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Worst-Case Analysis of Finite-Time Control Policies
David L. Ma and Richard D. Braatz

Abstract—Finite-time control policies are common in batchand can guide the selection of the control instrumentation, by
semibatch operations. A novel approach is proposed that quantifies determining where high-precision sensing and actuation are
the impact of parameter and control implementation inaccuracies e qyired. By expanding the control implementation uncertainty
on the performance of such control policies. This information can TR . .
be used to decide whether more experiments are needed to produceto explicitly include eXtemaI. disturbances, the Com,pUtat'o_n
parameter estimates of higher accuracy, or to define performance Of the worst-case external disturbances can determine which
objectives for the lower level control loops that implement the con- disturbances significantly affect the product quality and should

trol trajectory. The approach is evaluated through application to  pe suppressed by redesign of the process or feedback control
the multidimensional growth of crystals used in nonlinear optics [24], [29], [50].

applications, where the nominal parameters and uncertainties are Th vsis ool licable t that f
quantified from experimental data. Robustness estimates are pro- € analysis 1ools are applicable to processes that run for a

vided with reasonable computational requirements. finite time and satisfy a certain well-posedness property with
respect to the control trajectony and the model parameters

6. The well-posedness property is that the dependence of the
product quality on deviations in the model parameters and the
control trajectory can be accurately represented as a series ex-
. INTRODUCTION pansion. A process that does not satisfy this property would be

ATCH and semibatch processing are becomingly incredsfinitely sensitive to perturbations in the control trajectory or
B ingly important with the rapid growth of the pharmaceuthe model parameters, in which case robustness analysis of the
tical and specialty chemicals industries. Finite-time control poliyP€ discussed here would be unnecessary. Such a process may
cies are common in batch and semibatch operations [45], [30§ Poorly designed [4], in which case the process should be re-
[13]. It has been observed that the product quality obtained frg#gSigned before any robustness analysis be considered.
such finite-time trajectories can be highly sensitive to model pa- This paper provides several extensions to the basic method-
rameter and control implementation uncertainties [33], [37]. F8°9y developed for the case where the model parameters are
example, the mean crystal size in batch industrial crystallizati@gsumed to lie within a hyperellipsoid [34]. One of the exten-
processes can be highly sensitive to changes in temperature @AAS iS to handle uncertainties described by general Holder
in nucleation and growth kinetic parameters, all of which d20rms. This more general representation includesxthgorm
rectly affect the tradeoff between crystal nucleation (which crl0odel uncertainty description usually considered in the chem-
ates small crystals) and growth (which creates larger crystal§p! process design literature [4]. Also, this paper considers si-

In this paper analysis tools are developed that assess the ropiitfaneous model and implementation uncertainties for a fi-

The model parameter and control implementation uncedieen treated within a worst-case formulation. The reason this is
tainties are assumed to lie within a known bounded regioimportant is that it is possible for the product quality to be robust
The analysis tools compute the worst-case deviation in tH model parameter uncertainties and control implementation
product quality (in optimal control, this is often called th&incertainties separately, while being nonrobust to simultaneous
cost functional) due to uncertainties. Also computed is a valygcertainties of both types. The new algorithms are also able to
for the uncertainties that result in the worst-case deviation lficorporate higher order series expansions which in some cases
product quality. This information can be used to decide wheth&ay improve the accuracy of the calculated worst-case perfor-
more laboratory experiments are needed to produce paramégfce. Some of these results were presented at a conference
estimates of higher accuracy, or to define performance objé%z]-
tives for lower level control loops which implement the control The analysis tools are tested on a batch crystallization
trajectory. The knowledge of the worst-case model paramef§PCesS, in which the product is a potassium dihydrogen phos-
vector can be used to determine where experimental effghate crystal as would be used in nonlinear optics applications.
should be focused to improve model accuracy. The robustness
analysis with regard to control implementation uncertainties [I. MATHEMATICAL PRELIMINARIES

Index Terms—Batch control, crystallization, optimal control, ro-
bustness analysis, worst-case performance.

This paper uses the Hélder norm [25] defined by
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The following analysis also utilizes the induced Hélder norm&A. Uncertainty Description and Worst-Case Performance

Formulation
Al o — sup M4l g @ ered . -
1Allp, ¢ = Sl;lé oll, II'I-]ﬁa?l [ Avllg- Defined as the nominal model parameter vector of dimension
v Vilp> . . .
v ! n x 1. Define 6 as the perturbation about the nominal model

Analytical expressions for the induced Holder norms fqsarameter vector, which is constrained in some uncertainty re-
(p. @) =(1,1), (2, 2), andoo, o) are well known [25], while gion. Then, the model parameter vector for the real system is
any combination of 1 ando norms can be written as a linear

program. 6 =0+ 56. )
The notationlim(z) refers to the number of elements in the
vectorz. Since we are interested in control algorithms which are imple-
mented digitally, the nominal control trajectory can be repre-
Ill. PROBLEM FORMULATION AND SOLUTION sented as a vecta@rof dimensionm x 1. For example, a conve-

The processes under consideration include nonlinear lumg¥gnt representation foi for a temperature trajectory defined
or distributed parameter systems described by algebraic andq4e" fixed range of time could be the temperaturesuatlis-
tero-differential equations. For example, a lumped-paramefSPte time instances along the trajectory. In practice, nonmin-
system may be described by the following set of differential a@um phase behavior, unknown process disturbances, and mea-

algebraic equations: sur_ement noise cause pgrformance Iimitatio_ns which result in
an imperfect implementation of the control trajectory. &etbe
dx i i
B = f(x(t), u(t); 0) (4) the_ perturpatlon about the nominal vecforThen, the control
dt trajectory implemented on the process is

x(0) =x0(6) (5)
=1+ bu (8)

T vector of state variables;
u vector of control variables;
0 vector of time-independent model parameters;

E matrix of constant coefficients; . N
of disturbances on the performance objectjve

S vector of algebraic relationships. . o . .
The differential-algebraic equations can include feedback co(g—TWO uncertglnty descrlpuons are .mpst qsed n the literature.
ne of these is the ellipsoidal description, in which case pertur-

trol equations as well as equations for the physico-chemical phe-

nomena. The product quality (i.e., cost functional) at a finit%atlons such af are assumed to lie within the hyperellipsoid

timet; (e.g., at the end of a batch run) typically has the form

whereéw is within a some specified region. It can be convenient
for « to include a parameterization of disturbances among its
elements [41]. This allows the analysis of the worst-case effect

Eo=10:(0 - 0TV, 16— 6) <r*(a)} 9)

tr
Ya(®) ult): 6) = a(elt) + [ Fale) u®)dt ) e
o ) Vs n x n positive definite covariance matrix;
The product qualityy is a function of the states, the control confidence level:
trajectory, and the model parameters. While the focus of this,. distribution func{ion.

paper is on processes in ,WhiCh the final timeis fi?<ed, itis Uncertainty descriptions of this type are readily obtained by pa-
straightforward to generalize the approach so thas treated . \ater estimation algorithms [2], [3], [14], [31]. Another rep-

as an uncertain parameter. resentation for the model and implementation uncertainties is
The goal is to derive expressions for the worst-case Charl%?independent bounds on each element [4]
in the product qualityy that can occur for a bounded set of un-

certainties in the model paramet@érand the control trajectory 0. <g<8 (10)
u. The approach uses a series expansion to quantify the product =T = e
quality in a neighborhood around the control trajectory. This se-

ries expansion provides a mathematical simplification that will

allow the derivation of analytical and semianalytical results for'€ Holder norm is general enough to include both of these un-
rtainty descriptions. The sets of parameters and control tra-

quantifying the worst-case product quality, and for computirg®" &Nt ! . e
the worst-case uncertainties. The series expansion only need§gL°ries including uncertainties can be represented as

be accurate for the operating region defined by the nominal con- .

trol trajectory and the model and implementation uncertainty Eo ={0: 0 =0 +86, [[Wyb0||, <1} (12)
descriptions. This allows the use of a low number of terms in Eu ={wu =1+ bu, |[Wybul|l; <1} (13)

the expansion, even for highly nonlinear processes [33], [41].

After the robustness analysis is completed, the accuracy of wderelVy andW,,, are specified positive definite weighting ma-
ries expansion evaluated at the worst-case estimates is assesies. Uncertainty descriptions (9)—(11) can be written in the
by comparing their values with those obtained by a nonlinegeneral form (12) and (13). For example, (9) is written as (12)
dynamic simulation using the predicted worst-case model day settingp = 2 andW, = (1/r(a))Ve_l/2. When there is
rameters and control trajectory. some independent uncertainty in each model parameter, (10) is

Umin S U S Umax - (11)
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written as (12) by setting = 0o, & = (1/2)(fmax + 0min ), and  sitivity equations [3], [9]. In particular, [9] lists the sensitivity
W, as a diagonal matrix with diagonal elements defined by equations for the dynamical system described by (4).
Using some matrix analysis, the worst-case performance is
(Ways = . (14)
P Binax, j — Owmin, j max  |LE6+Méu| = | LW, |, MW, (20)
W 561, <1
In the next section, analytical expressions or computationallV«4ulla=1

algorithms are provided for computing the worst-case changere, is equal to any integer. Now analytical expressions for
in product quality and an associated worst-case parameter y3s induced norms and the worst-case uncertainties are com-

certainty and control trajectory. To be consistent with the robystiieq using Lagrange multipliers, wherés selected for con-
control literature [58], henceforth the product qualitill be  \,enience. For the case pf= oo andg = 1

referred to as th@erformance objectiveDefine § as the per-
formance objective when the system is operated under the nom- ILW, Hlp, » = ILW5 oo, 00 = ILW, |1 (21)
inal control trajectoryt; with the nominal model parametéry gnq
as the performance objective when trajectargnd parameter

—1 _ —1 _ —1
vectoré are used, and the differenced@s= y — 4. The goal is MW g, v =MW1, 1 = (MW oo

to compute the worst-case performance = max (MW )il
_ —1y_
ol (15) = (MW )] (22)
||VVi sull, <1 where a worst-case parameter uncertainty vector is
To simplify the notation, the performance objectiyavill not 80 =W, v (23)
be written as an explicit function of the states, that is,
with
= y(u; 6). 16 _
This is acceptable because the states are completely described [(LWy 1)

as functions of the initial conditionsy, the model parameters

) . ) and aworst-case implementation uncertainty vector is (see Foot-
8, and the control trajectory [e.g., see (4)]. This notational P y (

simplification is commonly used in publications by the process )
optimization community [4]. Sty e. = W e (25)
B. Worst-Case Performance Evaluation with

To simplify the presentation, the robustness analysis ap- 1, fork=~%
proach will be described in two sections. The first section e = ; - (26)
uses a first-order series expansion which results in analytic 0, fork # k.

expressions for the worst-case performance and the worst-cggjlar expressions hold for= 1 andg = oc. A single general

uncertainties. The second section describes the use of higggsression holds fgr equal to any positive integer other than 1
order series expansions, which results in higher accuracy byt

reguires more computations.
1) First-Order Series ExpansionAssume that the deviation 1
in performancéy can be described by first-order series expan- ILWe Iy, = Z

n

(r=1)/p
mLW;wuVW’”> 27)

. k=1
sion
with the worst-case parameter uncertainty vector being (see
by = L66 + Méu. (A7) Footnote 1)
For 6y differentiable in@ andéwu, we have 66y = e—lv (28)
L = g: (18) Where
v o=6, u=i LW1, N/ =1
and v = (|( [ )k|) e (29)
dy =
M, = — (29) LW, e/ -1
= B s s (g;m o) )

Similar well-posedness assumptions are regularly made in S&finjlar expressions hold fatM W t||,.» and the associated

sitivity analyzes for finite-time systems [15], [17], [28], [41].worst-case control implementation uncertainty vector.

[43]. Such derivatives as well as higher order derivatives can

be computed using divided differences [3] or by integrating thelAnother worst-case uncertainty vector is obtained by multiplying by minus
iginal alaebraic-differential equations auamented with an one. While both vectors achieve the n_ﬁammum‘qewatlorilég(,_one of the

Orlglna aige - ) q ) g ctors is associated with a worst-case increagavhile the other is associated

ditional set of differential-algebraic equations known as sefith a worst-case decreasegn
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By using a series expansion [e.g., as in (17) and in the né&btiis problem can be rewritten in terms of the mixed structured
section], the mathematical descriptions of the robustness arsatgular value [19], [56], for which polynomial-time upper
ysis results are formulated independently of the specific mattesd lower bounds can be computed using off-the-shelf software
matical representations for the systems equations and the perfibf-For any realk
mance objective. This allows the derivation of robustness results -
that apply whether or not the system includes algebraic or partial  24%, |MASA + 6AT HAOA| 2 k <= pa(N) 2k (38)
differential equations, or whether the system is continuous time ~
or discrete time. The specifics of the dynamical system and ty&ere

performance objective appear only in the calculatiod.afnd 0 0 kw
M in (18) and (19). Some simulation programs have options for N = LHy 0 LH~ (39)
computingL andM with no additional input from the user [20], THy+ My wT 2THyz+ Mz
[36]. Sensitivities can be automatically computed even for hy- —L(b—a) (40)
brid discrete-continuous systems [23], [51]. =2 “

2) Higher Order Series Expansiongilthough first-order z=3(+a) (41)

series expansions can provide h|gh accuracy for many p.g)ﬁg the perturbation block = diagA,., A,., é.), whereA,.
cesses [41], for some processes improved accuracy is obtaine

; ; ) : onsists of independent real scalars anés a complex scalar

by using higher order series expansions [33]. For examp, L L
. . é [8]. Thus the optimization problem (37) is given by

a second-order series may be required to represent the 'de-

pendence oby on many of the elements @ if the control max |6y| = max k. (42)

trajectory is the solution of an optimal control problem. The aoA<D na(N)=k

higher order expansions are handled using generalizationsubfper and lower bounds for this problem can be computed by

the structured singular value. iterative,-computations [38], but a more efficient way is to use

a) co-Norm uncertainty dgscriptionsWe will first iIIus_- skewedt:, which requires no more effort than that required for
trate the approach for uncertainty sets (10) and (11), which aar%

; ; . ingley calculation [18], [21], [49]. Polynomial-time upper
the most commonly used in the chemical process design [4] lower bound computations can be performed within a few

robus_t process contrpl literature [38]’_ [48]. To simplify the EXinutes on aworkstation for a problem withn(u)4dim(8) <
pressions, first combine vectafsandu into a new vecton 100, with the bounds usually being tight enough for engineering

97 purposes [54]. The software computes a worst-case uncertainty
A= (30) vector as well as the worst-case performance [1].
- - Now consider the case where it can be assumedsthatin
with nominal value be accurately described by a third-order series expansion
A= Z (31) Sy = M6\ + AT H\6) + Z SX\OATBiSA  (43)
L~ i=1
and perturbation wheren = dim()) andé )\, is theith element of\. Fory thrice
< differentiable iné A, we have
SA=A—A (32)
@ <A< D (33) Oy Py
IN; 0202 ONOA O,
where the vectors and’ are defined by the upper and lower B — : . : ) (44)
bounds on the model parametérand the control trajectory : . :
in (10) and (11). Py Py
First consider the case where it can be assumedésthag AN 0N O, ONO?N2

accurately described by a second-order series expansion The analysis problem is to compute

Sy = Mx6A + AT HAGA. (B4 ax |6yl
a<6A<b
For 6y twice differentiable inb A, we have

= max |My6)+ SATH\6) + Z SN SATBISA|. (45)
a<EAD

ay i=
(Mr)j = 31| . (35) '
J A=A As before, this problem can be written in terms of the mixed
%y structured singular value. Using the singular value decompo-
(Ha)ij = 21 RN (36)  sition, B can be decomposed into two lower dimensional ma-
INiAj | a=s
B trices as
Then the analysis problem is to compute 4 4 )
B = L:L)(’rn; R:n;xn m; < n. (46)

2See Footnote 1.

max |6y| = max |Mx6X+ SATHAO)|. (37)
b a<EA<h

a<OA<
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Applying similar block diagram algebra as used to derive (38) The N and A matrices for higher order expansions can be

gives

A T ripi >
agf&’éb M>\6)\+6)\H>\6)\+Z(5)\26)\ L'R'6N >k

=1

> pa(N) 2k (47)
where
kN1 kN
N [ 11 12} (48)
Na1 Na
r 0 0 0 0 7
Hy+Y zB 0 Lt g
i=1
N = wi R 0 0 0 (49)
L wy, R 0 0 0 J
_ w -
Hyz+ ZZiBiZ
i=1
Nip = w Rz (50)
woR?z
w, Rz
Mf + Hyz+ ZziBiz
=1
w
Ni = (LT (51)
L (L)% J
Nos = Moz + 2T Haz + Z 22T Btz (52)
=1
and the perturbation block is
A =diadA,, A, AL ... AT 8] (53)

whereé. is a complex scalar, and each. andA’. are real ma-
trices with the following structures:

A, :diag(&l, .
Al =diagé;, ...

) 6n)
3 67)

(54)
(55)

with A% being anm; x m; matrix. The optimization problem
(45) is given by

(56)

max k.

d 6 =
e, 18] pa(N)>k

a<5N<h

constructed automatically using software for multidimensional
realization [46], [47]. The optimization problem is then given
by the skewed: problem (56) with the constructedf and
A matrices used in the-calculation. For the reaction and
separations processes we have investigated, sufficient accuracy
was obtained using a first-order or second-order expansion, so
higher order expansions have been unnecessary.

b) Other uncertainty descriptionsOther Holder norms
on the uncertainty are handled in a similar manner, using the
generalized structured singular value [5], [11], [12], [27], [55]-
For the case where the deviation in the performance objective
can be represented by second-order series expansion, the anal-
ysis problem is to compute

max |fy| = max |[M\6A+6XTHNEN. (57)
[|[W66],<1 [|We66|,<1
Wy bullg<1 Wy bullg<1

Applying similar block diagram algebra as in the-norm case
gives

|Mx6X + AT HASN > k<= pi(N) > 1 (58)

max

|[Wos6],<1
W, sullg<t
where
0 0 kw
N=|kWHTH\WY 0 0 (59)
MWt T o

wis the vector of onedy’, = diag(Ws, W, ), and the perturba-
tion block A = diag A, A, A, A, 6.) whereA,. andA,.
are real matrices with the structures

A, =diagé, ..., 6,)
A, =diagut1, ..

(60)
; 6n+m) (61)
andé. is a complex scalar.

In this case, the generalized structured singular valués
defined to be zero if there is n such thatlet(7 — NA) =0,
otherwise

ph = (ngn{|||A|||; det(I — NA) = 0}) - (62)

where
AN = max{ 1A, [An]lg 18]} (63)
The optimization problem (57) is given by
max byl = ax k. 64
e oW = max (64)
W, ull, <1

The right-hand side can be computed as a single skewed-
calculation. Polynomial-time upper and lower bounds for the
generalized structured singular value are available [10]. Some
of the upper and lower bounds are analytic, and with other

As before, the right-hand side can be computed as a singlgper bounds being written in terms of linear matrix inequali-

skewedg calculation.

ties which can be solved using publicly available software.
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C. Improvement of Estimates

Series expansions are used to compute the worst-case perfor-
mance and uncertainties. The accuracy of the series expansion
evaluated at the worst-case estimates are assessed by comparing
their values with those obtained by a nonlinear dynamic simula-
tion using the estimated worst-case parameter vector. The values
obtained by the nonlinear dynamic simulation are used as the
final analysis estimates. This procedure will be illustrated in the
following crystallization simulation.

T1

IV. APPLICATION: MULTIDIMENSIONAL CRYSTAL GROWTH

Potassium dihydrogen phosphate (KDP, #D,) crystals
are important in nonlinear optics applications. The deuteratEld- 1. Shape of KDP crystals.
form of KDP is standard in commercial laser systems for fre-
guency doubling from the near infrared to the visible [16]. KDP
and DKDP (K(D,H;_.)2PO,) crystals are currently the only

TABLE |
NOMINAL KINETIC PARAMETERS

nonlinear crystals which can be grown to the sizes needed for A
laser radiation conversion in laser fusion systems [42], [53], I
[57]. These nonlinear optics applications place high demands RWEFC 0.0055

on the crystal quality, size, and quantity produced. "

The KDP crystal shape is tetragonal prism in combination
with tetragonal bipyramid and the angle between the prism sides Iﬁa’m -1.384
and pyramid faces is 4939]. The two characteristic lengths

andrs for a KDP crystal are shown in Fig. 1, and its volume is Dy
k
v=(r —ro)r3 + %75’ (65) scmeeg_| 0101
By

For nonlinear optic applications, each KDP crystal is grown

. ) ; S k
from a single seed crystal in a batch of well-mixed solution in ﬁn—lz -28.6
the metastable region (hence, no nucleation). Under these con-

ditions, the habit of the KDP crystal is completely described by fz
the growth rates in the; andr; directions. The kinetic expres- m 0.031
sions of the growth rates obtained from experiments [39] are B
2
dr k
2 p-"l (C = Co)? (66) =B | 835
dTQ kgg 2
dt Pec (€= Cat) 67 The equilibrium solubility curve was also determined from
where experimental data reported by [39]
Pe density of the crystal£ 2338 kg/m?); Coup = AT + B (73)
C solute concentration (kg of solute/kg of *¢
water); where
Ciat saturated solute concentration; ) )
k,1 andk,,  growth rate coefficients (kg/s A=A(l+ws3),  B=DB(l+ws) (74)

The growth rate coefficients are related to the temperatuvg ) . A ) )
the nominal valuest and B are given in Table I, and

kg =DiT + E; (68)
ks = DoT + B. (69) —0.02 < w3 < 0.02. (75)
The nominal values for the growth kinetics and solubility curve
were determined by least-squares fitting, and the uncertainties
were estimated from the deviations of the experimental data
D =D1(1 +wy), E = E1(1 +wp) (70) points from thg best-fit curve. . - .
D, :DQ(l ), By = E}(l +ws) 7y When growing KDP prystals for nonI|r?ea( opycs apphca—
tions, the operating region of the crystallization is defined so
where the nominal values for the parameters are given in Tabl@$,to avoid nucleation. This condition can be written as the con-
and the parameter uncertainties are straint:

The parameter®,, Ds, F1, andE; were determined from ex-
perimental data reported by [39]

—0.015 < w; < 0.015,  —0.015 < wy < 0.015.  (72) C — Cuay < ACiax. (76)
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In practice, the KDP crystal is typically grown from one seed
crystal in a batch of well-mixed solution which is cooled over
a period of days [53]. A total mass balance directly links the

TABLE 1l

INITIAL CONDITIONS, FINAL CONDITIONS, AND SOME PARAMETERS

solute concentration to the size of the crystal at any point during values values
the process r(t = 0) 0.001 m
w U
C=Cot—20 P 77) ra(t = 0) 0.001 m
Msolvent Msolvent
where T(t =0) 305.2 °C
Cy initial concentration (kg solute/kg of water); C(t=0) 0.335 kg solute/kg water
wo weight of the seed (kg solute); AC 0.04 ke solute/ke wab
Msolvent mass of the solvent (kg water). mas 04 kg solute/kg water
The most common operating procedure when growing KDP Msolvent 5 kg water
crystals for use in nonlinear optics applications is to set the
cooling temperature profile so as to try to keep the supersatu- 2 19 hr
rationC — Cs,; at its maximum value while satisfying concen- T(t = ty) 295.3 °C
tration constraint (76) [57]. This maximizes the crystal growth
rates (66) and (67) for each dimension, which maximizes the C(t=15) 0.280 kg solute/kg water
rate of crystal mass production. The desired nominal tempera- ri(t =ty) 9.522 cm
ture trajectory is
. . ro(t = t5) 4.160 cm
. C—ACh.x— B
T= % (78) it = t5)/ra(t = tg) 2.289

whereC is the solute concentration measurement.

This temperature trajectory cannot be implemented exacB{PceSS for the nominal temperature trajectory. Initial condi-

in practice for two reasons. First, the solute concentration m
surement” can be biased from the true solute concentrafion

C=C(1+wy)

where

—0.001 <€ w4 <£0.001.

dions and other physical parameters are given in Table Il. The

coefficients in the first series expansions used in the robustness
analysis were computed by augmenting model equations with
the sensitivity equations [9]. The coefficients for the second-
order and third-order terms were computed by a combination of
augmenting the model equations with the sensitivity equations
and divided differences. The resulting system of equations was
solved using the sparse ODE solver LSODES [26]. The analysis

Second, the temperature cannot be implemented exactly dud{gulations were computed using MATLAB, with thecalcu-

unmeasured disturbances (e.g., fluctuations in cooling wat
and limitations to the performance of the local controller, hené
the temperature actually achieved is

T =

C(l + TU4) - ACIHH.X - B

A
with

—12x1077 < @ < 1.2x1077,

—0.01 < 3<0.01 (82)

lgtions computed using the-Analysis and Synthesis Toolbox
ﬁat the highest level of accuracy for the upper and lower
bounds, which were equal within the number of significant fig-
ures.

Simulation and analysis results indicate that the aspect ratio
can change by as much as 5% due to model and implementation
uncertainties (see Table Ill). The uncertainties corresponding
to the worst-case aspect ratio were the same for all series ex-
pansions (where “worst-case” was defined to be the largest as-
pect ratio, see Table IV). The worst-case performance estimates

where the parameterrepresents the accuracy of the local corfrom the first-, second-, and third-order series were very close to
troller, ande accounts for an additional drift in temperature witfihe worst-case performance computed for the original nonlinear
time ¢. Implementation inaccuracies with this character hawystem with the worst-case uncertainties implemented. This is
been observed in laboratory crystallizers [35]. The magnitu@® additional confirmation of the accuracy of the series repre-
of the uncertainties inv and 3 were selected based on engisentations and the analysis tools.

neering judgment.

The worst-case parameters can be understood in terms of the

Habit modification for KDP crystals has been extensivelgrystal growth kinetics. The derivative /drs is

studied (see, e.g., [40], [52], and the citations therein). The as-
pect ratio {1 /72) is of importance for two-dimensional crystal- 471 _ _ _
lization in general, and it is of interest to determine the robust-dro kg DT+ E»

dry . k'gl . DT+ Eq . <w1 —‘,—1) D1T+E1
w2+1 D2T+E2 ’

ness of the aspect ratio to the model and control implementation (83)

uncertainties.

An increase inv; or a decrease iws increasegr; /dro, which

The first step in the analysis was to numerically simulate thveould be expected to lead to an increased aspect rafic.
nominal model equations for the cooling KDP crystal growtccording to (81), increases iny, «, or 3 result in an increase
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TABLE I
NOMINAL AND WORSTCASE ASPECTRATIOS FROM THE FIRST-, SECOND-,
AND THIRD-ORDER ANALYSES, AND FROM SIMULATION

nominal | 1%t | 274 | 374 | simulation
7‘1/7‘2 2.29 242 | 2.39 | 2.39 2.40
TABLE IV
PARAMETER VALUES CORRESPONDING TO THRNVORST-CASE ASPECTRATIO
Wy Wy w3 Wyq (¢4 /6
0.015 | -0.015 | 0.02 | 0.001 | 1.2 x 1077 | 0.01
TABLE V

COMPUTATION TIMES FOR THE CONSTRUCTION OF THESERIES
EXPANSIONS AND FOR THESUBSEQUENTANALYSIS STEP (INDUCED
NORM FOR FIRST-ORDER EXPANSION, z¢ ANALYSIS FOR SECOND- AND
THIRD-ORDER EXPANSIONS)

1%t order | 2™ order | 374 order

2s 50 s 19 min

Computation time

in temperature. By differentiatingr, /dr, in (83) with respect

773

the first to take into account both model and control implemen-
tation uncertainties. The algorithms are applicable to nonlinear
lumped or distributed parameter systems. The utility of the al-
gorithms was demonstrated in their application to a batch mul-
tidimensional crystallization process.

(1]

[2
(3]
(4]

(5]

(6]

(71

(8]
9]

to temperaturd’, it is seen that an increase in temperature also
increaseslr; /dr». The relationship betweens and the aspect [10]
ratio is a bit more subtle. A plot of aspect ratio versus time indi-
cates that the aspect ratio goes through a maximum at some in1]
termediate time. An increase i, decreases the crystal growth
rates, resulting in proportionately less time spent during the lo 2]
aspect ratio growth which occurs near the end of the batch run.
The computation times for the robustness analysis were quite

tional complexity of exactly calculating the worst-case perfor-[14]
mance [8], [44], or even approximating the worst-case perfor-

mance within a givenr [6], [22]. A minor modification on the
theoretical proofs in [6] indicate that exact andpproximate

worst-case analyses for the nonlinear processes considered h&s@

are at least as computationally challenging.

(18]

The computation time grows rapidly as a function of the ordef17)
of the series expansion. Recall that the first-order analysis re-

sults are nearly equal to the exact results (see Table Ill), a

in this case the added simulation time is a small fraction of the
total simulation time, even when the sensitivity equations arél®l
not included. This means that the first-order robustness analysis
can be incorporated within an optimization framework to design2o]
robust optimal control trajectories for batch and semibatch pro-
cesses, without leading to an unreasonable increase in compyx
tational expense. The robustness analysis with the higher order
expansions can be used at the very end of the robust optim&Fr]

control synthesis to verify results, or can be embedded into th@3

final stages of the optimization procedure to improve accuracy.

V. CONCLUSION

Algorithms were proposed that calculate the worst-case Peks

(24]

formance in batch and semibatch processing. The algorithms are
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