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Of special industrial interest is the cross-directional control of coating processes, 
where the cross direction refers to the direction perpendicular to the substrate move- 
ment. The objective of the controller is to maintain a uniform coating under un- 
measured process disturbances. Assumptions that are relevant to coating processes 
found in industry are used to develop a model f o r  control design. This model is 
used to derive a model predictive controller to maintain flat profiles of coating 
across the substrate by varying the liquid flows along the cross direction. Actuator 
constraints, measurement noise, model uncertainty, and the plant condition number 
are investigated to determine which of these limit the achievable closed-loop per- 
formance. From knowledge of how these limitations affect the performance we can 
make some recommendations on how to modify the plant design to improve the 
coating uniformity. The theory developed throughout the article is rigorously verified 
through experiments on a pilot plant. The controller rejects disturbances with two 
sampling times. The proposed controller can reduce the variance in coating thickness 
by as much as 80% compared to what is possible by manual control or simple control 
schemes. 

Introduction 
Coating refers to the coating of a substrate with a uniform 

layer of liquid. Coating processes are of great importance to 
manufacturing, especially in the photographic, magnetic and 
optical memory, electronic, adhesive, and paper industries 
(Cohen, 1990). 

Plant description 
Figure 1 is a simplified diagram of a typical plant. The 

process begins with a feed roller from which substrate is un- 
wound. From there, the substrate passes between a roller and 
a stainless steel die. The liquid flows through a slot in the die 
to the substrate. The cavity in the die is designed to distribute 
a uniform flow of liquid through the slot. A controlled pump 
supplies a constant flow of liquid through the die. 

The term “gap width” refers to the distance across the slot 
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at a given point along the die. The gaps through which liquid 
flows are adjusted by means of n equally spaced bolts. The 
bolts are adjusted manually. 

After being coated with liquid, the substrate passes through 
a drier. After the drier, the time-averaged coating thickness at 
each of the n positions corresponding to the die bolts is meas- 
ured by a traversing coat-weight sensor. The coated substrate 
is wound on the product roller. 

For further details on die design, die flow phenomena, drying 
phenomena, coat-weight sensors, and other aspects of coating, 
see Sartor (1990), Cohen (1990), Cohen et al. (1990), Scriven 
and Suszynski (1990), and the literature cited therein. 

Control objective 
The cross-directional controI problem is aimed at maintain- 

ing a uniform profile of liquid across the substrate. Successful 
control of coating thickness improves product quality and re- 
duces the time needed to bring the plant on-line. Poor control 
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Figure 1. Typical coating plant. 

can lead not only to coating thickness nonuniformity but also 
coating instabilities that leave portions of the substrate un- 
covered; such substrate must be rejected (for a short summary 
of coating instabilities, see Sartor, 1990). 

We will consider coating processes with a large time delay 
between a change in gap width and the resulting sensing of the 
change in coating profile downstream. This time delay could 
be due to  a sensor installed at a fair distance from the die as 
in the coating plant considered above. Because the controller 
cannot be expected to  reject disturbances faster than this time 
delay, detailed process dynamics are not considered in the 
modeling, identification, and control of the cross-directionai 
coating process. Thus, the objective of the controller is the 
elimination of slow disturbances in the coating thickness. The 
disturbances were of this nature in the Avery/Dennison pilot 
plant; the control of this plant is studied in this article. 

Organization 
Assumptions that are relevant to a subset of coating proc- 

esses found in industry are used t o  develop a model for control 
design. This model is used to  derive an unconstrained model- 
predictive controller to  maintain flat profiles of liquid across 
the substrate by varying the gap widths. Several modifications 
to  the unconstrained controller are proposed to  prevent phys- 
ically infeasible actuator movements (gap widths). The sim- 
plest, yet effective, constraint-handling method is chosen. 

Actuator constraints, measurement noise, model uncer- 
tainty, and the plant condition number are investigated to 
determine which of these limit the achievable closed-loop per- 
formance. The theory developed throughout the article is ap- 
plied to a pilot-plant liquid coating process at the Avery/ 
Dennison Research Center in Pasadena. 

Notation 
All scalars are italicized. Matrices are upper case italic bold. 

M , ,  represents the (ij) element of the matrix M .  Vectors are 
lower case italic bold. The ith element of the vector x is rep- 
resented as x,. x ( t )  refers t o  the value of x at  time t. 

Model Development 
Below we make assumptions on the plant that are relevant 

to a subset of coating processes found in industry. These as- 
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sumptions are used to develop a dimensional model. This model 
is transformed to  a dimensionless form. The dimensionless 
model is then rearranged into a form suitable for controller 
design. 

Dimensional model 
Consider a plant with the number of actuators n equal to 

the number of sensors (or sensor measurement positions). It 
has been found experimentally (through examination of pilot- 
plant data) that the plant behaves approximately linearly in 
the operating region. Let li be the vector of gap widths, i be 
the vector of coating thicknesses, and c collect any effects on 
the coating thickness not due to  changes in gap width. If the 
process dynamics are approximated by a pure delay, then the 
coating thickness at sampling instant t is related to the gap 
width at  the previous sampling instant through 

i ( t )  = P l i ( t -  1 ) +  d ( t ) ,  (1) 

where P is a constant n x n matrix. 
It accounts for unmeasured input effects 

such as measurement noise and disturbances. We assume that 
c is a nonzero-mean stochastic variable, that is, c(O), c(l), ..., 
c ( h ) ,  . . . I  is a sequence of independent random vectors with 
nonzero mean (Ljung, 1987). We define the steady-state dis- 
turbance 2 as the time-averaged value of c, and define n' by 

Assumption on i. 

We will assume that ri is white noise. It will be referred to  as 
measurement noise. 

d is chosen to  be stochastic because it describes well the 
apparently random fluctuations of the process. In practice, 
equal gap widths d o  not give a uniform coating because of 
imperfections in the roller or the die, nonuniformities in the 
drying process, or poor calibration of the gap widths. These 
imperfections lead i to have nonzero mean. 

Typically, the total flow of coating 
through the die is maintained constant through a high gain 
controller. Because of constant total flow, increasing the flow 
through one actuator will necessitate decreasing the flow 
through the others. In the development of the model, we make 
the following assumptions: 

1. The total liquid flow (and therefore the sum of the coating 
thicknesses) is constant. 

2. The responses t o  all actuators are similar and symmetric 
about the actuator positions. 

3. The only interactions between the actuators are due to 
the constant flow assumption. 

Assumption 2 implies that P is symmetric. Assumption 3 
implies that P can be separated into two matrices 

Assumptions on P .  

P =  &Z-M, (3) 

where k' is the gain between the ith gap width and its corre- 
sponding coating thickness for an infinitely wide die (that is, 
n-03). Z is the n x n  identity matrix, & I  is the contribution 
that changing gap widths would have on the coating thicknesses 
if there were no interactions, and M represents the effect that 
increasing one gap width has on decreasing the flow through 
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all the gaps. Assumption 3 also implies that all elements of M 
are equal, that is, M;,, = rn for i, j = 1, 2, .. . , n.  Then 

P= 

Y 

i - m  - m  - m  . . .  - r n  

- m  i - r n  - m  *.. 

- m  - r n  

*.. i - m  - m  

- m  . . .  - m  - m  i - m  - - 
I 

n x n  

(4) 

Assumption 1 implies that Cy= I i, is constant for all gap widths 
ii. Then (ignoring the noise G), we have from Eq. 1 that 

" /  n \ 

Ci;(t) = C rii+ CPiJfi;(t- 1) 
, = I  i =  I \ i =  I 

must be a constant for all fi,(t- 1). This implies that 

CP,~=O, for j =  1,2 ,..., n.  
i =  I 

By substituting the elements of P from Eq. 4 into the sum- 
mation (Eq. 6), we find that m must be related to  i by: 

i 
n' 

m=- 

Substituting for m in Eq. 4 gives the final form for P 

where 

B =  

I 
n x n  

i 
P = -B, 

n 

n - 1  - 1  - 1  . . .  - 1  

- 1  n - 1  - 1  '.. 

- 1 ... - 1  

'.. n - 1  - 1  

-1 . . .  - 1  - 1  n - 1  

The single model parameter k' does not depend on the num- 
ber of actuators n. 
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Dimensionless model 
The model is transformed to a dimensionless form for two 

reasons. First, using a dimensionless model will allow the con- 
trol parameters to  vary little between different plants. Second, 
the controller is designed to  produce a coating of uniform 
thickness and will not be able to  change the mean coating 
thickness. A flow controller which maintains constant flow to 
the coating die is used to  adjust the mean coating thickness. 
Therefore the nondimensional variable x is chosen to  represent 
coating thickness as a deviation from the mean. 

Define T= ( l/n)C;=$, and U as the nominal gap width. The 
nominal gap width should be chosen well within the stable 
coating region. Define the following dimensionless variables: 

Solve the above expressions for il, fi,, i,, k,, and k,  substitute 
into Eq. 1, and rearrange t o  give the dimensionless model: 

X (  t )  = kBu( t -  1) + d +  n( t ) .  (1 1) 

Model for control design 
The matrix B in Eq. 9 is singular. This is because the coating 

thicknesses x are not uniquely determined by the gap widths 
u. Any increment in gap width added to  all the gap widths u, 
does not change the coating thicknesses. However, to  keep a 
stable film, the dimensionless gap widths u must not stray too 
far from the preferred position of 0. We augment the model 
with the additional equation C:,,u, = 0 to both keep u from 
straying and to give a unique mapping of the coating thick- 
nesses to the gap widths. This is done as follows: 

Add a component t o  x, d, and n, and set this component 
to  zero, that is, ~ , , + ~ = n , , + ~ = d ~ + ~ = O .  

Add a row of ones to  the plant matrix kB to  give the new 
( n  + 1) x n plant matrix 

c= [ 1.7 I] 

This leads to  the augmented model 

x(  t )  = Cu( t -  1) + d +  n ( t ) .  (12) 

Since the mean value of u is a free independent variable (it 
does not change coating thicknesses), a controller design based 
on the above model which seeks to  minimize x will automat- 
ically adjust its control action so that the mean value of u will 
be exactly zero. Also, the singularity of the original gain matrix 
B is removed; C has full column rank. 

To derive the model predictive controller in the npxt section, 
it is convenient t o  express the model in terms of the changes 
in the inputs rather than the inputs themselves. For this pur- 
pose, we subtract Eq. 12 for t-  l from that at t to arrive at 

x ( t ) = x ( t -  l)+CAu(t- I ) + A n ( t ) ,  (13) 

where 

A u ( t -  I ) = u ( t -  1 ) - u ( t - 2 ) .  (14) 
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The controller calculates the inputs to  the plant based on 
the measured variables. The model for control design is: 

r ( t ) = x ( t -  I)+CAu(t-l). (15) 

Estimation and Prediction 
Recall that our objective for using a model is to  predict the 

effect of changes in gap widths on the coating thicknesses. 
This will allow us to find the “best” adjustments in gap widths 
to reject disturbances. 

State estimation- filter 
The state estimator is most conveniently expressed in the 

following two-step form (Morari and Lee, 1991; Morari et al., 
1992): 

Model Prediction: 

Correction Based on Measurements: 

X ( t l t ) = x ( t l t -  I ) + y [ P ( t ) - ~ ( t l t - l ) ] ,  YE(O, I]. (17) 

x(. 1 t - 1) denotes the estimate of x( .) based on measure- 
ments up to time t - 1. P( t )  is the measurement of x at  time 
t .  y~(O, l ]  is a filter parameter used to filter noise and to  obtain 
robustness to  model uncertainty. The larger the measurement 
noise and model uncertainty, the smaller y should be chosen. 

By substituting Eq. 16 into Eq. 17 we obtain the state es- 
timator 

X(  t I t )  = (1 - Y)[x( t - 1 I t - 1) + CAU ( t - I)] + ~ 2 (  t )  , (18) 

which allows one to  compute the current state estimate x(  t 1 t )  
based on the previous estimatex( t - 1 I t - I ) ,  the previous input 
move Au ( t  - I), and the current measurement 2 (  t ) .  The state 
estimator is initialized with x(0 10) =R(O). 

The state estimator (Eq. 18) suggests that x ( t  It) is a filtered 
version of P. Indeed, in a noise-free system with the manip- 
ulated variables constant, we have 

x ( t l t )  = ( I  - y ) x ( t -  1 I t -  1)+y2(t) ,  (19) 

which shows that the state estimate x ( t l t )  is f passed through 
a first-order filter. If the output f suddenly changes to a con- 
stant value then the state estimate x(  t I t )  approaches the true 
value f with the filter time constant: 

T, 

where T, is the time between sampling instances (Morari and 
Lee, 1991; Morari et al., 1992). 

Prediction 
The control algorithm prescribes the gap widths u which 

reject disturbances in x. In order for the control algorithm to 
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determine the “best” current gap widths there has to  be a 
means for predicting the effect of the gap widths on the future 
coating thicknesses x. The predictor is given by writing Eq. 16 
for the next time step t + 1 : 

x( t+l I t )=x( t l t )+CAu( t )  (21) 

Control 
We begin by stating the unconstrained control objective. We 

derive the unconstrained controller that minimizes the objec- 
tive. Then we discuss three methods of modifying this con- 
troller to  handle actuator constraints, in our case constraints 
in adjacent gap widths. 

Unconstrained con trot algorithm 

minimize the quadratic objective: 
Performance Criterion. The performance criterion is to  

where I1 . I1 represents the Euclidean norm, 1 1 ~ 1 1 ~  = C:=, xf. 
Unconstrained Control Problem. We express the control 

problem as an optimization by combining the objective (Eq. 
22) with the predictor (Eq. 21): 

w h e r e x ( t + l  I t ) = x ( t I t ) + C A u ( t ) .  (23) 

The least-squares solution to  the unconstrained control 
problem is: 

Au(t) = - (CTC‘-’C%(t l t ) .  (24) 

Methods for handling actuator constraints 
Excessive stresses in the die constrain adjacent actuator po- 

sitions. We will consider two ways of specifying these con- 
straints. First, the specification could be that the difference 
between adjacent actuator positions is limited, that is, 

16u,l = lu !+ ,  -u,I 5 I ~ u I , , ,  for i= 1,. , . ,n - 1. (25) 

An additional specification could be that the difference be- 
tween adjacent actuator positions must be even less when large 
adjacent gap differences are made in opposite directions. This 
constraint can be written as: 

162u,l = Iu,+2-2u,+~+u,I  5 162ulrnax, 

for i = l , .  . . ,n-2. (26) 

For those plants where I h2u I rnax 2 2 I6u I the first constraint 
(Eq. 25) implies the second constraint (Eq. 26), so for these 
plants the second constraint need not be considered. 

Constraint-handIing will be needed when the disturbances 
are sufficiently large and have sharp spatial variations across 
the substrate. When the disturbances are uniform across the 
substrate, then the control action calculated from the uncon- 
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strained control algorithm will be uniform, and constraint- 
handling is not needed. 

Actuator constraints can be handled in three ways: by in- 
cluding additional terms in the objective function, by adding 
the constraints explicitly to  the control algorithm, or by scaling 
the control actions to  be “feasible”, that is, to  satisfy the 
constraints. Below we describe each method of handling ac- 
tuator constraints. We will choose the simplest, yet effective, 
constraint-handling method for our control problem. 

Additional 
terms weighting I u,, , - u, I and I u , , ~  - 2u,+,  + u, I could be added 
to  the objective function (Eq. 22), that is, 

Additional Terms in the Objective Function. 

n- I 

z=I lx( t+  1 1 t ) l 1 2 + ~ r ~ I u , + I - U , 1 2  
, = I  

“ - 2  

+ @,c I u , , ~  - 2u,+ + uil ’. (27) 
, = I  

The disadvantage of this approach is that the added weighted 
terms always affect the control action. The weights for these 
terms must be large enough to  keep the control action feasible 
for disturbances which contain sharp spatial variations, but 
large weights on the control action will substantially slow the 
control action when the disturbances are uniform across the 
substrate and the extra terms are not needed. 

Explicitly Adding Constraints to  the Control  Algo- 
rithm. The constraints could be added explicitly to  the control 
algorithm. Then the constrained control problem will be the 
unconstrained control problem (Eq. 23) plus the additional 
constraints (Eqs. 25 and 26): 

such t h a t x ( t +  l I t ) = x ( t I t ) + C A u ( t )  

16u,l = Iu,+I-ulI I 16ulmax, 
1b2u,I = I U , . ~ - ~ U , + , + U , I  5 Ia2uImaX, 

for i= l , .  . . ,n-1.  
for i=1 , .  . . ,n-2.  

(29) 

Figure 2. Projection of an infeasible control action to 
the feasible space. 
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This is a quadratic programming problem that must be solved 
at each time step for the optimal actuator movements Au(t). 
This approach is not as simple t o  implement and analyze as 
the third constraint-handling method discussed next. 

Constraints can be handled by 
projecting any infeasible u given by the unconstrained control 
law (Eq. 24) to  the feasible space. Figure 2 illustrates this idea 
for the first constraint (Eq. 25) for n = 3. All feasible control 
actions u are given by the shaded region. When the uncon- 
strained control law (Eq. 24) suggests an infeasible control 
action, a feasible control action is found by projecting u to 
the feasible space. Many projections could be used, but the 
projection shown (which involves simple scaling of the control 
action) maintains the direction of the control action, which 
can be important for multivariabIe systems (Campo, 1990). 

Now consider satisfying the first constraint (Eq. 25) for 
general n. This is done by scaling the control action u calculated 
from the unconstrained control law (Eq. 24): 

Scaling Control Actions. 

In addition, the control action from the above equation can 
be scaled to satisfy the second constraint (Eq. 26): 

ut satisfies both constraints (Eqs. 25 and 26). 
This constraint-handling method is easy to  implement and 

performs exactly as the unconstrained algorithm when con- 
straint handling is not needed. It is shown in Braatz et al. 
(1991) that, provided the assumptions stated previously hold, 
the scaling method performs nearly as well as explicitly adding 
the constraints to  the control algorithm. 

In summary, the con- 
strained control algorithm is: 

Constrained Control Algorithm. 

Calculate the estimated state through Eq. 18. 
Calculate the unconstrained control move from Eq. 24. 
Scale the unconstrained control move using Eqs. 30 and 

31 to obtain the constrained control move which is imple- 
mented. The state estimator for the next step (Eq. 18) will use 
the constrained implemented move from the previous step. 

Limits of Performance 
We would like to  know how we11 the controller can be ex- 

pected to reject disturbances in coating thicknesses. This leads 
us to study the various factors that limit the achievable closed- 
loop performance. Knowledge of how these limitations affect 
the performance can show us how to modify the plant to 
improve the uniformity of the coating process. Also, because 
identification of model parameters is time-consuming and 
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costly, we study how accurate the identification must be to  The constraints on gap widths prevent the steady-state dis- 

% .- 
0.6 - 

S 0.4 - 

- 0.2 w“ 

where O < X <  1. If the operator implements the control move 
ut(0) exactly and there is no measurement noise, then applying 
the control move to  the plant (Eq. 12) gives that (after some 

\ 

matrix manipulation): .- 2 - - 
x(l)=(l -A)d. (34) 

achieve a given level of performance. We would also like to  
compare the performance of our control algorithm to the best 
closed-loop performance achievable by any control algorithm. 
This allows us to  convince ourselves that we have indeed de- 
signed the best possible controller. 

We begin by making the assumptions necessary to  achieve 
perfect one-step rejection of disturbances. This provides a 
standard to which the various limitations on  the closed-loop 
performance can be compared. 

We are interested in the ability of the 
controller to reject slow disturbances. Let us study the rejection 
of a steady-state disturbance and let the control algorithm start 
a t  t = O .  For simplicity of presentation, let the disturbance d 
have zero-mean and the initial gap widths u( - 1) = 0. If  we 
make the following three assumptions: 

Perfect Control. 

..y= 0.18 

1. No actuator constraints 
2. No measurement noise 
3 .  Our model is exactly equal to  our plant 

then it can be shown that the control algorithm with y= 1 
perfectly rejects the steady-state disturbance in one step. 

We will drop the assumptions of no actuator constraints, 
no measurement noise, and no model uncertainty in turn and 
show how each of these prevent the controller from rejecting 
the steady-state disturbance in one step. We will also investigate 
if the plant condition number limits performance. 

Constraints on actuator movements 
The constraints on  the actuator positions will degrade per- 

formance only when the control move from the unconstrained 
algorithm must be scaled to  keep the gap widths feasible. It 
can be shown that in this case the coating thicknesses at the 
next timex(1) do not equal zero. We will also show below that 
the coating thicknesses x may never reach zero. 

Assume no measurement noise, y = 1, that the model is per- 
fect, and for simplicity of presentation that d has zero mean 
and the initial gap widths u( - 1) = 0. Then the measured coat- 
ing thicknesses a t  t = 0 is f(0) = x(0) = d .  The control move for 
the first step from Eq. 24 is: 

u(0) = - (Czc)-’Crd. (32) 

If the control move from the unconstrained algorithm must 
be scaled to  keep the gap widths feasible, the constrained 
control move is: 

u’(0) = - A(CTc) - V d ,  (33) 

turbance from being completely rejected. This is true regardless 
of the control algorithm used. 

The gap 
widths are constrained t o  prevent high stresses in the die. A 
die can be designed to  have weaker constraints on its die gap 
widths by placing the bolts further apart, by making the die 
lip thinner, or by making the die out of a more flexible metal. 
Putting the die bolts too far apart leads to  strips of uncontrolled 
coating thickness between the die bolts. Machining a die to 
tight tolerances becomes increasingly difficult as the die metal 
becomes thinner or more flexible. 

Plant Modifications to Improve Performance. 

Measurement noise 
Measurement noise always limits performance. A noise filter 

is used to  diminish the effects of noise. Because increased noise 
filtering also slows the controller response time, there is a trade- 
off between improved coating uniformity and slower response 
times. We now define a measure of coating uniformity and 
study this trade-off in more detail. 

Consider the closed-loop system with a perfect model with- 
out disturbances and only measurement noise. For a stabilizing 
controller, the expected value for the estimated state x (  tl t )  is 
zero. The estimated state will not exactly equal zero because 
the controller will treat the measurement noise as a disturbance 
and will try to  reject it. Thus the estimated state will have some 
variance depending on  the size of the noise. The variance of 
the estimated state x ( t l t )  is an appropriate measure of the 
uniformity of the coating. For simplicity of presentation, as- 
sume a perfect model in which the noise at each gap position 
is equal-dropping these assumptions only slightly affects the 
following. Then it can be shown that: 

Variance (x , )  =Y Variance ( n , )  for i =  1, . . . n.  (35) 
2 - Y  

A measure of the controller’s speed of response is the filter 
time constant plus 1, that is, r+ 1 (The ‘1’ accounts for the 
delay through the plant). 

Both Variance ( x , )  and r (through Eq. 20) are functions of 
the noise filter parameter y. Figure 3 compares the controller 
response time vs. the ratio of the variance of the state estimate 
to the measurement noise variance for different values of y. 
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A small amount of filtering (y- 1) corresponds to fast response 
times, but poor coating uniformity. A large amount of filtering 
corresponds to good coating uniformity, but with slow re- 
sponse times. 

Ways to 
decrease the sensor noise should be investigated. The cables 
to the sensor should be shielded adequately to keep the sensor 
noise as small as possible. The effect of air currents can be 
diminished by decreasing the distance between the sensor and 
the coated substrate. The vibration of the substrate and the 
sensor should be minimized. Of course, an accurate sensor 
reading requires a stable film. 

Plant Modifications to Improve Performance. 

Model uncertainty 
It is the difference between the model 

and the plant. The error between the true behavior of the 
physical process and that predicted by the model can signifi- 
cantly affect the ability of the control system to perform ad- 
equately. Controllers that are insensitive to model uncertainty 
are said to be robust. Below we quantify the effect of uncer- 
tainty. More specifically, we show that the control algorithm 
proposed in this article is robust to gain uncertainty. Also, we 
will analyze the robustness as a function of the filter parameter 
y to determine the effect of the noise filter on robustness. 

The closed-loop stability can 
be analyzed from the state-space equation for the closed-loop 
system. A system will be considered stable when the effect of 
small disturbances remains small. A system is considered un- 
stable when the effect of small disturbances grows until the 
constraints (Eqs. 25 and 26) are reached. The effect of dis- 
turbances will never grow unbounded because the constraints 
(Eqs. 25 and 26), and C:,,u,=O hold, which bound the mag- 
nitude of the control action. 

Let the measurement be described in terms of the real plant: 

Model Uncertainty, 

Uncertainty in Gain Matrix. 

f ( f )  = c, u ( t  - 1) + v,( t ) .  (36) 

No assumptions are made on the unmeasured inputs v,. 
Define r by 

Then the control law (Eq. 24) is given by: 

Substitute x ( t l t -  l), 2 ( t ) ,  and u ( t - 2 )  from Eqs. 16, 36 
and 38 into Eq. 18 and rearrange to give: 

x( t 11) = ( 1  - $(I+  c r ) x (  t - 1 I t - 1)  

+yC,u(t-  l )+yv , ( t ) .  (39) 

Substitute x ( t l t )  from Eq.  39 into Eq. 38 to give: 

u ( t )  = ( 1 - y)r(z+ c r ) x (  t - 1 I t - 1) 

+ ( I +  yrc,)u ( t  - 1) + ?rV,( t ) .  (40) 

Let u ( t )  be a state, then Eqs. 39 and 40 give the state-space 
equation that defines the closed-loop system, 

For a discrete time system, we have closed-loop stability if 
and only if the eigenvalues of 

are inside the unit circle. More specifically, the effect of dis- 
turbances will decay to zero if the spectral radius of A is less 
than one, and the effect of small disturbances will grow until 
the constraints are met when the spectral radius of A is greater 
than one (Astrom and Wittenmark, 1984). 

This section considers uncertainty in 
the gain; interaction uncertainty for the Avery/Dennison pilot 
plant will be considered later. The real plant gain will be de- 
noted as k, and the augmented real plant is: 

Uncertainty in Gain. 

(43) 

Recall that k is the gain and Cis  the gain matrix for the model. 
By calculating the eigenvalues of A in Eq. 42 we determine 

which values of the ratio K =  k/k ,  give a stable closed-loop 
system for each value of filter parameter y (see Figure 4). If 
the gain of the real plant is not underestimated by more than 
a factor of two (K> 1/2), then the closed-loop system is stable. 
For increased filtering (smaller y), the model gain k need not 
be as accurate. In other words, increased filtering adds ro- 
bustness to gain uncertainty. It can be shown that the stability 
boundary in Figure 4 is the straight line given by k = (1 /2)yk,. 

The plant gain need not be known accurately for the closed- 
loop system to be stable. Uncertainty in the plant gain will 
lead only to slower rejection of disturbances. Since we need 
approximate only a plant gain to design the controller, detailed 
identification runs are unnecessary for controller design. Any 

Stable Region 0.6 
l4 

0.4 - 

-0 0.5 1 

Y 
Figure 4. Closed-loop stability as a function of y and 

K =  k/k, no interaction uncertainty. 
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reasonable estimate will do. This makes it easier to app!y the 
control algorithm to new cross-directional systems when k does 
not change much between systems. 

Plant condition number 
It is well-known that high condition number plants (called 

ill-conditioned) can be difficult to  control (Morari and Doyle, 
1986; Skogestad and Morari, 1987; Skogestad et al., 1988). 
By the condition number we mean: 

(44) 

where F and g denote the maximum and minimum singular 
values of the plant: 

II c u  II 2 

U # O  Ilull, ’ - U f O  llull, . (45) 
- II c u  II 2 
u( C) = max- u(C) = min- 

A plant with a high condition number is characterized by strong 
directionality because inputs in directions corresponding to  
high plant gains are strongly amplified by the plant, while 
inputs in directions corresponding to  low plant gains are not. 
Thus, ill-conditioned plants may be sensitive to  actuator un- 
certainty (Skogestad et al., 1988). 

Recall that 

The last row of C was augmented to  the plant matrix kB to  
keep u from straying from zero. The elements of the last row 
of C need not be 1’s-the last row can be any constant mul- 
tiplied by a row of l’s. Because the controllability of the process 
is not dependent on what scalar is used in the last row of C,  
a true measure of the controllability of the process must be 
independent of this scalar. A “true” measure of the controll- 
ability of the plant can be defined as: 

K * ( o & f K (  s [ s. kB . .s 1) 

Table 1. Typical Ranges of Physical Parameters for Adhesive 
Coaters 

Die Width 0.35-2.5 rn 
Die Bolt Spacing 30-60 rnm 
Coating Thickness 10-60 prn 
Coating Weight 15-50 g/m2 
Substrate Speed 0.5-6 m/s 

This was done to  ensure that uncertainty in the interactions 
(that is, deviations from the structure implied by Eq. 4) would 
not cause the controller to  perform poorly. We then demon- 
strate that the controller can be effectively tuned on-line. We 
conclude the section with a n  experimental closed-loop test of 
the controller. 

Identification 
For the pilot plant, the number of actuators n = 12. k was 

fitted by least squares from 50 input-output data sets. In Figure 
5 the predicted coating thicknesses are compared with exper- 
imental data for a typical input. 

To test the assumptions used t o  develop the form of the gain 
matrix P described earlier, we fitted the entire 1 2 ~  12 gain 
matrix in Eq. 1 to estimate a total of 144 parameters-we 
denote this matrix by P,-.  As shown in Figure 5 ,  this model 
gives little improvement over the gain matrix P satisfying the 
assumptions, so the assumptions on P are valid. 

The die had been designed to  give a small interaction between 
nearest-neighbor positions. Assumption 3 would not have been 
justified if  the spacing between the actuators had been much 
smaller. 

Robustness to interaction uncertainty 
The effect of interaction uncertainty on the stability of the 

closed-loop system was investigated using the model fit to the 
pilot-plant data. This was done to  ensure that uncertainty in 
the interactions would not cause the controller to  perform 
poorly. The procedure described earlier was used, but with 

u. 1 1 1 I I 1 I I I I I  

It can be proven using the theory of circulant matrices (Davis 
1979; Hovd, 1992) that K*(C) = 1 for all n (the s that minimizes 
the condition number in Eq. 46 is s = &). This means that ill- 
conditioning is not a serious problem for cross-directional 
processes of the type studied here. 

Application to AverylDennison Pilot Coater 

v) 

The control algorithm is applied to  a pilot-plant coater a t  
Avery/Dennison Research Center. (All figures and data are 
given in terms of dimensionless variables for proprietary rea- 
sons.) (see Figure 1). Typical ranges of physical parameters 
for such coaters are given in Table 1. 

justified based on input-output data. Then, the effect of in- 
teraction uncertainty on the stability of the closed-loop system 
was investigated using the model fit to  the pilot-plant data. 

-0. l 1 I 1 I I I I I 1 I  

1 2  3 4 5 6 7 8 9 1 0 1 1 1 2  
Sensor Position First, the model is identified and the model assumptions are 

Figure 5- Comparison of coating thicknesses Predicted 
by P and P144 with experimental data. 

1336 September 1992 Vol. 38, No. 9 AIChE Journal 



I 1 

0.5 1 

Y 
Figure 6. Closed-loop stability as a function of y and 

K = k/k, 
Interaction uncertainty was included through the use of Pld4. 

C,= ( for the real plant 

and 

C =  ( ks 1) for the model. 

Figure 6 shows the stable region as a function of the normalized 
model gain K = k /k ,  where k, denotes the best fit gain in C. 
As in Figure 4, the boundary between the stable and unstable 
regions is a straight line, but the slope in Figure 6 is steeper. 
Introducing interaction uncertainty decreases the stable region, 
but an accurate estimate of k is still not required. This will be 
experimentally verified below. 

Experimental closed-loop control 
The main purpose of the experiments was t o  verify that 

detailed identification of k is not required for the resulting 

0.004 i 

0.0035 
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0.002 

0.0015 
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d- k = 0.17 

k = 0 . 1  

-*- k = 0.05 

k = 0.05 

y = 0.95 

0 1 2 3 

Sampling Time, t 

Figure 7. Comparison of coating thickness variances. 
The control actions calculated using k = 0.025 were excessively 
large and were not implemented. 
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controller to  give good performance. This is important because 
gathering detailed input-output data is expensive. 

All the die gaps were set equal to  their nominal value. Be- 
cause of imperfections in the die and roller and inaccuracy in 
the die gap settings, this gives nonuniform coating thicknesses. 
The goal of the controller is to  make the coating thicknesses 
uniform. This disturbance is small enough that constraint- 
handling was not needed. Because the number of experiments 
was limited, we decided t o  perform all experiments with a fixed 
y near one. As discussed earlier, in plant operation y would 
be chosen to trade off the closed-loop speed of response with 
the variance of the coating thicknesses. 

There were two major differences between the coater used 
for the identification experiments and the coater used for the 
closed-loop experiments. First, the measurement noise was 
smaller for the second coater. Second, the coaters had different 
dies, so the responses with the two dies are expected to be 
different. A comparison of die designs showed that the inter- 
actions are negligible for both dies, but the steady-state gains 
k are expected to  be substantially different. Because experi- 
ments are costly, out strategy was to  avoid re-identifying k 
from open-loop experiments but t o  perform closed-loop ex- 
periments instead for a few values of k and choose the one 
that gives good control-effectively determining the optimal 
k through on-line tuning. 

Figure 7 shows the variance of the coating thicknesses for 
k=0.17, 0.1, and 0.05. Since y was chosen near 1 and the 
interactions were negligible, we expect a fast response when 
the model steady state gain k is close to  the true gain. Because 
the gain k = 0.17 identified for the previous die gave slow 
response, the controller gain is too small. This implies that the 
steady-state gain for the model is too large. The response for 
k = 0.1 also gave sluggish response. Therefore we tried a smaller 
k.  For k=0.05, the disturbance was rejected in two sampling 
times. 

If we had perfect control and -y = 1, the disturbance would 
be rejected in one sampling time. If the assumptions of perfect 
control described previously were satisfied with y = 0.95, then 
the closed-loop time constant would be 

+ 1 ==433> 1. 
1 

lOg[l/(l-O.95)] 
7 + 1 =  

Since we d o  not satisfy all the assumptions of perfect control, 
we cannot expect the disturbance to  be rejected in less than 
two sampling times, that is, k = 0.05 gives the best achievable 
performance. We see that k needed to design the controller 
was determined from only three closed-loop experiments. 

From Figure 6 we expect that using k much Iess than 0.05 
would give poor performance. This agrees with experiment- 
the control actions calculated using k = 0.025 were excessively 
large and were not implemented. 

Figure 8 shows the closed-loop response for k=0.05. The 
disturbance was not completely rejected by the controller be- 
cause of measurement noise and stiction-like effects in the die 
gaps. 

The purpose of the next closed-loop experiment was to  test 
the closed-loop performance with the controller designed above 
(k  = 0.05, y = 0.95). Figure 9 shows the closed-loop response 
(the variance of  the coating thicknesses) with the designed 
controller to  two types of' disturbances. The first disturbance 
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Figure 8. Closed-loop response for k= 0.05. 

was caused by a roller that had a larger radius for the inter- 
mediate sensor positions than for the edge positions-this dis- 
turbance was rejected within two sampling times as shown in 
Figure 9. The second disturbance was caused by ramping the 
roller speed and liquid flow rates (in a constant ratio) to  double 
their values between the fourth and fifth sampling instances. 
The nominal gap width was kept at a constant value. We see 
from Figure 9 that changing the roller speed and liquid flow 
rates in a constant ratio does not substantially affect the var- 
iance of the coating thicknesses. 

Conclusions 
A model-predictive control algorithm was presented which 

rejects slow disturbances in coating thicknesses for a class of 
industrial coating processes. The control algorithm has one 
tuning parameter y, which trades off robustness to  model error 
and insensitivity to  measurement noise with speed of response. 

Several constraint-handling methods were discussed. The 
simplest, yet effective, constraint-handling method involved 

i 
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a- 
0.007 

2 0.006 
Q - 

k = 0.05 C .- 
). g 0.001 
0 

0 
0 1 2 3 4 5 6 7 8  

Sampling Time, t 
Figure 9. Closed-loop response for two disturbances. 

scaling the control action by a scalar which was just large 
enough to  make the control action feasible. 

Actuator constraints, measurement noise, model uncer- 
tainty, and the plant condition number are investigated to 
determine which of these limit the achievable closed-loop per- 
formance. Knowledge of how these limitations affect the per- 
formance suggests how to modify the plant and the controller 
tuning parameter y to  improve the uniformity of the coating 
process. We showed quantitatively how varying y determines 
the trade-off between the estimated final coating uniformity 
(the variance of the state estimate) and the controller response 
time. Little filtering (7-1) leads t o  fast response times, but 
poor coating uniformity. Much filtering leads to  good coating 
uniformity, but with slow response times. We also showed that 
as long as the interactions were negligible, the closed-loop 
response was insensitive to  a poor gain estimate used to design 
the controller. This allows the controller to be tuned on-line. 
We determined that the robustness of the controller improved 
with increased noise filtering and that the plant condition num- 
ber was not a limitation on closed-loop performance. 

The model-predictive controller was applied to  a pilot-plant 
coating process at the Avery/Dennison Research Center in 
Pasadena. The assumptions described earlier were shown to 
be valid, so the theory developed throughout this article could 
be applied directly. The plant gain was determined on-line, 
and the resulting controller rejected disturbances within two 
sampling times. Figure 3 shows that the proposed controller 
can reduce variance in coating thickness by as much as 80% 
compared to  what is possible by manual control or simple 
control schemes. 

The control algorithm developed here can be applied to 
processes other than coating, for example, to  the control of 
paper machines (Laughlin, 1988), as long as the previous as- 
sumptions are valid. The most restrictive assumption regarding 
the form of the plant matrix P i s  that the only interactions are 
due to the constant flow assumption. Additional interactions 
make the analysis and control much more complex. When 
handling constraints in the general case, noticeable improve- 
ment in performance can be obtained by explicitly adding 
constraints to  the control algorithm, instead of the simple 
method of scaling the control action which was acceptable 
here. Significant interaction uncertainty makes plots such as 
Figures 4 and 6 more difficult to  determine and less useful. 
The plant condition number can become a serious limitation 
on closed-loop performance. Laughlin (1988) gives examples 
of plants with only nearest-neighbor interactions for which the 
condition numbers are infinity-this implies that the systems 
are uncontrollable. He also presents a general method for 
handling gain, interaction, and dynamic uncertainties. 

On-line tuning becomes difficult when there are interac- 
tions-both because the controller depends on the multiple 
model parameters and because the closed-loop response can 
be extremely sensitive to poor estimates of the model param- 
eters. When the plant condition number is large, an inexact 
estimate of the interactions can give an unstable closed-loop 
system (Skogestad et al., 1988). 

This article shows that there are strong advantages to  spacing 
the actuators far enough apart to  keep the interactions mini- 
mal. The actuators must be spaced close enough together to  
prevent strips of uncontrolled coating thickness between the 
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actuators. This is how the Avery/Dennison pilot plant was 
designed. 
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Notation 
B = dimensionless plant gain matrix 
C = augmented plant gain matrix 
d = dimensionless steady-state disturbance 
I = n x n identity matrix 
k = dimensionless plant gain 
K = ratio of model plant gain to real plant gain 
M = gain matrix due to constant flow assumption 
n = number of actuators 
n = dimensionless measurement noise 
P = dimensional plant gain matrix 
T, = sampling time 
x = dimensionless vector of coating thickness 
X = average coating thickness 
3 = dimensionless vector of measured coating thicknesses 
u = dimensionless vector of gap widths 
u = nominal gap widths 
- 

Greek letters 
0, = weighting parameters 
6 = difference in actuator positions 
A = difference in sampling times 
y = noise filter parameter 
r = control law matrix 
K = condition number 
h = scaling parameter 
g = minimum singular value 
B = maximum singular value 
T = filter time constant 

Subscripts and superscripts 
= dimensional 

r = real 
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