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Worst-Case Analysis of Finite-Time Control Policies
David L. Ma and Richard D. Braatz

Abstract—Finite-time control policies are common in batch and
semibatch operations. A novel approach is proposed that quantifies
the impact of parameter and control implementation inaccuracies
on the performance of such control policies. This information can
be used to decide whether more experiments are needed to produce
parameter estimates of higher accuracy, or to define performance
objectives for the lower level control loops that implement the con-
trol trajectory. The approach is evaluated through application to
the multidimensional growth of crystals used in nonlinear optics
applications, where the nominal parameters and uncertainties are
quantified from experimental data. Robustness estimates are pro-
vided with reasonable computational requirements.

Index Terms—Batch control, crystallization, optimal control, ro-
bustness analysis, worst-case performance.

I. INTRODUCTION

B ATCH and semibatch processing are becomingly increas-
ingly important with the rapid growth of the pharmaceu-

tical and specialty chemicals industries. Finite-time control poli-
cies are common in batch and semibatch operations [45], [30],
[13]. It has been observed that the product quality obtained from
such finite-time trajectories can be highly sensitive to model pa-
rameter and control implementation uncertainties [33], [37]. For
example, the mean crystal size in batch industrial crystallization
processes can be highly sensitive to changes in temperature and
in nucleation and growth kinetic parameters, all of which di-
rectly affect the tradeoff between crystal nucleation (which cre-
ates small crystals) and growth (which creates larger crystals).
In this paper analysis tools are developed that assess the robust-
ness of finite-time control policies to such uncertainties.

The model parameter and control implementation uncer-
tainties are assumed to lie within a known bounded region.
The analysis tools compute the worst-case deviation in the
product quality (in optimal control, this is often called the
cost functional) due to uncertainties. Also computed is a value
for the uncertainties that result in the worst-case deviation in
product quality. This information can be used to decide whether
more laboratory experiments are needed to produce parameter
estimates of higher accuracy, or to define performance objec-
tives for lower level control loops which implement the control
trajectory. The knowledge of the worst-case model parameter
vector can be used to determine where experimental effort
should be focused to improve model accuracy. The robustness
analysis with regard to control implementation uncertainties
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can guide the selection of the control instrumentation, by
determining where high-precision sensing and actuation are
required. By expanding the control implementation uncertainty
to explicitly include external disturbances, the computation
of the worst-case external disturbances can determine which
disturbances significantly affect the product quality and should
be suppressed by redesign of the process or feedback control
[24], [29], [50].

The analysis tools are applicable to processes that run for a
finite time and satisfy a certain well-posedness property with
respect to the control trajectory and the model parameters
. The well-posedness property is that the dependence of the

product quality on deviations in the model parameters and the
control trajectory can be accurately represented as a series ex-
pansion. A process that does not satisfy this property would be
infinitely sensitive to perturbations in the control trajectory or
the model parameters, in which case robustness analysis of the
type discussed here would be unnecessary. Such a process may
be poorly designed [4], in which case the process should be re-
designed before any robustness analysis be considered.

This paper provides several extensions to the basic method-
ology developed for the case where the model parameters are
assumed to lie within a hyperellipsoid [34]. One of the exten-
sions is to handle uncertainties described by general Hölder
norms. This more general representation includes the-norm
model uncertainty description usually considered in the chem-
ical process design literature [4]. Also, this paper considers si-
multaneous model and implementation uncertainties for a fi-
nite-time system—we believe this is the first time this case has
been treated within a worst-case formulation. The reason this is
important is that it is possible for the product quality to be robust
to model parameter uncertainties and control implementation
uncertainties separately, while being nonrobust to simultaneous
uncertainties of both types. The new algorithms are also able to
incorporate higher order series expansions which in some cases
may improve the accuracy of the calculated worst-case perfor-
mance. Some of these results were presented at a conference
[32].

The analysis tools are tested on a batch crystallization
process, in which the product is a potassium dihydrogen phos-
phate crystal as would be used in nonlinear optics applications.

II. M ATHEMATICAL PRELIMINARIES

This paper uses the Hölder norm [25] defined by

(1)

When

(2)
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The following analysis also utilizes the induced Hölder norms:

(3)

Analytical expressions for the induced Hölder norms for
(1, 1), (2, 2), and are well known [25], while

any combination of 1 and norms can be written as a linear
program.

The notation refers to the number of elements in the
vector .

III. PROBLEM FORMULATION AND SOLUTION

The processes under consideration include nonlinear lumped
or distributed parameter systems described by algebraic and in-
tero-differential equations. For example, a lumped-parameter
system may be described by the following set of differential and
algebraic equations:

(4)

(5)

where
vector of state variables;
vector of control variables;
vector of time-independent model parameters;
matrix of constant coefficients;
vector of algebraic relationships.

The differential-algebraic equations can include feedback con-
trol equations as well as equations for the physico-chemical phe-
nomena. The product quality (i.e., cost functional) at a finite
time (e.g., at the end of a batch run) typically has the form

(6)

The product quality is a function of the states, the control
trajectory, and the model parameters. While the focus of this
paper is on processes in which the final timeis fixed, it is
straightforward to generalize the approach so thatis treated
as an uncertain parameter.

The goal is to derive expressions for the worst-case change
in the product quality that can occur for a bounded set of un-
certainties in the model parametersand the control trajectory

. The approach uses a series expansion to quantify the product
quality in a neighborhood around the control trajectory. This se-
ries expansion provides a mathematical simplification that will
allow the derivation of analytical and semianalytical results for
quantifying the worst-case product quality, and for computing
the worst-case uncertainties. The series expansion only needs to
be accurate for the operating region defined by the nominal con-
trol trajectory and the model and implementation uncertainty
descriptions. This allows the use of a low number of terms in
the expansion, even for highly nonlinear processes [33], [41].
After the robustness analysis is completed, the accuracy of se-
ries expansion evaluated at the worst-case estimates is assessed
by comparing their values with those obtained by a nonlinear
dynamic simulation using the predicted worst-case model pa-
rameters and control trajectory.

A. Uncertainty Description and Worst-Case Performance
Formulation

Define as the nominal model parameter vector of dimension
. Define as the perturbation about the nominal model

parameter vector, which is constrained in some uncertainty re-
gion. Then, the model parameter vector for the real system is

(7)

Since we are interested in control algorithms which are imple-
mented digitally, the nominal control trajectory can be repre-
sented as a vectorof dimension . For example, a conve-
nient representation for for a temperature trajectory defined
over fixed range of time could be the temperatures atdis-
crete time instances along the trajectory. In practice, nonmin-
imum phase behavior, unknown process disturbances, and mea-
surement noise cause performance limitations which result in
an imperfect implementation of the control trajectory. Letbe
the perturbation about the nominal vector. Then, the control
trajectory implemented on the process is

(8)

where is within a some specified region. It can be convenient
for to include a parameterization of disturbances among its
elements [41]. This allows the analysis of the worst-case effect
of disturbances on the performance objective.

Two uncertainty descriptions are most used in the literature.
One of these is the ellipsoidal description, in which case pertur-
bations such as are assumed to lie within the hyperellipsoid

(9)

where
positive definite covariance matrix;

confidence level;
distribution function.

Uncertainty descriptions of this type are readily obtained by pa-
rameter estimation algorithms [2], [3], [14], [31]. Another rep-
resentation for the model and implementation uncertainties is
by independent bounds on each element [4]

(10)

(11)

The Hölder norm is general enough to include both of these un-
certainty descriptions. The sets of parameters and control tra-
jectories including uncertainties can be represented as

(12)

(13)

where and , are specified positive definite weighting ma-
trices. Uncertainty descriptions (9)–(11) can be written in the
general form (12) and (13). For example, (9) is written as (12)
by setting and . When there is
some independent uncertainty in each model parameter, (10) is
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written as (12) by setting , , and
as a diagonal matrix with diagonal elements defined by

(14)

In the next section, analytical expressions or computational
algorithms are provided for computing the worst-case change
in product quality and an associated worst-case parameter un-
certainty and control trajectory. To be consistent with the robust
control literature [58], henceforth the product qualitywill be
referred to as theperformance objective. Define as the per-
formance objective when the system is operated under the nom-
inal control trajectory with the nominal model parameter,
as the performance objective when trajectoryand parameter
vector are used, and the difference as . The goal is
to compute the worst-case performance

(15)

To simplify the notation, the performance objectivewill not
be written as an explicit function of the states, that is,

(16)

This is acceptable because the states are completely described
as functions of the initial conditions , the model parameters
, and the control trajectory [e.g., see (4)]. This notational

simplification is commonly used in publications by the process
optimization community [4].

B. Worst-Case Performance Evaluation

To simplify the presentation, the robustness analysis ap-
proach will be described in two sections. The first section
uses a first-order series expansion which results in analytic
expressions for the worst-case performance and the worst-case
uncertainties. The second section describes the use of higher
order series expansions, which results in higher accuracy but
requires more computations.

1) First-Order Series Expansion:Assume that the deviation
in performance can be described by first-order series expan-
sion

(17)

For differentiable in and , we have

(18)

and

(19)

Similar well-posedness assumptions are regularly made in sen-
sitivity analyzes for finite-time systems [15], [17], [28], [41],
[43]. Such derivatives as well as higher order derivatives can
be computed using divided differences [3] or by integrating the
original algebraic-differential equations augmented with an ad-
ditional set of differential-algebraic equations known as sen-

sitivity equations [3], [9]. In particular, [9] lists the sensitivity
equations for the dynamical system described by (4).

Using some matrix analysis, the worst-case performance is

(20)

where is equal to any integer. Now analytical expressions for
the induced norms and the worst-case uncertainties are com-
puted using Lagrange multipliers, whereis selected for con-
venience. For the case of and

(21)

and

(22)

where a worst-case parameter uncertainty vector is1

(23)

with

(24)

and a worst-case implementation uncertainty vector is (see Foot-
note 1)

(25)

with

for

for .
(26)

Similar expressions hold for and . A single general
expression holds for equal to any positive integer other than 1
or

(27)

with the worst-case parameter uncertainty vector being (see
Footnote 1)

(28)

where

(29)

Similar expressions hold for and the associated
worst-case control implementation uncertainty vector.

1Another worst-case uncertainty vector is obtained by multiplying by minus
one. While both vectors achieve the maximum deviation ofj�yj, one of the
vectors is associated with a worst-case increase iny while the other is associated
with a worst-case decrease iny.
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By using a series expansion [e.g., as in (17) and in the next
section], the mathematical descriptions of the robustness anal-
ysis results are formulated independently of the specific mathe-
matical representations for the systems equations and the perfor-
mance objective. This allows the derivation of robustness results
that apply whether or not the system includes algebraic or partial
differential equations, or whether the system is continuous time
or discrete time. The specifics of the dynamical system and the
performance objective appear only in the calculation ofand

in (18) and (19). Some simulation programs have options for
computing and with no additional input from the user [20],
[36]. Sensitivities can be automatically computed even for hy-
brid discrete-continuous systems [23], [51].

2) Higher Order Series Expansions:Although first-order
series expansions can provide high accuracy for many pro-
cesses [41], for some processes improved accuracy is obtained
by using higher order series expansions [33]. For example,
a second-order series may be required to represent the de-
pendence of on many of the elements of if the control
trajectory is the solution of an optimal control problem. The
higher order expansions are handled using generalizations of
the structured singular value.

a) -Norm uncertainty descriptions:We will first illus-
trate the approach for uncertainty sets (10) and (11), which are
the most commonly used in the chemical process design [4] and
robust process control literature [38], [48]. To simplify the ex-
pressions, first combine vectorsand into a new vector

(30)

with nominal value

(31)

and perturbation

(32)

(33)

where the vectors and are defined by the upper and lower
bounds on the model parametersand the control trajectory
in (10) and (11).

First consider the case where it can be assumed thatis
accurately described by a second-order series expansion

(34)

For twice differentiable in , we have

(35)

(36)

Then the analysis problem is to compute

(37)

This problem can be rewritten in terms of the mixed structured
singular value [19], [56], for which polynomial-time upper
and lower bounds can be computed using off-the-shelf software
[1]. For any real

(38)

where

(39)

(40)

(41)

and the perturbation block diag , where
consists of independent real scalars andis a complex scalar
[7], [8]. Thus the optimization problem (37) is given by

(42)

Upper and lower bounds for this problem can be computed by
iterative -computations [38], but a more efficient way is to use
skewed- , which requires no more effort than that required for
a single calculation [18], [21], [49]. Polynomial-time upper
and lower bound computations can be performed within a few
minutes on a workstation for a problem with

, with the bounds usually being tight enough for engineering
purposes [54]. The software computes a worst-case uncertainty
vector as well as the worst-case performance [1].2

Now consider the case where it can be assumed thatcan
be accurately described by a third-order series expansion

(43)

where and is the th element of . For thrice
differentiable in , we have

...
...

... (44)

The analysis problem is to compute

(45)

As before, this problem can be written in terms of the mixed
structured singular value. Using the singular value decompo-
sition, can be decomposed into two lower dimensional ma-
trices as

(46)

2See Footnote 1.
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Applying similar block diagram algebra as used to derive (38)
gives

(47)

where

(48)

...
...

...
...

...

(49)

...

(50)

...

(51)

(52)

and the perturbation block is

diag (53)

where is a complex scalar, and each and are real ma-
trices with the following structures:

diag (54)

diag (55)

with being an matrix. The optimization problem
(45) is given by

(56)

As before, the right-hand side can be computed as a single
skewed- calculation.

The and matrices for higher order expansions can be
constructed automatically using software for multidimensional
realization [46], [47]. The optimization problem is then given
by the skewed- problem (56) with the constructed and

matrices used in the -calculation. For the reaction and
separations processes we have investigated, sufficient accuracy
was obtained using a first-order or second-order expansion, so
higher order expansions have been unnecessary.

b) Other uncertainty descriptions:Other Hölder norms
on the uncertainty are handled in a similar manner, using the
generalized structured singular value [5], [11], [12], [27], [55].
For the case where the deviation in the performance objective
can be represented by second-order series expansion, the anal-
ysis problem is to compute

(57)

Applying similar block diagram algebra as in the-norm case
gives

(58)

where

(59)

is the vector of ones, diag , and the perturba-
tion block diag where and
are real matrices with the structures

diag (60)

diag (61)

and is a complex scalar.
In this case, the generalized structured singular valueis

defined to be zero if there is no such that ,
otherwise

(62)

where

(63)

The optimization problem (57) is given by

(64)

The right-hand side can be computed as a single skewed-
calculation. Polynomial-time upper and lower bounds for the
generalized structured singular value are available [10]. Some
of the upper and lower bounds are analytic, and with other
upper bounds being written in terms of linear matrix inequali-
ties which can be solved using publicly available software.
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C. Improvement of Estimates

Series expansions are used to compute the worst-case perfor-
mance and uncertainties. The accuracy of the series expansion
evaluated at the worst-case estimates are assessed by comparing
their values with those obtained by a nonlinear dynamic simula-
tion using the estimated worst-case parameter vector. The values
obtained by the nonlinear dynamic simulation are used as the
final analysis estimates. This procedure will be illustrated in the
following crystallization simulation.

IV. A PPLICATION: MULTIDIMENSIONAL CRYSTAL GROWTH

Potassium dihydrogen phosphate (KDP, KHPO ) crystals
are important in nonlinear optics applications. The deuterated
form of KDP is standard in commercial laser systems for fre-
quency doubling from the near infrared to the visible [16]. KDP
and DKDP (K(D H ) PO ) crystals are currently the only
nonlinear crystals which can be grown to the sizes needed for
laser radiation conversion in laser fusion systems [42], [53],
[57]. These nonlinear optics applications place high demands
on the crystal quality, size, and quantity produced.

The KDP crystal shape is tetragonal prism in combination
with tetragonal bipyramid and the angle between the prism sides
and pyramid faces is 45[39]. The two characteristic lengths
and for a KDP crystal are shown in Fig. 1, and its volume is

(65)

For nonlinear optic applications, each KDP crystal is grown
from a single seed crystal in a batch of well-mixed solution in
the metastable region (hence, no nucleation). Under these con-
ditions, the habit of the KDP crystal is completely described by
the growth rates in the and directions. The kinetic expres-
sions of the growth rates obtained from experiments [39] are

(66)

(67)

where
density of the crystal ( kg/m );
solute concentration (kg of solute/kg of
water);
saturated solute concentration;

and growth rate coefficients (kg/s m).
The growth rate coefficients are related to the temperatureby

(68)

(69)

The parameters , , , and were determined from ex-
perimental data reported by [39]

(70)

(71)

where the nominal values for the parameters are given in Table I,
and the parameter uncertainties are

(72)

Fig. 1. Shape of KDP crystals.

TABLE I
NOMINAL KINETIC PARAMETERS

The equilibrium solubility curve was also determined from
experimental data reported by [39]

(73)

where

(74)

the nominal values and are given in Table I, and

(75)

The nominal values for the growth kinetics and solubility curve
were determined by least-squares fitting, and the uncertainties
were estimated from the deviations of the experimental data
points from the best-fit curve.

When growing KDP crystals for nonlinear optics applica-
tions, the operating region of the crystallization is defined so
as to avoid nucleation. This condition can be written as the con-
straint:

(76)
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In practice, the KDP crystal is typically grown from one seed
crystal in a batch of well-mixed solution which is cooled over
a period of days [53]. A total mass balance directly links the
solute concentration to the size of the crystal at any point during
the process

(77)

where
initial concentration (kg solute/kg of water);
weight of the seed (kg solute);
mass of the solvent (kg water).

The most common operating procedure when growing KDP
crystals for use in nonlinear optics applications is to set the
cooling temperature profile so as to try to keep the supersatu-
ration at its maximum value while satisfying concen-
tration constraint (76) [57]. This maximizes the crystal growth
rates (66) and (67) for each dimension, which maximizes the
rate of crystal mass production. The desired nominal tempera-
ture trajectory is

(78)

where is the solute concentration measurement.
This temperature trajectory cannot be implemented exactly

in practice for two reasons. First, the solute concentration mea-
surement can be biased from the true solute concentration

(79)

where

(80)

Second, the temperature cannot be implemented exactly due to
unmeasured disturbances (e.g., fluctuations in cooling water)
and limitations to the performance of the local controller, hence
the temperature actually achieved is

(81)

with

(82)

where the parameterrepresents the accuracy of the local con-
troller, and accounts for an additional drift in temperature with
time . Implementation inaccuracies with this character have
been observed in laboratory crystallizers [35]. The magnitude
of the uncertainties in and were selected based on engi-
neering judgment.

Habit modification for KDP crystals has been extensively
studied (see, e.g., [40], [52], and the citations therein). The as-
pect ratio ( ) is of importance for two-dimensional crystal-
lization in general, and it is of interest to determine the robust-
ness of the aspect ratio to the model and control implementation
uncertainties.

The first step in the analysis was to numerically simulate the
nominal model equations for the cooling KDP crystal growth

TABLE II
INITIAL CONDITIONS, FINAL CONDITIONS, AND SOME PARAMETERS

process for the nominal temperature trajectory. Initial condi-
tions and other physical parameters are given in Table II. The
coefficients in the first series expansions used in the robustness
analysis were computed by augmenting model equations with
the sensitivity equations [9]. The coefficients for the second-
order and third-order terms were computed by a combination of
augmenting the model equations with the sensitivity equations
and divided differences. The resulting system of equations was
solved using the sparse ODE solver LSODES [26]. The analysis
calculations were computed using MATLAB, with thecalcu-
lations computed using the-Analysis and Synthesis Toolbox
[1] at the highest level of accuracy for the upper and lower
bounds, which were equal within the number of significant fig-
ures.

Simulation and analysis results indicate that the aspect ratio
can change by as much as 5% due to model and implementation
uncertainties (see Table III). The uncertainties corresponding
to the worst-case aspect ratio were the same for all series ex-
pansions (where “worst-case” was defined to be the largest as-
pect ratio, see Table IV). The worst-case performance estimates
from the first-, second-, and third-order series were very close to
the worst-case performance computed for the original nonlinear
system with the worst-case uncertainties implemented. This is
an additional confirmation of the accuracy of the series repre-
sentations and the analysis tools.

The worst-case parameters can be understood in terms of the
crystal growth kinetics. The derivative is

(83)
An increase in or a decrease in increases , which
would be expected to lead to an increased aspect ratio .
According to (81), increases in , , or result in an increase
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TABLE III
NOMINAL AND WORST-CASE ASPECTRATIOS FROM THE FIRST-, SECOND-,

AND THIRD-ORDER ANALYSES, AND FROM SIMULATION

TABLE IV
PARAMETER VALUES CORRESPONDING TO THEWORST-CASE ASPECTRATIO

TABLE V
COMPUTATION TIMES FOR THECONSTRUCTION OF THESERIES

EXPANSIONS AND FOR THESUBSEQUENTANALYSIS STEP (INDUCED

NORM FORFIRST-ORDER EXPANSION, � ANALYSIS FOR SECOND- AND

THIRD-ORDER EXPANSIONS)

in temperature. By differentiating in (83) with respect
to temperature , it is seen that an increase in temperature also
increases . The relationship between and the aspect
ratio is a bit more subtle. A plot of aspect ratio versus time indi-
cates that the aspect ratio goes through a maximum at some in-
termediate time. An increase in decreases the crystal growth
rates, resulting in proportionately less time spent during the low
aspect ratio growth which occurs near the end of the batch run.

The computation times for the robustness analysis were quite
reasonable (see Table V), considering the inherent computa-
tional complexity of exactly calculating the worst-case perfor-
mance [8], [44], or even approximating the worst-case perfor-
mance within a given [6], [22]. A minor modification on the
theoretical proofs in [6] indicate that exact and-approximate
worst-case analyses for the nonlinear processes considered here
are at least as computationally challenging.

The computation time grows rapidly as a function of the order
of the series expansion. Recall that the first-order analysis re-
sults are nearly equal to the exact results (see Table III), and
in this case the added simulation time is a small fraction of the
total simulation time, even when the sensitivity equations are
not included. This means that the first-order robustness analysis
can be incorporated within an optimization framework to design
robust optimal control trajectories for batch and semibatch pro-
cesses, without leading to an unreasonable increase in compu-
tational expense. The robustness analysis with the higher order
expansions can be used at the very end of the robust optimal
control synthesis to verify results, or can be embedded into the
final stages of the optimization procedure to improve accuracy.

V. CONCLUSION

Algorithms were proposed that calculate the worst-case per-
formance in batch and semibatch processing. The algorithms are

the first to take into account both model and control implemen-
tation uncertainties. The algorithms are applicable to nonlinear
lumped or distributed parameter systems. The utility of the al-
gorithms was demonstrated in their application to a batch mul-
tidimensional crystallization process.
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