(s) will be treated as being square. As
discussed earlier, this is without loss in generality.

The results of this section are of two types. First, it is
shown that for various uncertainty types the robust
controller of the form

K(s) = VEx(s)U" (14)

is optimal. Second, it is shown how controllers of this
form simplify robustness analysis and synthesis by either
partially or completely decoupling the MIMO controller
design problem into SISO control problems, or a single
SISO control problem. The robustness analysis and
synthesis results are first presented for sheet and film
processes with general interactions. Then somewhat
stronger results are stated for symmetric nominal models.

3.1. Processes with general interactions matrix

For the case where all the uncertainty blocks are full
and arbitrarily-slow linear time varying, the following
theorem provides conditions for which the robust optimal
controller has the form K(s) = VEk(s)U”, and describes
how this simplifies the computation of the robust opti-
mal controller. Proofs of all results are in the appendix.

Theorem 1 (Robust optimality with SLTV A). Consider
a nominal model P(s) = UXp(s)VT, where U and V are
real orthogonal matrices and Yp(s) is a diagonal transfer
function matrix. Suppose there are multiple full block
uncertainties of the forms listed in Table 1 and a diagonal
additive uncertainty of the form (7). Then a controller of
the form K(s) = VEx(s)UT minimizes

it [D@F(GE). KD~ o] a3
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where u is the number of uncertainties and

D" =diag{Di}, k=1,...,u,
D, = diag{d”(s)}, i=1,...,n,
Dy = diag{dk(s)ln}, k=2, ...,u. (16)

The generalized plant G(s) is constructed from the
nominal model P(s), the types of uncertainties, and the
uncertainty weights, with the rows and columns of G(s)
arranged such that the independent diagonal additive
uncertainty is the upper block of A .

Furthermore,

. . 71
K(lsl;lefo D(gg)gu | D(s)F(G(s), K(s))D~" ()]

ﬁi(s)F,(Gi(S), EK,ii(S))

= inf max inf  inf
di(s)  i=l...n | Sga(s)eK! diils)

(17)

where éi(s) is constructed from G(s) as defined in (13),
Di= {diag(dy(s), da(s), . . ., du(s))|dk(s) stable and mini-
mum phase; k = 1i,2,...,u}, and X ;(s) are the diag-
onal elements of X k(s). For the case with no independent
diagonal additive uncertainty, the dy; and the correspond-
ing infimum in (17) are dropped.

Theorem 2 (Robust optimality with NLTV, NLTI, and
LTV A). Consider the assumptions of Theorem 1, except
with the SLTV perturbations replaced by NLTV, NLTI,
or LTV perturbations. All results of Theorem I hold, with
the scaling matrices D" restricted to be constant matrices.

For SLTV, NLTV, NLTI, and LTV full block uncer-
tainties, Theorems 1 and 2 indicate that the robust con-
troller synthesis problem for K(s) can be reduced to n
mildly coupled SISO robust controller synthesis pro-
blems for the Tk ;(s). If DK-iteration is used to design
to a robust suboptimal controller, then the K step con-
sists of n independent SISO H..-optimal control pro-
blems, one for each of the SISO subplants Xp ;(s) of
P(s). The D step is coupled, since many of the elements
of D(s) enter in more than one of the SISO H.-optimal
control problems. After the DK iterations have con-
verged to result in the final ¥k ;(s), they are collected
into a diagonal matrix Xk(s), and the final controller
computed from (14).

The next result is for the case where the uncertainties
are linear time invariant.

Theorem 3 (Robust optimality with LTI A). Consider a
nominal model P(s) = UZp(s)VT, where U and V are real

orthogonal matrices and Zp(s) is a diagonal transfer
function matrix. Suppose there is any combination of
uncertainties of the following forms: (i) one full block
uncertainty of any type, (ii) any number of repeated
diagonal multiplicative and inverse multiplicative uncer-
tainties of the forms listed in Table 1, (iii) an independent
diagonal additive uncertainty of the form (7). Then a
controller of the form K(s) = VEx(s)UT minimizes

sup pa(Fi(G(s), K(s))) (18)
S=jw

where the generalized plant G(s) is constructed from the
nominal model P(s), the types of uncertainties, and the
uncertainty weights. Furthermore,

de?fxg ffjg pa(Fi(G(s), K(s)))

= max { inf sup ug (F,(G’(s), Ek,ii(s)»},

Zki(s)eK] s=jw
(19)

where A= {diag{Bk}||8k| <;8.,€Ck=1,...,u} and
Gi(s) is constructed from G(s) as defined in (13).

For some sheet and film processes, Theorem 3 indi-
cates that the robust controller synthesis problem for
K(s) can be reduced to n completely independent SISO
robust controller synthesis problems for Xk ;(s), one for
each of the SISO subplants Xp ;(s) of P(s). To make the
comparison with Theorem 1 clearer, consider the
Corollary.

Corollary 1 (Robust optimality with LTI A). Consider
the conditions in Theorem 3, with the additional condition
that w is equal to its upper bound. Then

inf sup ua(F(G(s), K(s)))

K(s)eK{ s=jow

= max inf  inf
n | Sxi(s)eK! Di(s)eDr

H[)[(S)F/(éi(s)’ EK,ii(S)) (IA)’A(S))_l H } ~

where DY = { b(s))b(s) = diag{d(s)}; di(s) stable and
minimum phase; k =1, ..., u}.

It is much simpler to solve for the controller in (20)
than in (17), although (17) has fewer variables to opti-
mize over. The SISO problems in (17) are coupled while
those in (20) are completely decoupled. If DK-iteration
were applied in both cases, the computation for D in
(17) is coupled, while the computation for each D in
(20) is not. In both cases, the K step is decoupled.

As discussed in the Background section, it is common
for u to be equal to or nearly equal to its upper bound.
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The next result assumes this to generalize Theorem 1 to
address a wider range of uncertainty structures.

Theorem 4 (Robust optimality with SLTV or LTI A).
Consider a nominal model P(s) = UXp(s)VT, where U
and V are real orthogonal matrices and Zp(s) is a diag-
onal transfer function matrix. Suppose there is any com-
bination of uncertainties of the following forms: (i)
multiple full block uncertainties and repeated diagonal
multiplicative and inverse multiplicative uncertainties of
the forms listed in Table 1, (ii) an independent diagonal
additive uncertainty of the form (7). Assume that w is
equal to its upper bound. Then a controller of the form
K(s) = VEx(s)UT minimizes

sup ua(Fi(G(s), K(s)))

s=jw

=, int | DOFGE), KD~ 0] @1

where the generalized plant G(s) is constructed from the
nominal model P(s), the types of uncertainties, and the
uncertainty weights.

Let f refer to the number of full blocks, and d refer to
the number of repeated and independent scalar diagonal
blocks, and let the rows and columns of G be arranged
such that all the full blocks appear as the lower blocks in
A . Then

inf inf | D(s)F(G(s). K(s)D™'(s)]

K(s)eK" D(s)eD™

= inf  max inf  inf
Sri(s)eK] Di(s)eD?

ﬁ}(s) F,(G’(s), Ek,n‘@))

(Biw)”

(22)

(b)) ]

where

D/ = {diag{d;+(s)}Id;1(s) stable and minimum phase;
k=1,..../}, (23)

= {diag{d,, k(s)} |da(s) stable and minimum phase;
k=1.....d). (24)

Gi(s) is constructed from G(s) as defined in (13), and
Yk.ii(s) are the diagonal elements of L(s).

The upper bound is not exactly equal to u for many
problems, at which case the assumption of Theorem 4
will be an approximation. However, this approximation
is a widely accepted one, and is used in all existing
off-the-shelf software for robust controller synthesis
[52,53].

The next results show that, under increased restric-
tions on the uncertainties, it is possible to construct the
multivariable robust optimal controller by solving a
single SISO robust synthesis problem.

Theorem 5 (Robust optimality with multiplicative LTI
uncertainties). Consider the conditions of Theorem 3 with
the additional conditions that: (i) all the uncertainties are
multiplicative or inverse multiplicative (the full block
uncertainty must correspond to a multiplicative or inverse
multiplicative uncertainty), (ii) the Xp;(s) # OVi, and
(iii) the Xp ;i(s) have same right half plane (RHP) poles
and zeros, Vi. Define Ty opt 45 the optimal controller for
any of the SISO robust synthesis problems in the right
hand side of (19). Then the other n — 1 SISO robust
optimal controllers can be computed by

z:K,i_i,opt(‘sv)EP,E(S)

Xpii(s) @)

Xk ii,opi(8) =

Theorem 6 (Robust optimality with additive LTI uncer-
tainties). Consider the conditions of Theorem 3 with the
additional conditions that: (i) there is one additive,
inverse additive, or diagonal additive uncertainty, (ii) the
2 pii(s) # OVi, and (iii) the Xp (s) have same RHP poles
and zeros, Vi. Define X KFopt 45 the optimal controller for
any of the SISO robust synthesis problems in the right
hand side of (19). Then the other n —1 SISO robust
optimal controllers can be computed by

2:K,i_i, opt(s) EP,E(S)

Tk.iiopi(8) = SIE)

(26)

Assumption (iii) of Theorems (5) and (6) is not
restrictive, as sheet and film processes have the same
dynamics for each pseudo-singular value, and so share
the same poles and zeros. Assumption (ii) only requires
that a pseudo-singular value is not precisely equal to
zero so that the ratios in (25) and (26) are well-defined
[note that this assumption does allow Xp ;(s) to have
zeros]. When a pseudo-singular value is exactly zero,
which occurs for some square and all non-square inter-
actions matrices, then the corresponding SISO con-
troller ¥k ;(s) should be set equal to zero, since that
pseudo-singular value and the corresponding columns
of U and V are uncontrollable [41,50,73].
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3.2. Symmetric nominal models

Somewhat broader uncertainty types than those con-
sidered in Theorems 3 and 4 are applicable to sheet and
film processes with symmetric nominal models. More
specifically, in this case the results hold for diagonal
uncertainties of any of the forms listed in Table 1.

Corollary 2 (Robust optimality with LTI A for sym-
metric nominal models). Assume the conditions of Theo-
rem 3 with the additional condition that U= V. Then
the results of Theorem 3 hold for any combination of
uncertainties of the following forms: (i) one full block
uncertainty of any type, (ii) any number of repeated
diagonal uncertainties of the forms listed in Table 1, (iii)
an independent diagonal additive uncertainty of the form

(7).

Corollary 3 (Robust optimality with SLTV or LTI A for
symmetric nominal models). Assume the conditions of
Theorem 4 with the additional condition that U =V.
Then the results of Theorem 4 hold for any combination
of uncertainties of the following forms: (i) multiple full
block uncertainties and repeated diagonal uncertainties of
the forms listed in Table 1, (ii) an independent diagonal
additive uncertainty of the form (7).

3.3. Remarks

All of the results in this section yield controllers that
are superoptimal [74-76], that is, the H,, norm is mini-
mized in n directions. This is in contrast to the H
controllers computed by commercial software packages,
which only minimize the H, norm in the worst-case
direction [52]. From a practical point of view, this
means that the superoptimal H., will give much better
closed loop response to most disturbances, although it
will have the same overall H,,-norm as a non-super-
optimal controller.

The controller design theorems in Sections 3 and 4
yield controllers of the form K(s) = VI (s)UT. The
robustness for the overall system is by minimizing the
robustness margin for the SISO control problems. The
pseudo-singular values of Pcp that are nearly zero can-
not be reliably controlled [41,50]. Separate relationships
for the SISO controllers Xk ;(s) are given depending on
the magnitude of ¥p ;;(0). For Zp ;;(0) close to zero the
corresponding SISO controller Xk ;(s) is set equal to
zero. Otherwise, X j(s) is computed according to the
appropriate theorem from Section 3 or 4. The para-
meter € defines the boundary between controllable and
effectively uncontrollable pseudo-singular values, and
can be computed from experimental data using a Monte
Carlo algorithm [50]. The SISO robust control problems
associated with the wuncontrollable pseudo-singular
values should not be included in the robustness margin

calculations, that is, the multivariable performance
specification is only applied to the controllable plant
directions.

It was shown in previous work that explicit constraint
handling is not always needed when robust control
design methods are used [41,50,77]. This is because
directions corresponding to low gains are not manipu-
lated by the SVD controller. Also, designing of the SVD
controller to be robust prevents overly large dynamic
excursions in the manipulated variables. A recent paper
provides explicit criteria for determining when con-
straint-handling is necessary [78]. In cases where con-
straint-handling is needed, any of the well-established
multivariable anti-windup procedures can be applied
[79-83]. This results in a simple controller imple-
mentation (see the end of the next section for more
details).

When used for controller design via DK-iteration,
the theorems in Section 3 may yield controllers of
unacceptably high order. In practice, low order con-
trollers are often desirable. Low order controllers can be
achieved by using model reduction techniques to reduce
the controller order or by fixing the controller order in
the synthesis step. The theorems provided above are
suitable for the former approach, while the theorems in
the next section are suitable for the latter. Fixing the
controller order in the synthesis step leads to further
simplifications in robust controller design. As will be
seen in the examples section, this simplification can be
with a small loss in closed loop performance.

4. Algorithms for low order robust controller design

The results of the previous section can be used to
compute robust suboptimal controllers using the DK-
iteration method. It is unlikely, however, that any
controller design method, irrespective of complexity,
will produce a controller that gives precisely the desired
stability and performance for all disturbances and all
operating conditions (for example, during startup or
grade changes). This motivates the development of con-
trollers which have parameters that can be tuned (or
detuned) on-line when necessary. Secondly, controllers
produced by DK-iteration tend to have very high order,
while low order controllers are easier to implement.

That an SVD controller optimizes robust perfor-
mance for a variety of uncertainty types suggests that
such low order tunable controllers should be selected to
have the SVD structure. In this way, the low order tun-
able controller will have the optimal directionality. The
algorithms for low order robust controller design for the
LTI uncertainty types considered in Theorem 3 require
less computation and are presented first, followed by
the algorithms for the uncertainty types considered in
Theorems 1, 2, and 4-6.
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4.1. Low order robust controller design for LTI uncertainty

For the LTI uncertainty types covered by Theorem 3,
the following result shows that any SVD controller (14)
decouples the multivariable robust control synthesis
into independent SISO control problems.

Corollary 4 (Robustness analysis with LTI A). Consider
the conditions and notation in Theorem 3. Then
sup pua(Fi(G(s), K(5)))

S=jw

= sup max {115 (Fi(G'6). Zxa9)) )|

s=jw

= max {sup MR (F/(Gi(s), EK,,','(S))> } (27)

S=jw
holds for any controller of the form K(s) = VEx(s)UT.

The robustness for the overall system is optimized by
minimizing the robustness margin for the SISO control
problems. A low order multivariable controller can be
designed by designing low order SISO controllers
¥k.i(s). The controller Xk ;(s) for each SISO problem
can be designed by any robust controller design method;
here we describe the use of internal model control
(IMCQC) tuning [46] for scalar dynamics described by first
order plus time delay (this is by far the most commonly
used model for describing sheet and film process
dynamics [10,84], for more complex models see [46]:

—Os

pls) = (28)

s+ 1°

Without loss of generality, the steady-state gain of
p(s) has been scaled so that p(0) = 1.

The internal model control-proportional integral
derivative (IMC-PID) control form is

Yk.i(s) =
L4 s+

1 ) Ds TIS. 2,'[“[‘0 if |E (0)| -
o0 s+l 20 +6) o (29)

0 if |Zpa(0)| <e

0 70 20
T1=75+§; TD=217—+9; TF,i:m; (30)
‘i

where ¢ is the tolerance as described in Section 3.3. If a
lower order controller is desired, the IMC-PI form is

T N
() 1 [l -
0 if |Zpa(0)|<e

Yk.i(s) = (31)

The SISO controllers Xk ;(s) are stacked up as the
diagonal elements of a matrix Xg(s), with the overall
SVD controller computed from (14). The number of
states in K(s) constructed using the IMC-PID form (29)
is less than or equal to 2n, whereas using the IMC-PI
form (31) results in K(s) having not greater than n
states.

The IMC tuning parameters /; can be selected either
as fast as possible while maintaining robust stability
[43], or to maximize robust performance. If the 4; are
used to optimize robust performance, then care must be
taken to ensure that the combined uncertainty-perfor-
mance description is not too conservative.

The IMC tuning rules used in (29) and (31) are known
to provide poor load disturbance suppression for pro-
cesses which have the open loop time constant t larger
than the desired closed loop time constant A [85]. For
most sheet and film processes, the time delay dominates
the open loop dynamics and 7 is relatively small, so that
A will be greater than t for a robust control system [10].
For those rare sheet and film processes where robust
performance allows A < t, the IMC-tuning rules used in
(29) should be replaced by the modified IMC-PID rules
[86].

4.2. Low order robust controller design for the SLTV,
NLTV, NLTI, LTV uncertainties

Here we consider low order controller design for the
uncertainty types considered by Theorems 1, 2, and 4.

Corollary 5 (Robustness analysis with SLTV A). Con-
sider the conditions and notation in Theorem 1. Then

inf || D(s)F(G(s), K(s))D~"
D(géD?,J ()FIG(s), K()D~'(s)] .
= inf max
di(s) i
k=2,...,u
~. ~. ~ . -1
{3;3({) BOR(G6). 2x)) (D) Hw }

(32)

holds for any controller of the form K(s) = VEx(s)UT

Corollary 6 (Robustness analysis with NLTV, NLTI,
and LTV A). Consider the conditions and notation in
Theorem 2. Then

: -1
nf | DE(G(s), KsND™'|

'i)"F,(G"(s), Sxals) (D i>_l Hoo}

= inf max Jinf
i dy;

(33)
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holds for any controller of the form K(s) = VEx(s)UT,
where D™ is the set of constant matrices with the same
structure as D'".

Corollary 7 (Robustness analysis with SLTV or LTI A).
Consider the conditions and notation in Theorem 4. Then

inf | D(s)F(G(s). K(s))D~!
o [POFGE). Ko™ 6]
= inf max inf

Dbl 1 | Dis)edy

Difs)

o Fi(G'(9). Ziuls))

CON

(34)

(Bjes)”

[e¢]

holds for any controller of the form K(s) = VEx(s)UT.

If u defines a robust performance objective (with Ajg
representing the performance specification), then low
order tunable controllers can be designed by solving the
appropriate optimization problem (32), (33), or (34),
with the Xk ;(s) restricted to be a low order controllers,
such as (29) or (31). A procedure similar to DK-itera-
tion can be used to compute a high quality suboptimal
solution to the nonconvex optimization problems. In
the K step, the Hy, optimization over the controller is
replaced by an optimization over the 4;. The optimiza-
tions over the /; are independent, and can be easily
automated. Moreover, since the SISO control problems
are nearly decoupled, each /; behaves similarly as in
tuning a SISO IMC controller. In particular, for rea-
sonable uncertainty and performance weights, the SISO
robust performance objectives will be large when /; is
either small (poor stability robustness) or large (poor
performance). Extensive experience with IMC tuning of
time delay processes indicates that the optimization of
the w upper bound over 4; will usually have a unique
minimum. Also, given that the Xp ;(s) have the same
dynamics with a nearly continuous range of gains from
low to high singular values of Pcp, the minimizing A; for
one optimization can be used as an initial condition for
the adjacent optimization (Z;41). In the D step, fitting
the D-scale at each frequency to a transfer function is
unnecessary, since the IMC-PI/PID Xy ;(s)’s are not
computed from the transfer functions di(s), but only
from their values at each frequency. Thus the modified
DK-iteration procedure avoids both the D-fitting and
the Hy-synthesis procedures, which are the steps in

standard DK-iteration that can cause numerical inac-
curacies [23].

An alternative to the modified DK-iteration proce-
dure will be to directly optimize the overall u upper
bound over the A; using a generic optimization proce-
dure. This would require re-computing the D-scales
every time the 4; are updated. The modified DK-itera-
tion procedure, on the other hand, requires a limited
number of D-scale computations if properly initialized.
The independent design procedure in Section 4.1 can be
used to initialize the algorithm.

If the u robustness measure defines a robust stability
objective (without inverse multiplicative input or output
uncertainties), then it is desired to select the IMC tuning
parameters A; as fast as possible while maintaining
robust stability. This optimization problem can be
posed as:

_inf maxy| inf
D)eD, 1 |Zx.i(s)eK]

15 (66. Bea)b'] -1 }

(35)

A modified DK-iteration procedure similar to that
described in the previous section can be used to solve
this optimization problem. The robust stability objec-
tive is achievable if and only if the optimal value of the
objective function in (35) is zero (in practice, some tol-
erance close to zero is used). If the optimal value of the
objective function in (35) is greater than zero, then the
uncertainty set must be reduced (for example, through
increased data collection [77]).

4.3. Low order robust controller design for multiplicative
or additive LTI uncertainties

Here we consider low order controller design for the
uncertainty types considered by Theorems 5 and 6.

Corollary 8 (Robustness analysis with multiplicative
LTI uncertainties). Consider the conditions and notation
in Theorem 5. Then

sup pa(Fi(G(s), K(5)))

oo
= max {f}]g Iy (F/(G"(S), ZK,ii(S))) } (36)

holds for any controller of the form K(s) = VEx(s)UT.
Furthermore, all SISO controllers Xk ;i(s) can be con-
structed from a single SISO controller design problem.
Let the low order controller designed be denoted i. The
other controllers are given by

EK.E,U[)[(S) EP,E(S)

pii(s) @7

Ek,ii,opl(s) =
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Corollary 9 (Robustness analysis with additive LTI
uncertainties). Consider the conditions and notation in
Theorem 6. Then

sup pua(Fi(G(s), K(5)))

s=jw

= max {sup Uy (Fz(éi(s)v EK,ii(S))> } (38)

S=jw

holds for any controller of the form K(s) = VEx(s)UT.
Furthermore, all SISO controllers X ;i(s) can be con-
structed from a single SISO controller design problem.
Let the low order controller designed be denoted i. The
other controllers are given by

2:K,i_i.opl(s)zP.E(S)

Zp’,'i(S) (39)

2:K,ii,opl‘(s) =

For the uncertainty descriptions treated by Theorems
5 and 6, a controller of the form K(s) = VEg(s)UT
decouples the process into n independent SISO pro-
blems. If low order controllers are desired, Xk ;(s) may
be selected to have the form of (29) or (31) and only one
¥k.i(s) needs to be synthesized. The other controllers
are constructed as multiples of that one controller.

4.4. Implementation

SVD controllers (14) can be implemented in the form
of a static decoupler UT in series with a diagonal
dynamics matrix Xg(s) in series with another static
decoupler V. The implementation for the PI and PID
SVD controllers is particularly simple — the technology
for implementing static decouplers and noninteracting
PI/PID controllers has been available for over two
decades.

Sheet and film processes usually have min-max and
second-order spatial constraints on their manipulated
variables to prevent excessive stresses (such as in a die
or slice lip) or flow instabilities [10]. These constraints
can be addressed by applying any of the well-established
multivariable anti-windup procedures [79-83] to the
SVD controllers. The SVD controllers with anti-windup
are implementable in real time on large scale sheet and
film processes using existing hardware [10].

5. Applications

Here the robust controller design theorems developed
in the previous sections are applied to a model devel-
oped from industrial data that captures many of the
realities of an industrial paper machine.

5.1. Paper machine model

Many of the features of this model are common to
other sheet and film processes (e.g. constant interaction
matrix, scalar dynamics, edge effects). The model was
developed from industrial identification data reported
by Heaven et al. [84] who studied the slice lip to weight
profile transfer function of a fine paper machine (see
[32] for details):

—2s

c
05335 11149 (40)

y(s) =

where y is the vector of measurements of basis weight
(in Ibs), u is the vector of actuator positions (in mils),
and Pcp is the interaction matrix (with units of 1bs/mil).
The actuators are motors which change the slice lip
openings and the weight profile is measured by a scan-
ning sensor at the reel of the machine. The interaction
matrix Pcp is of the form

Pcp = CAg (41)

where the matrix

Cey ¢ en -+ ¢33 O 0 07
C1 Co C11 e 036 0 0 0
Co Cs Clop -+ (€35 0 0 0
C1 Cy4 C9 et 034 0 s 0 0
(&) c3 (&3 ce+ (033 (38 0 0 0
c3 (5] c7 s 032 C37 0 0 0
Cy4 C1 Co e 031 C36 0 0 0
Cs Co Cs e C30 €35 0 0 0
Co 1 Co e 09 C34 0 0 0
¢ ¢ 7 -r- Cg €33 C3g 0 0
€35 €30 C5 -+ Qo ¢s €10
€3 €31 C26 -+ €1 C4  C9

C=
€37 €3 C7 -0 (2 3 (&
€3y (€33 C8 -+ (3 (&) 7
0 ¢ c9 -+ a1 ¢
0 5 o -+ ¢ o ¢
. Cy C3
. [ )
. Cyq C1
. [ )
: C6 (1
L0 0 0 0 0 0 ¢ o
(42)
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—0.1322i + 1 i=0,1,...,10

—1.3178 x 1078/
+2.1221 x 10747
— 1.4006 x 10747
+4.8607 x 10737
—9.4066 x 1072
+0.97362i — 4.3108

Ci =
i=11,12,...,38

(43)

represents the interactions between 130 actuators and
650 downstream measurement locations, and the diag-
onal matrix Ag captures the variation of the actuator
gains across the machine:

7.4167 x 107*(i*)
—2.1971 x 107%
+0.3015

i=1,2,...,10

—1.1392 x 1078
+4.1401 x 10787
—5.9244 x 10757
+4.2284 x 10747

—1.5624 x 10727
+0.2751i — 1.2015

Agi =
G i=11,12,....43

0.4692 i=44,45,...,87

i=288,89,...,130

(44)

AG,130—i41,130—i+1

We consider the case where there is uncertainty in both
the input and the output of the process (see Fig. 4). This
uncertainty includes inaccuracies in the actuators and
sensors, as well as uncertainty associated with the actual
process. The operators Ay and Ap are unity norm
bounded and assumed to be linear time invariant (LTI).

The magnitude of the uncertainty is set by the weights
W1 and Wy, Each uncertainty weight (W), W) was
chosen to represent up to 10% steady state error and up
to 100% dynamic error. The uncertainty weights also

Al
T K _

cover model error due to replacing the time delay with a
3rd order Pade approximation.

The performance weight is selected to ensure less than
0.4% steady-state error and a closed loop time constant
of 7, =5 min. Eq. (5) indicates that the maximum dis-
turbance amplification will be less than 2 at all fre-
quencies, and that the bandwidth of the closed loop
system will be at least 0.2. Rearranging the block dia-
gram in Fig. 4 and including a performance block
results in the generalized plant matrix

0 0 0 —W
| wer 0 0 W,
G= WP Wp —Wp —WpP (43)
P I . | —P
where
(1 1
Wy = wo = 2110+ D, (46)
s+1
0.5(tps +1)
Wp=—_"_/ 47
" 5+ 0.002 “7)
7, =5 (48)

Controllers designed to be robust to the uncertainty
description will also be insensitive to measurement
noise, as the uncertainty specifications require a rolloff
of the complementary sensitivity function.

5.1.1. The inadequacy of commercial software

The commercial software packages for designing
robust controllers are the Matlab u-toolbox [52] and the
Robust Control Toolbox [53]. It is impossible to even
form the G matrix (45) for the large scale paper machine
in Matlab on a Sparc Ultra 2200 computer with 64 MB
of RAM and 240 MB of swap space — the computer
runs out of memory.

It is instructive however to estimate the time required
to design a robust controller using the standard DK-
iteration procedure [43,46,52,53,87] if it were possible to
perform these calculations. For only 20 actuators, one
DK-iteration step took 77 min. One H,, synthesis step
took 20 min, p analysis took 57 min for 50 frequency

d

— [eien |

\
<

Y

Fig. 4. Block diagram with both input and output uncertainty.
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points, and the D-fitting step took 2 s. Assuming that
scaling up to 130 actuators follows an O(n3) increase in
computation time, and that six DK-iteration steps are
necessary, then DK-iteration for 130 actuators would
require more than 2000 h of computation. Note that
assuming an O(n’) increase in computation time is a
lower bound — it is likely that a higher order would occur
in practice. For example, for 40 actuators the p analysis
step took more than 30 min per frequency point.

The conservative timing estimates above are for the
case where the uncertainties are all full block. DK
iteration for repeated scalar uncertainties is not imple-
mented in the commercial software packages. If it were
implemented, the D-fitting step for repeated scalar
uncertainties would take much longer, as in this case the
number of degrees of freedom to be computed grows
very rapidly (quadratically) as a function of plant input-
output dimension. This high computational expense is
likely why the D-fitting step for repeated scalar uncer-
tainties is not implemented in commercial packages.

Even if a supercomputer with GBs of RAM and/or
swap space were available, and if time to compute the
robust optimal controller was not a concern, the paper
machine control problem has a large enough dimen-
sionality that the DK iteration algorithm would likely
produce highly suboptimal results (the algorithm would
have difficulty converging). This behavior has been
demonstrated on much smaller problems in past work
[23]. Also, the resulting controller would be of very high
order and would be expensive to implement.

This motivates the robust controller design proce-
dures presented in this manuscript. The dimensionality
reduction theorems given here allow robust controllers
to designed for systems in which no other design tech-
niques are suitable. The total computation time of the
following algorithms is on the order of minutes on a
Sun Workstation or Pentium II.

5.2. Full order controller design for repeated scalar input
and output uncertainties

If Ay and Ap are treated as being repeated scalar, then
the input—output uncertainty description satisfies the
conditions of Theorem 5, and the robust controller
design problem reduces to the design of a single ¥k ;(s).
The n lower dimensional transfer functions G'(s) are
constructed as shown in (13):

0 0 0 —wr(s)
& (s) = wo(s)Zp i(s) 0 0 —wo($)Zp.i(s) |.
we()Zpii(s)  we(s) —wp(s) —wp(s)Zpi(s) |’
pii(s) 1 -1 —Zpii(s)
5 0 0
A=|0 8 0
0 0 &

(49)

The multivariable robust control problem decouples
into independent SISO robust control problems as
defined in (19), where

F/(G[(S)~ ZK,ii(S)) =

[ —wi(s) 2k i($) Zp,ii
1+ 2x,i($)Zp,ii(s)

—wi($) Zk_i($)
1+ Zp () Zxki(s)

wi($)Zk i(s)
1 =+ Ep{,‘;(S)EK,[[(S)

wo(s)Xp,ii(s)
1+ EK,,','(S)EP,I‘I'(S)

—wo(s) Zp,i($) Zx.i(s)
1 + Zk.ii(s)Zp,i(s)

—wo(8)Xp,i($) Zk.i(s)
1+ 2k i(9) Zp,i(s)

wp(s)Zp i(s)
L 1+ 2x.i(s) Zp,ils)

—wp(s)
1 4+ 2k i($)Zp i(s)
(50)

wp(s)
1+ EK,ji(S)ZP,ii(S)

Since the number of uncertainties in the SISO problem
(49) is less than four, u is equal to its upper bound. DK-
iteration can be used to compute a u-suboptimal solu-
tion for the SISO controller design problem.

Using the u-toolbox [52], DK-iteration was applied to
one of the SISO robust control problems defined in (49).
The frequency-dependent D scales, D(s), were allowed
to be up to third order. The DK-iteration procedure
was stopped after six steps, at which point the max-
imum value of u was 0.96. DK-iteration for this SISO
system required about 10 s of computation per iteration
on Sparc Ultra 2200. The state space matrices for the
SISO controller are given in the Appendix. The other
robust SISO controllers X j;(s) were constructed as
shown in (25), and the robust multivariable controller
constructed as shown in (14). The value of u for the
SISO problem is equal to u for the multivariable system
(see Fig. 5).

1.2¢

magnitude

061

1072 10° 10

frequency

Fig. 5. u as a function of frequency for the full order controller with
repeated scalar uncertainties (dashed), the low order controller with
repeated scalar uncertainties (solid), and the full order controller with
full block uncertainties (dotted).
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Fig. 7 is the closed loop response to the disturbance in
Fig. 6, where the controller attempts to control all of the
pseudo-singular values of the paper machine. For
industrial paper machines, some of the pseudo-singular
values are usually uncontrollable (see Section 4.1). The
controller used in the closed loop simulations shown in
Fig. 8 does not attempt to control the pseudo-singular
values of the paper machine corresponding to the sin-
gular values of the interaction matrix Pcp (42) smaller
than € = 0.12 (algorithms to compute € directly from
experimental data are provided in [50]). In this case, u
for robust performance applies only for the controllable
pseudo-singular values. The loss in closed loop time
domain performance in not controlling the smallest
pseudo-singular values is negligible. Both controllers are
insensitive to high frequency measurement noise (mea-
surement noise was not included in the time domain

0 . .
sensor number time (min)

Fig. 6. The process disturbance, which represents a streak down the
middle of the paper machine. Such disturbances are commonly
encountered in industrial paper machines.

20

0 time (min
sensor number (min)
Fig. 7. The closed loop response of the paper machine to the process
disturbance in Fig. 6 for the nominal model. The controller was
designed via DK-iteration to control all the pseudo-singular values of
the process.

simulations so that the details of the closed loop
responses would be clear).

Figs. 9 and 10 illustrate the robustness of the control
to model uncertainties. The dynamic perturbations were
selected to be time delays because the dynamics asso-
ciated with time delays are known to be particularly
difficult to handle by most control systems. The closed
loop responses demonstrate similar robustness for a
wide variety of other model perturbations [88].

5.3. Low order robust controller design

Here the same uncertainty description for the paper
machine is assumed as in Section 5.2, but the SISO robust
controllers are designed to be in the IMC-PI form (31).

For the selected input—output uncertainty description
with the SVD control structure, Corollary 8 holds. Only

20

0 . .
sensor number time (min)

Fig. 8. The closed loop response of the paper machine to the process
disturbance in Fig. 6 for the nominal model. The controller was
designed via DK-iteration to control a subset of the pseudo-singular
values of the process.

20

sensor number 0 time (min)

Fig. 9. The closed loop response of the paper machine to the process
disturbance in Fig. 6 for repeated scalar input uncertainty A; and
output uncertainty Ag equal to a 3rd order Pade approximation for a
time delay of 2 min times the identity matrix. The controller was
designed via DK-iteration to control a subset of the pseudo-singular
values of the process.
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one SISO PI controller Xk ;(s) needs to be designed.
The multivariable robustness margin reduces to the cal-
culation of u for a single 3x3 transfer function matrix,
which took less than 0.2 seconds for each frequency on
a Sparc Ultra 2200. The single IMC tuning parameter
A= /2; was selected to minimize the value of . This
resulted in A; = 8.26 min, with a multivariable p value
of 1.028 (see Fig. 5). A rescaling of the uncertainty and
performance weights by 3% would give u < 1. The low
order controller has p greater than one for the given
uncertainty and performance weights because restricting
the controller to be low order is suboptimal. The multi-
variable SVD controller was constructed from the SISO
controller as described in the last section.

The multivariable closed loop responses to a variety
of perturbations are similar to those for the full order
controller in Figs. 7-10 [88]. The low order controller
required less computations to design, and has a simple
tuning parameter, 4, which can be re-tuned on-line
should the uncertainty description have been too opti-
mistic or too conservative.

5.4. Full-block input and output uncertainties

Now let Ay and Ao be full blocks. In this case, since
there are less than four full blocks, the robustness mar-
gins for LTI and SLTV are equal [56] and Theorem 1
applies. The multivariable robust control synthesis pro-
blem can be replaced by the coupled SISO problems in
(17) with G’ defined by (49).

If DK-iteration is used to compute a pu-suboptimal
controller, only two transfer functions d;(s) and d(s)
need to be fitted in the D-step. It is more expensive to
compute each di(s) than in the repeated scalar case
(5.2), since each di(s) appears in multiple SISO H-
synthesis problems. All the G'(s) and Xk ;(s) are used to

» 0.6
o

20

sensor number 0 time (min)
Fig. 10. The closed loop response of the paper machine to the process
disturbance in Fig. 6 for repeated scalar input uncertainty A; and
output uncertainty Ao equal to minus one times a 3rd order Pade
approximation for a time delay of 2 min times the identity matrix. The
controller was designed via DK-iteration to control a subset of the
pseudo-singular values of the process.

compute the d,(s) and d5(s) for the next iteration. The
D-scale computation could be posed as a highly struc-
tured Linear Matrix Inequality (LMI) optimization (for
more details, see [66,89,90]), the dimension of which is
equal to the dimension of the original multivariable
robust control synthesis problem. The K-step, on the
other hand, consists of independent SISO robust con-
troller synthesis problems.

The wide range of gains of the pseudo-singular values
in the coupled SISO problems caused the optimization
over the dynamics of d; and d, to provide negligible
improvement over constant D-scales. Optimization over
even a constant d> had negligible effect as well. This is
not surprising since the robustness of the overall system
is much more sensitive to full-block input uncertainty
than full-block output uncertainty when the plant is
poorly conditioned, as it is in this case. This restricted
the number of degrees of freedom in the D-scales
enough that it was necessary to relax the performance
weight to 7, = 8 in order to get u < 1. The optimization
over the D-scales gave dy = 0.15 and &, = 1, with u =
0.99 (see Fig. 5). With the D-scales fixed, about 10 s was
required to compute the H,, controller for each SISO
subproblem on a Sparc Ultra 2200.

The nominal closed loop response to the disturbance
in Fig. 6 was similar to those in the previous sections. A
closed loop response is shown in Fig. 11 for the paper
machine model with full block input and output per-
turbations. That is, the input and output uncertainties
are full random matrices with norm one. Attempts to
simulate a process with anti-diagonal time delay per-
turbations failed because the computer did not have
enough memory to create the uncertain transfer function.
It was possible to create the transfer function matrix in
Matlab for a constant anti-diagonal perturbation, but
the time domain simulation would not converge.

20

0 time (min)
sensor number

Fig. 11. The closed loop response of the paper machine to the process
disturbance in Fig. 6 for full block input uncertainty A; and output
uncertainty Agp equal to a worst-case norm random matrix. The con-
troller was designed via DK-iteration to control a subset of the
pseudo-singular values of the process.
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Time domain responses for other random full block
uncertainties demonstrated similar robustness [88]. In
all cases, the robust controllers derived from the theorems
in this paper achieved monotonic or near monotonic
rejection of the disturbance within the desired settling time.

6. Conclusions

Control algorithms for sheet and film processes based
on modified DK-iteration procedures were presented
that address model uncertainties in a numerically effi-
cient and effective manner. Alternative algorithms
requiring less computations were presented for the
design of robust low order tunable controllers. The low
order controllers were of the form of two static decou-
pling matrices in series with either a diagonal PI or PID
controller. The algorithms are applicable to large scale
sheet and film processes with arbitrary interaction
matrices and very general uncertainty structures. These
results, based on refinements of theorems by Hovd,
Braatz, and Skogestad [23,37,38], are substantially more
general and less conservative than previous approaches.
Contributions of this manuscript include:

e The theorems are constructive.

e In many cases a more complete model reduction is
derived, in that the robust multivariable controller

Appendix

can be constructed from the solution of a single
SISO robust control problem.

e Low order tunable controllers can be designed.
For the simple types of dynamics usually asso-
ciated with sheet and film processes, the resulting
controllers will give nearly the same robust per-
formance as high order controllers, while being
simpler to implement.

e More general processes and uncertainty structures
are considered. This includes non-square processes
and other processes with a singular interactions
matrix, and perturbations which are nonlinear
and/or time-varying.

e For the first time, these algorithms are applied to a
simulated paper machine which has a realistic
description of interactions across the machine.
This example is of substantially higher dimension-
ality than that of any robust control problem ever
considered.
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The Appendix contains some preliminary mathematics need in the proofs of the theorems and corollaries, and the
state space matrices for the robust controllers computed in the examples.

Al. Preliminary mathematics

First we present a Lemma that will be used in proving our results.

Lemma 1 (Optimality of the SVD controller). Consider the robust synthesis problem

inf sup 6(F/<G(s), k(s))),

I%(s)el(’\? s=jw

(1)

where G(s) is composed of diagonal sub-blocks of dimension n x n. Then a diagonal controller K(s) is optimal.

Note that the Lemma also holds if the Hy, norm is replaced by a p problem which has a single full block A, since

these objectives are equivalent [56].

Without loss in generality, each proof considers one of each type of uncertainty (A = diag{A;} =
diag{A pa,Aa,A1a, A0, A0, A1, Aq}. Below is some preliminary algebra which is used in the proofs. For brevity,

dependence on s will be suppressed.
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The G matrix for the system shown in Fig. 12 is:

o0 0 0 0 0 N Z N 4

0 0 0 0 0 wal  —wal | —wal

0 0 —wia P 0 0 wiaP —wiaP | —wia P

G woUZ2pa wol —woP 0 0 woP  -woP | —woP
wioU%pa wiol —wioP wiol —wiol wioP -wioP | —wioP

0 0 0 0 0 0 —wil | —wil

0 0 0 0 0 0 —wid | —wnl

UZpa I —P 1 -1 P —P -P

This can be written as G = U,,G V‘{ where
U, =diag(l, V,U, U, UV, V,U)
VI = diag(r, UT, VT, U, UT, VT, VT, V7).
and G is partitioned compatibly with G and has diagonal n x n sub-blocks. Also define
U, =diag(l, V,U, U, U, V,V,)
VI =diag(r, UT, v, U, U, VT, vT)
The scaled G is also partitioned compatibly with G and has diagonal sub-blocks:

"D 0]~[D‘1 0]
G =
L0 7 0 I

B 1 —1

0 0 0 0 0 —D —D -D
2D o D 1
dowpal —d
0 0 0 0 0 21A WA P ywal
ds dy
d —d
0 0 _WIAEP 0 0 3WIA Zp 3WIA Zp —d3W1AEP
de &
f— ), d ). [— ),
dywoTpaDy! dywo I dywo o 0 0 WO < dywo S| —diwoSp
dz d3 d6 d7
1 dswio , -dswio dswio dswio —dswio
dswioZpa D7} > I — 1 > b)) —d >
swio Zpa D] b AR Wio 4 o s P swio Zp
—d,
0 0 0 0 0 0 611 —dgwil
dy
0 0 0 0 0 0 —WHI —d7WH[
1 -1 1 -1 1 —1
YpaDj —1 —2p —1I —>p —Yp —2p —>p

(52)

(53)

(54)

(55)

(56)

(57)
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A2. Proof of Lemma 1

This Lemma essentially shows that a decentralized controller is optimal for a decentralized plant with decentralized
weights (costs).

The optimal controller solves

inf | F(G.K) Hm (58)

KeKg

where K; represents the set of all stabilizing controllers.

The key to a rigorous proof that a diagonal controller K can be chosen to be optimal is to reparameterize the above
optimization over K as an optimization over the Youla matrix Q, and then use matrix dilation theory to show that Q
can be taken to be diagonal. The set of all stabilizing K is given by

K, = {K: K= (Y- TO)(X - S0)™", 0 € RH.} (59)

:{K K= (¥-05) (iV_QT),QeRHOO} (60)

where (S, T) and (S, T) are right and left coprime factors of G, respectively (i.e. Gy = ST-!=T-'S), and
(X , Y, X, Y) is a solution to the following Bezout identity:

5 5 2

Note that, since Gy is diagonal, we may choose 7, S, X,Y,X, Y, T,S to all be diagonal (to do this, first construct
the right and left coprime factors of each subsystem and stack these on the diagonal to construct right and left coprime
factors of the overall system).

Using the parameterization (59) and (60), (58) becomes

Qé%%m |G11 + G120Ga |, (62)
where

G =G +GnTYGy (63)

G =GnT (64)

Gy = TGy (65)

The only restriction on Q is that it should be analytic in the closed RHP.

The matrix Gy consists of diagonal blocks because G11, G2, and G consist of diagonal blocks and 7" and Y are
diagonal. Similarly, Gi» and G»; also consist of diagonal blocks. Thus, each entry of Gi; + G12QG»; will have one Qj
in it, and the rows and columns of this matrix can be permuted so that the permuted matrix can be partitioned with
only one Qj in each partition (permuting the rows and columns of a matrix does not change the value of its unitary-
invariant norm). Call this permuted matrix P(Q) and let Pi/(Qi/‘) be the partition containing Q;;. Then

it 161+ G0 = int [P 0

The maximum singular value of a matrix [in this case, P(Q)] is greater than the maximum singular values of each
partition P of P(Q) [40], that is,

inf |P@].= ., inf, L sup (PO, (©7)

0eRH., QeRH and O full
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2, max {S‘jup o (P Q) h:p)} 68)

Z Q,,-ie%f;-(w max {Sgp 6<Pii(Qii)’S:jw) } (69)

= inf sup 6(P(Q)| _ ) 70
QeRHo and Q diagonal 4, s=jw

QeRHo alrEJQdiagonal Sl:)p U(Gll + G12QG21 }Ji/w (7 )

Thus minimizing over diagonal Q gives an Hy,-norm less than or equal to the value obtained by minimizing over full
Q. Since Q being diagonal is more restrictive than allowing Q to be full, the above inequalities are equalities and the
optimal Q can be taken to be diagonal. That diagonal Q corresponds to diagonal K can be seen from (59) and (60),
that is

inf (G + 610G, ) 7
QGRHmaIrEJQdiagonal Slj,pa i+ 12Q 21|S:_/w ( )

= _ 1nf
KeK; and K diagonal

F,(G, K) HOO (73)

QED.

A3. Proof of Theorem 1
The necessity and sufficiency of (15) as a test for robustness to arbitrarily-slow linear time varying full block
uncertainties was shown by Poolla and Tikku [48]. Now

inf inf |DF D7l = 4
inf, inf. |DECG BOD7], 7
inf inf ’DF,(UWGV‘C, K)D—‘H - (75)
KeK! DeD" o)
inf inf HDUMF/(G, VTKU)VLD—‘H - (76)
KeK! DeD}" 00
inf inf HU“,IDF,(G, VTKU)D”V‘{1 - (77)
KeK! DeD}" 00
inf inf DF,(G, VTKU)D*IH - (78)
KeK| DeD" 00
. . D 0]=[D! 0 T

£ inf ||F, K _
[égk’v’ Dlennz" ‘ /<|: 0 1:|G|: 0 Ij|’ Vku ) ‘oo )
o D 0]=[D" 0

f inf |F el =
z,lféKf; Dleanf“ ‘ [[ 0 7 ]G[ 0 I :| K ~ (80)

inf inf max inf
n EK.;/EK‘i

(5 R o)
o5 Sl o)

inf  max inf inf
n | $g ekl dii
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inf  max { inf inf HD"F,((;”, EK,,,»)(DI')”H } (83)
dj. i=1,...,n EK_,',»GK: dy; o)
k=2,...,.u

The fact that (80) is equal to (81) follows from Lemma 1. QED.

A4. Proof of Theorem 2
That constant scaling matrices provide a necessary and sufficient condition for robustness to LTV, NLTI, and
NLTYV uncertainties was shown in [49]. The rest of the proof follows the same steps as that of Theorem 1. QED.

A5. Proof of Theorem 3 5
Consider G = U,,G V}f where G has diagonal sub-blocks. Then

1%212’ fll,g ua(Fi(G, K)) = Iélellt;: 31:1/2 A (F/(UWG V‘f, K)) (84)
= ol sup s (leF/(G, VTKU) V§1) (85)
= Eillet;(g’ ?EIE A (F]<G, VTKU>> (86)

The last step follows from two observations. For the sub-blocks of A which are repeated diagonal, the corre-
sponding sub-blocks of U, and V7, commute with the sub-block of A and cancel. The sub-blocks of U, and VI
corresponding to a full uncertainty block can be absorbed into the uncertainty to produce an equivalent full uncer-
tainty block (that is, it will have the same set).

By assumption A has at most one full block. Absorb u# — 1 diagonal blocks of A into G. The remaining block can be
either full or diagonal without affecting the value of «. By taking the remaining block as full, Lemma 1 implies that a
diagonal VTKU = X is optimal for all values of the diagonal uncertainties, and hence is optimal for (86). Now by
taking the remaining block as diagonal, (86) is equivalent to

Jinf, sup max {ug(F(G' Pa))| = S
Lol mer, { Sup 15 (m(@" EK,[/’))} = (88)
max inf  sup u:(F(G, = i 89
s { s (65 ®
QED.
A6. Proof of Corollary 1
inf sup ua(Fi(G, K)) = (90)
KeK{ s=jo
; . i . —
o |, s 5 o
N .zl
max { inf inf D’F;(G’, EK,j,») (D’) 92)
i=1,..., n f)ieﬁlg ):K.u’GKj 00
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A7. Proof of Theorem 4
The equations are given first and comments follow.

1%21{ sup ua(Fi(G, K)) = (©3)
s s=jw
inf sup ua (F;(UWGV‘C, K)) = %4)
KeK{ s=jo
b (086 i) 2) -
inf sup ug (F,(G, VTKU)) - (96)
s s=jw
inf sup sup puj (F;(Fu(@", Ad), VTKU)> = 97)
ST
inf inf sup sup 6(DfF/<Fu(@S, &d)EK)D/’-1> = (98)
Tk.i€K{ DeD] s=jow ”511” <1 ’
inf inf sup sup pux (D F;(FL,(GS, &d),EK)D’-l): 99)
2k eK{ pre] s=jo ”51” < Kpp \ 7 /
inf inf s ! F(GE)I (100)
inf in ~ _ =
Zk Ky prep] YBJB M[Ad . } Dy AT Dfl
A g
1 1
. . - ~ Tl =
e L o B o
A Bp
1 1
. . 3 _ = -1 _
PR (O [ R e
A J ~ I I
A g
- | y
inf max { inf il |p{F| By |G| (b)) Ik |07 b= (103)
DyeD) i=hn | By jeK] DeD{*! 1 » 1
_ -l
by y (24)
inf max { inf inf Y F;(G’, zK,,«i) o — (104)
DyeD| I=Loon | vy ieK| Diebd ||| BF LUy dgy! (Di)
o0
o A\l
. o D = (Diz)
inf max inf  inf N F,(G,EK,,',-) . (105)
pred/ =l | 5 jeK! ﬁ‘leﬁﬁ.l Djlf <ﬁz)
d L f o

In (97) we have absorbed the diagonal blocks of A into G which produces a diagonally scaled G denoted by G* (this
scaling is the same as that used in skewed-u, for details see [91-94]. For any fixed values of the diagonal blocks of A,
Theorem | may be applied to show that a diagonal controller is optimal. If it is optimal for any fixed values, it is
optimal for the worst case values.
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In (99) we replaced o with 5 where Agr is one large full block [56]. The step from (102) to (103) holds as a direct
application of Corollary 1. The step from (104) to (105) holds since D, has a extra degree of freedom (thus dgr may be
set to one without loss of generality). QED.

A8. Proof of Theorem 5 .
Under the assumptions, (19) of Theorem 3 holds. Pick any i € [1, n] and define

" SkaSea
Sk i = =P (106)
EP,E
H(Zpi, 2x.i) = ZpiZk.i/ (1 + Zpi Tk ir) (107)
S(ZpiZr.i) = 1/(1 + Zpi Tk i) (108)
Then
inf sup g (F1<Gi, EK,,-,»)) - (109)
rx.icK! s=jw
1 1
inf ! F(G, ) ! (110)
m Su ~ y i — =
Tk icK! s=]g KA 2p,ii ! K oy
i Zpii S
[ woH(ZpiZki) —woH(ZpiZk.i) —woS(ZpiZki) woS( 23P i ZK.ii)
inf  sup ps wioS(ZpiZk.i) —wioS(ZpiZk.i) wioS(ZriZk.i) —wioS(ZpiTk.i) 11 (111)
Seaek! sz M| | -WiH(Zp XK i wiH(ZpiZki)  —wiH(Zp Sk i wiH(Zp i ZK,ii)
| wnH(ZpiZki) —winH(ZpaZki) —wnS(ZeiZki)  winS(Zei ki)
CwoH(Sp7Sk) —woH(Sp7Ski) —woS(Zpifa)  woS(Sp7sk.i)
. WIOS(EP’EEKJ[) —11’105(2;,,52](,[,’) wIOS<Ep’T,'EK,ii) —onS(ZPﬁEK,[;)
inf sup uz R R A A (112)
EK.r'iEK,l s=jw -WIH<EP EEK ,',') WIH<EP’EEK,1'1') _WIH<EP’EEKJ1') WIH<EP’EEK,1'1')
WHH<EP ,,ZK u) _WIIH<EP,,72A:K,[[) _WIIS<EP,EX,\:K,ii) ‘1’IIS<EP,52K,1‘1‘)

since, for the assumed uncertainty types, the above matrices contain Xp ; and Xk ; only as the product £p ; ¥k ;. Since
(112) is the SISO control problem for X}, 7, we have

E = E e
= EK,ii,opl: P,ii,opt K,n' (113)

ZA K,ii,o E
,ii,opt E
P.ii

Kﬁ,opt

Note that assumptions (ii) and (iii) were required to ensure complete SISO control problem equivalence (that is,
internal stability as well as the u condition is satisfied). At the surface it may appear that it would also be required that
¥p.; have no zeros or poles at s = 0. However, the continuity of  allows the construction of a limit argument to show
that zeros or poles at s = 0 are allowed [95].

QED

A6. Proof of Theorem 6 B
Under the assumptions, (19) of Theorem 3 holds. Pick any i € [1, n] and define

a ZK IIEP i

K,ii = Ep’” (114)
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For any i

arg_inf sup uz (F;(Gi, EK,,-,)) =arg inf

k.ieK! s=jw

sup ui (F/(GZT, iK,ii))-

(115)
EKJ»[eK}_ s=jw
Now apply that same argument as used in the proof of Theorem 5. QED.

Al10. Proof of Corollary 2
Similar to the proof of Theorem 3. QED.

All. Proof of Corollary 3
Similar to the proof of Theorem 4. QED.

Al2. Proof of Corollary 4
Similar to the proof of Theorem 3. QED.

Al3. Proof of Corollary 5
Similar to the proof of Theorem 1. QED.

Al4. Proof of Corollary 6
Similar to the proof of Theorem 2. QED.

AlS5. Proof of Corollary 7
Similar to the proof of Theorem 4. QED.

A.16. Proof of Corollary 8
Similar to the proof of Theorem 5. QED.

A.17. Proof of Corollary 9
Similar to the proof of Theorem 6. QED.

A.18. State space matrices of the controller designed in Section 5.2

Ak =

Columns 1 -3

—5.880071907852288e + 02 6.148744672296147¢ + 02 4.604740029212040e + 02

5.604233917995811e + 01
—1.546954497030094¢ + 01
9.311545220904512¢ — 16
1.747568665938097¢ — 15
5.168031888201593e — 01
—1.138880502746125¢ + 00
3.016528151784629¢ + 00
—1.490982062881223e — 01
4.534129462957375¢ — 01
—2.408891108259889¢ + 00
2.227914152170288e + 00
—3.218198676091172e — 15
—1.301471937665606e — 15
1.740120485458225¢ — 15
6.361093229963488¢ — 16
6.277618792368714e — 16

—6.283292865721634¢ + 01
2.191712894846478 + 01
—1.002746785079390e — 15
—1.881931322784988e — 15
—1.164315286585576e + 00

2.565804560859658¢ + 00
—6.795991037819960¢ + 00
3.359060558044675¢ — 01
—1.021502258360954¢ + 00
5.427034510893976e + 00
—5.019308240907330e + 00
3.465631428124776e — 15
1.401536233143548e — 15
—1.873910485368964¢ — 15
—6.850168940399087¢ — 16
—6.760276530547976e — 16

—1.691823275285767e + 01
—3.890468609915896e — 01
—7.189989990010580e — 16
—1.349400224867352e — 15
—8.021795349521191e — 01
1.767765083154003¢ 4 00
—4.682241136113864¢ + 00
2.314295506872773e — 01
—7.037854917868097e — 01
3.73906909275055e + 00
—3.458158109630253¢ + 00
2.484959877015252¢e — 15
1.004942786841387¢ — 15
—1.343649048040776e — 15
—4.911773026273162¢ — 16
—4.847317518998088e — 16
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Columns4—6

—2.518737189454669¢ + 02
1.540021980744796e + 01
—4.364834033951118e + 00
—8.265644312716370e + 01
1.786532630293183¢ + 00
—5.954429810346211e — 01
—1.512726989370992¢ + 00
—5.555230480618331e + 00
—4.334599934426976e — 01
8.606041586127435¢ — 01
—2.092695851781515¢e + 00
8.896187620953473¢ + 00
1.838522761346047¢ + 01
3.037564364282468¢ + 00
—6.705799569379678¢ + 00
—3.294305308792737e — 01
2.931507431542018e — 01

Columns 7—9

1.504246426113544¢ + 02
—9.197357193003622¢ + 00
2.606776929184614¢ 4 00
2.234494381634972¢ — 14
—7.641468864095658¢ — 16
—1.572125549019853¢ + 00
4.422437901327094e — 01
1.013673413206383¢ 4 00
7.735662210222391e — 02
—2.352442381169413e — 01
1.249804969396672¢ + 00
—1.155908695591889¢ + 00
—4.568064743158970e — 15
—5.389191681212471e — 16
1.520714377337405¢ — 15
1.883703905232138e — 16
—2.391325201017346e — 16

Columns 10—12

—6.033542782401723e + 02
3.689066308928619¢ + 01
—1.045580022885556¢ + 01
2.148937879454401¢ 4- 01
—2.849345083709308e — 01
1.322063592077839¢ 4 00
—2.305584665278505¢ + 00
8.749969190898078 4 00
—5.698009108790048e — 02

—8.207425911351102e + 02
5.018235472019094e + 01
—1.422302100393165¢ + 01
—1.347353451334145e + 00
—5.903219215036291e — 02
1.454723830235523¢ + 00
—3.228108488833820¢ + 00
8.474637242388923¢ + 00
—4.244734476200322¢ — 01
1.287221971883328¢ + 00
—6.819149782834415¢ + 00
6.361857614333061¢ + 00
1.454077465700355¢ — 01
2.401086839222032¢ — 02
—5.300696598177999¢ — 02
—2.604031445170019¢ — 03
2.317252597418788e — 03

1.525070510577801e + 03
—9.324681107297295¢ + 01
2.642863930629627¢ + 01
—1.546415674605307¢ — 14
—4.332731699650277e — 15
—2.885616450796306e + 00
3.628293611098791e + 00
—1.808353651471117e + 01
1.198427614464494¢ 4 00
—3.644460983966932¢ + 00
1.267106685255740¢e + 01
—1.790761880431088e + 01
1.142558079306990e — 14
3.860318418220820e — 15
—5.631857556122544¢ — 15
—1.948351299877517e — 15
—1.581266453034795¢ — 15

—2.361824502053449¢ + 03
1.444081448057488¢e + 02
—4.092912913639285¢ + 01
—1.276600856798962¢ — 11
1.757648657146881e — 13
4.016883123307948e 4 00
—8.852015563970417¢ + 00
2.344614214078176e 4 01
—1.158874560974575¢ + 00

4.016757110238605¢ + 03
—2.455950651373719¢ + 02
6.960820769347728¢ 4- 01
—6.634331338467195¢ — 15
—1.190116941665417e — 14
—7.174092503276716¢ + 00
1.712162732350863¢ + 01
—4.179160438722221e + 01
2.065637361398801e 4 00
—6.281676656796931e + 00
3.337327521665450e + 01
—3.086598306768993¢ + 01
2.199019483247496e — 14
8.874789698245302¢ — 15
—1.187920560130718e — 14
—4.376380741688733e — 15
—4.277264465118866e — 15

—3.329230683724810e + 03
2.035578961303343¢ + 02
—5.769375009046735¢ + 01
—5.687376785619688e — 01
5.050899772695990e — 03
5.941956540594664¢ + 00
—1.305437165084760e + 01
3.451939524547544¢ + 01
—1.744775419349829¢ + 00
5.318505537686632¢ + 00
—2.766095355491361 + 01
2.599254552566666¢ + 01
1.468590234726399%¢ — 01
2.928977227012811e — 02
—5.350055242693297¢ — 02
6.509477441801849¢ — 02
4.186260809490598¢e — 03

—9.699111577159437e + 02
5.930291213016883e + 01
—1.680803082128656¢e + 01
—9.597327131896650e + 01
1.349787265190995¢ + 00
1.900748850110523e — 01
—4.871374333183550e + 00
7.095440459624101e — 01
—8.359547880219935¢ — 01
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1.354668360317635¢ — 02
—5.012976345900557¢ + 00
1.693829607087231e + 00
—5.195583450271068¢ + 00
—8.732600801466369¢ — 01
1.893891079549973¢ + 00
—1.129085201254176e — 01
08.84114471291422¢ — 02

Columns 13—15

2.612824770728370e + 02
—1.597549595727122e + 01
4.527882675403263¢ + 00
—4.126827894911816e — 16
—7.745132464884936e — 16
6.832400925277543¢ — 02
—1.505657931120921e — 01
3.988003592324785¢ — 01
—1.971154096305844¢ — 02
5.994349688429951e — 02
2.170868632911270e + 00
2.945415787680354¢ — 01
1.536076500855985¢ + 00
1.999611752484184e + 01
—5.253082020888680e + 00
—2.819203081848754e — 16
—2.782207649897801e — 16

Columns 16—17

—3.521949820207279¢ + 02
2.153412496114261e 4 01
—6.103346750693381e + 00
1.649825182048802¢ — 01
3.305304236890853e — 02
6.440432501452810e — 01
—1.352629057058886¢ + 00
3.770668974448044¢ + 00
—1.533177392850852¢ — 01
4.203244851449394e — 01
—2.926216284012265¢ + 00
2.533748524177969¢ + 00
—1.722476028671700e — 01
—9.413569841909747¢ — 02
6.232887804508652¢ — 02
—6.996318151809803¢ + 00
7.155243215128683e — 01

3.524178742052303¢e + 00
—1.972324754951022e + 01
1.731659353430797¢ + 01
3.076586046944202e — 12
5.150827891630203e — 13
—1.119196544599048e — 12
8.346623946347433¢ — 14
5.546306742616683¢ — 14

—2.458118279523622¢ + 02
1.502957989259916¢ + 01
—4.259784772648334¢ + 00
3.882476620161116e — 16
7.286539802651294¢ — 16
4.708152797602322¢ — 01
—1.037536830486723¢ + 00
2.748101359299717¢ + 00
—1.358306512495912e — 01
4.130658397146136e — 01
—2.042330556869504¢ + 00
2.029662446995587¢ + 00
—1.999611752484199¢ + 01
—2.401527592458446¢ + 01
1.091516833465946e + 01
2.652276841071862¢ — 16
2.617471924739046¢ — 16

1.202207848415532¢ 4 03
—7.350614108273361e + 01
2.083360564419734¢ 4 01
1.304128260855715¢ — 03
2.612725707489746e — 04
—2.142815582291262¢ + 00
4.722655003392209¢ + 00
—1.250730815729212¢ + 01
6.184611286261353e — 01
—1.881125263626151e + 00
9.988558504203477¢ + 00
—9.239495217611880e + 00
—1.36155617702485%¢ — 03
—7.441092910887845¢ — 04
4.926876629717610e — 04
—7.492870120896803e — 01
—6.749813277420426¢ — 02

2.956546775033679¢ + 00
—8.058518629228235%¢ + 00
1.030008363738264¢ + 01
2.291375800934379¢ + 01
3.708399980908524¢ + 00
—8.353515348056909¢ + 00
—1.422334750303090e + 00
3.375768808475222¢ — 01

—1.509455164352034e + 02
9.229204784776213e + 00
—2.615803388170683¢ + 00
2.384110005444475¢ — 16
4.474440968520103¢ — 16
2.598064579192431e — 01
—5.725361526643380e — 01
1.516464122673138¢ 4 00
—7.495440758842742¢ — 02
2.279390183732075¢ — 01
—1.254132655885890e + 00
1.120013376358902¢ + 00
5.253082020888732¢e + 00
1.091516833465946¢ + 01
—8.277776883445661¢ + 00
1.628681991585485¢ — 16
1.607309358241906e — 16
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Bk =

4.628508634446622¢ — 16
1.346687187543125¢ — 15
1.164045765169753e — 15
7.163600221044353¢ — 01
1.435174976090861e — 01
7.057191151708615¢ — 02
1.338802016092666e — 01
4.616522236195802¢ — 01
—2.289907570187057¢ + 00
—9.773274724129235¢ — 01
2.846333616870248e — 13
—8.272529134556158e — 01
7.479052807530189%¢ — 01
—4.087405849665713e — 01
2.706342280378746e — 01
—3.820079746246349¢ + 00
—1.164024408225487e — 01

Ck =

Columns 1-3

—3.278655389103304e — 01 7.386542249660075¢ — 01 5.089113829393147e — 01

Columns4—6

—2.848293353182419¢ — 01 —9.281300473869561e — 01 4.542316930222445¢ 4 00

Columns 7—9

1.701064769673434e — 01 1.724613515296431e + 00 —3.764833293193810e + 00

Columns 10—12

—6.822982514891273e — 01 —2.548354148065294¢ + 00 —1.096816101047014e + 00

Columns 13—15

2.954691525044453¢ — 01 —2.779742954611004¢ — 01 —1.706955028714858e — 01

Columns 16—17

—3.982768152683027¢ — 01 1.359506914068743¢ 4 00

Dk =0
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