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Abstract

The fundamental processes of crystal nucleation and growth are strongly dependent on the solute concentration. A
significant limitation to the development of reliable techniques for the modeling, design, and control of crystallization
processes has been the difficulty in obtaining highly accurate supersaturation measurements for dense suspensions.

Attenuated total reflection Fourier transform infrared spectroscopy is coupled with chemometrics to provide highly
accurate in situ solute concentration measurement in dense crystal slurries. At the 95% confidence level, the
chemometric techniques provided solute concentration estimates with an accuracy of 70:12wt% for potassium
dihydrogen phosphate. r 2001 Published by Elsevier Science B.V.

PACS: 81.10.Dn; 64.75.+g
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1. Introduction

A primary limitation to the systematic modeling
and control of crystallization processes is the
difficulty in obtaining accurate in situ measure-
ments of solute concentration in the dense slurries
typical of industrial crystallization operations.
High accuracy is needed because the nucleation
and growth kinetics that are fundamental to the
modeling of crystallization are strongly dependent
on the supersaturation, which is the difference

between the actual solute concentration and the
saturated solute concentration.
One technique is to measure the refractive index

[1–4]. Although this method can work when there
is significant change in the refractive index with
solute concentration, the method is sensitive to
ambient light and air bubbles. Another approach
to obtaining solute concentration measurements is
to sample the crystal slurry, filter out the crystals,
and then measure the density of the liquid phase.
This procedure has been demonstrated on-line for
the cooling crystallization of potassium nitrate in
water [5–8]. The use of an external sampling loop
can lead to operational difficulties such as clogging
of the screen used to filter out the crystals, and to
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fluctuations in temperature in the sampling
loop. This latter problem is especially impor-
tant for crystals with a small metastable zone
width, where a slight reduction in temperature
can cause crystals to nucleate in the densitometer,
leading to inaccurate solute concentration
measurements.
In the crystallization of electrolytes, the solute

concentration can be estimated by placing a
conductivity probe in the crystal slurry [9–11].
Frequent re-calibration of the probe limits its
usefulness in long-term industrial crystalli-
zation applications. An indirect method of deter-
mining the solute concentration is to use calori-
metry, in which the measurements of temperature
and flow rates are combined with a dynamic
energy balance of the crystallizer [12–14]. This
approach has been demonstrated for the batch
crystallization of adipic acid in water [15]. Solute
concentration estimates determined from calori-
metry can be expected to drift as the crystallization
progresses. Less popular methods for solute
concentration measurement, which have similar
weaknesses, are summarized in some review
papers [16,17].
A limitation to the aforementioned methods for

supersaturation measurement is the inability to
track the concentrations of multiple dissolved
species or multiple solvents. Crystallization pro-
cesses, when used for separations purposes, have
more than one solute. Most pharmaceutical
crystallization processes have multiple solutes
and/or solvents (multiple solvents occur in
antisolvent or ‘‘drowning out’’ crystallization).
All reactive crystallization processes have
multiple chemical species. A significant advant-
age of spectroscopy techniques is the ability
to measure concentrations in multicomponent
solutions.
The feasibility of attenuated total reflection

(ATR) Fourier transform infrared (FTIR) spectro-
scopy for the in situ measurement of solute
concentration in dense crystal slurries has been
demonstrated [18–22]. In ATR-FTIR spectro-
scopy, the infrared spectrum is characteristic of
the vibrational structure of the substance in
immediate contact with the ATR immersion
probe. A crystal in the ATR probe is selected so

that the depth of penetration of the infrared
energy field into the solution is smaller than the
liquid phase barrier between the probe and solid
crystal particles. Hence, when the ATR probe is
inserted into a crystal slurry, the substance in
immediate contact with the probe will be the liquid
solution of the slurry, with negligible interference
from the solid crystals. That the crystals do not
significantly affect the infrared spectra collected
using the ATR probe has been verified experimen-
tally [18,19]. The accuracy of solute concentration
measurements in past studies, however, has not
been as high as could be hoped.
Chemometrics has been used with various

spectroscopic techniques for quantitative and
qualitative analysis of complex spectra [23–25].
Its application with FTIR spectroscopy includes
quantitative analysis of latex on coated paper [26],
determination of rubber additives [27], determina-
tion of blood serum constituents [28,29], and
identification and quantitation of trace gases
[30,31].
The main contribution of this paper is to

demonstrate that highly accurate measure-
ments of solute concentration can be provided
by ATR-FTIR spectroscopy and chemo-
metrics. Attention is made to quantifying the
accuracy of the chemometric predictions, the
sensitivity of the results to estimated noise levels,
and the sensitivity of the results to selection of the
calibration data. Raman and infrared spectro-
scopy at various solution concentrations can be
used to elucidate the molecular structure in
solution, which is needed to identify the crystal
growth mechanism (see Ref. [32] and references
cited therein). Such analysis is beyond the scope of
this paper.
The paper begins with a brief review of a

chemometric approach referred to as robust
chemometrics, which provides accurate estimates
of prediction accuracy, and automatically selects
amongst multiple chemometric methods. This is
followed by the experimental procedure, results,
discussion, and conclusions.1

1A preliminary version of these results were published in a

proceedings paper [33].
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2. Theory

When predicting solution concentration, includ-
ing multiple absorbances in the calibration model
averages measurement noise over multiple spectral
frequencies and allows the explicit consideration of
peak shifts. The strong correlations within the data
make it impossible to construct an accurate
ordinary least squares (OLS) model between the
multiple absorbances and the solution concentra-
tion. The ability of the chemometric methods of
principal component regression (PCR) [34] and
partial least squares (PLS) [35,36] to handle highly
correlated data allows these chemometrics meth-
ods to construct calibration models based on
multiple absorbances.
The calibration model has the form

y ¼ bTx; ð1Þ

where y is the output prediction (a solution
concentration), x the vector of inputs (often called
predictor variables, in this paper these are the IR
absorbances and the temperature), and b is the
vector of regression coefficients. There are numer-
ous chemometrics methods, most being variations
of PLS or PCR, which can give very different
calibration models for some data sets [34,37–39].
The robust chemometrics approach is to apply
several chemometrics methods, and then to select
the calibration model which gives the most
accurate predictions [40]. The six different methods
considered were:

* Top–down selection PCR (TPCR) [41],
* Correlation PCR (CPCR) [41],
* Forward selection PCR 1 (FPCR1) [42,43],
* Forward selection PCR 2 (FPCR2) [41],
* Confidence interval PCR (CIPCR) [39,40] and
* Partial least squares (PLS) [35].

This paper uses the mean width of the prediction
interval (WPI) as a criterion to select amongst the
calibration models (see Ref. [44] for computation
of WPI). All chemometric calculations were
performed using home-grown MATLAB code,
except for the PLS algorithm, in which the Matlab
PLS Toolbox 2.0 was used [45].

3. Experimental procedure

3.1. Materials and instruments

Absorbance spectra were obtained by a DIP-
PER-210 ATR-FTIR immersion probe with two
reflections manufactured by Axiom Analytical.
ZnSe was used as the internal reflectance element.
The probe was attached to a Nicolet Protege 460
FTIR spectrophotometer connected to a 333MHz
Pentium II running OMNIC 4.1a software from
Nicolet Instrument Corporation. The spectro-
meter was purged with N2 gas 1 h before and
while measurements were being taken to reduce
the effects of CO2 absorption in its optical path. A
spectral resolution of 4 cm�1 was used as a
compromise between scan speed and resolution.
Samples were made by dissolving appropriate
amounts of potassium dihydrogen phosphate
(KH2PO4; KDP) obtained from Fisher Scientific
or Aldrich in deionized water. The sample was
stirred using an overhead mixer. The sample
temperature was controlled using a Neslab GP-
200 water bath and was measured every 2 s using a
Fluke 80TK thermocouple attached to a DT3004
data acquisition board from Data Translation.
The temperature readings were averaged during
the duration of each scan.

3.2. Constant concentration measurements

Specified amounts of KDP and deionized water
were placed in a 1-liter round bottom flask and
heated until all of the crystals dissolved. Each
solution was cooled while spectral data were
collected every minute in the range between 4000
and 650 cm�1 until crystals started to appear or the
solution reached room temperature. The spectra
were collected for five different initial solute
concentrations (21%, 23%, 25%, 27%, and
29%, on a mass basis). While air has been used
as the background measurement to the FTIR
spectrometer in some earlier studies (e.g., [18,19]),
the air near our experimental apparatus has
variations in temperature, humidity, and carbon
dioxide concentration. To give a reproducible
background measurement, and hence less noisy
absorbance spectra, the solvent (deionized water)
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at room temperature was used for the background
measurement. Table 1 reports the number of
spectra collected and the corresponding tempera-
ture range for each of the five concentrations.

3.3. Solubility measurements

The solubility curve for KDP was determined to
test the accuracy of the calibration model. In order
to determine the solubility curve for KDP, spectra
for a KDP slurry were recorded at temperatures
ranging from 251C to 501C using deionized water
at room temperature as the background. Five
scans were collected at each temperature, which
was approached from both undersaturation and
supersaturation, resulting in 10 total spectra per
temperature setting.

4. Results and discussion

4.1. Calibration data

Beer’s Law, which holds for many dilute
solutions, states that absorbance is linearly related
to the concentration. For some systems it holds for
more concentrated solutions for spectra collected
in the mid-infrared region. Absorbance spectra for
KDP aqueous solutions collected at approximately
371C for different solute concentrations are shown
in Fig. 1. The peaks in the 750–1400 cm�1 region
are associated with stretching modes of the H2PO

�
4

ion (see Fig. 2). The absorbance increases as the
solute concentration increases. Also, slight peak
shifts occur. For testing the validity of a linear
calibration curve, the temperature and concentra-

tion dependence of the highest absorbance peak of
H2PO

�
4 ion, which appears at 1074:17 cm

�1; was
determined.
The absorbance at wavenumber 1074:17 cm�1

for solutions of constant concentration at different
temperatures is shown in Fig. 3. The nearly equal
spacing between the lines for most of the data in
Fig. 3 suggests that Beer’s Law is fairly accurate

Table 1

Number of spectra and temperature ranges for five concentra-

tions

Concentration Temperature Number

wt% range (1C) of spectra

21 20.3–36.6 34

23 24.8–41.3 33

25 24.6–47.7 33

27 27.3–54.3 22

29 36.0–60.9 27

Fig. 1. ATR-FTIR spectra of KDP aqueous solution for five

concentrations (21%, 23%, 25%, 27%, and 29%) at approxi-

mately 371C.

Fig. 2. ATR-FTIR spectra of KDP aqueous solution for five

concentrations (21%, 23%, 25%, 27%, and 29%) at approxi-

mately 371C showing the region corresponding to the PO2 and

PðOHÞ2 stretching modes of H2PO
�
4 ion. Exact peak assign-

ments are described by Chapman and Thirlwell [49].
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for the aqueous KDP solutions for the concentra-
tion range studied. This justifies the use of linear
chemometrics for constructing a calibration mod-
el. For a fixed concentration, the absorbance
decreases linearly as the temperature increases,
indicating that temperature should be included as
an input variable when constructing a calibration
model.

4.2. Selection of predictor variables

The qualitative results indicated that the cali-
bration model should be constructed using the
absorbance spectra and temperature as predictor
variables, with the solute concentration being the
predicted variable. Four separate models were
constructed to evaluate the common practice of
building calibration models based only on the
peaks, or the peaks and valleys, instead of using a
range of frequencies (see Table 2). Each model
used temperature as a predictor, but used different
absorbance spectral points for the rest of the
predictor variables.

4.3. Statistical analysis

The data were mean-centered before the con-
struction of the predictors. The complete data set
included 149 data points (see Table 1). For each of

the four models developed, six subdivisions of the
experimental data into calibration and validation
sets were used for comparing the robustness of the
chemometric methods. The selection procedures
for samples into the calibration and validation sets
are shown in Table 3.
The calibration models produced by many

chemometrics methods, and the width of the
estimated prediction intervals, are functions of

Fig. 3. Absorbance at wavenumber 1074:17 cm�1 of KDP

solutions of nearly constant concentrations at different tem-

peratures.

Table 2

Predictor variables for each of the models and total number of

predictor variables (temperature was used as an additional

predictora)

Model Wavenumbers No. of predictor

(cm�1) Variables

1 1074.17 2

2 873.61 937.25 939.18 6

1074.17 1151.31

3 Same as

Model 2 plus

12

890.97 892.89 991.25

993.18 1106.96 1108.89

4 750.19–1392.38 335

aModel 1 uses the absorbance of the most prominent peak of

H2PO
�
4 : Model 2 uses the absorbance at the four peaks in the

750.19–1392:38 cm�1 region (two absorbances were selected for

one of the peaks, since there was a peak shift as the

concentration changed). Model 3 uses the absorbance values

at the four peaks and three valleys of the 750.19–1392:38 cm�1

region as predictor variables (again, more than one absorbance

is used for some of the peaks or valleys). Model 4 uses the

absorbance values in the entire 750.19–1392:38 cm�1 region as

predictor variables.

Table 3

Experimental data are divided into calibration (C) or validation

(V) sets in six different ways. The data in the overall data set

were ordered from lowest concentration to highest concentra-

tion

Subdivision Pattern

1 CV

2 VC

3 CVCV

4 VCVC

5 VCCV

6 CVVC
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the noise level in the predictor variables [40]. One
way to estimate this noise level is by replicated
experiments. Such experiments may not capture all
variations, however. For example, variations in
the predictor variables may be smaller during
replicated experiments collected over a period of
hours since day-to-day variations are not included.
Also, the large number of replicated experiments
which would be required for an accurate estimate
of the noise level wastes experimental resources.
An alternative approach, that does not waste
experimental resources and does not require care-
ful timing of replicated experiments, uses all of the
experimental data to estimate the noise level. The
approach is to select a noise level that results in
prediction interval widths that are consistent with
variations in predicted solute concentrations ob-
tained during the collection of solubility data.
The accuracy of the predictions for Models 1–4

at different noise levels were quantified using
prediction intervals (Table 4). Model 4 gave much
tighter prediction intervals than the other models.
The higher accuracy of Model 4 indicates the
advantage of including all useful data when
constructing the regression model. For this parti-
cular system studied, there is a significant shift for
one of the H2PO

�
4 peaks, which may be one of the

reasons for obtaining more accurate predictions
when all the data in the 750.19–1392:38 cm�1

region are used. The other reason could be that, by
incorporating more frequencies in the calibration
model, random noise in the absorbance is aver-
aged over many more frequencies, resulting in an
increase in the effective signal-to-noise ratio.
The data from Model 4 were analyzed using the

six chemometric methods with a noise level of
0.004. This noise level resulted in prediction
interval widths consistent with solubility data (this
is shown later). As shown in Table 5, the
chemometric methods, especially PLS, can give
very different prediction interval widths even when
applied to the same calibration data. Further, all
chemometrics methods showed sensitivity to the
data subdivision. In general, Subdivision 1 resulted
in high prediction interval widths while Subdivi-
sion 4 resulted in low prediction interval widths.
Subdivision 6 should give the most reliable
calibration models, since it selects the calibration

data to be as spread out as possible over the design
space, that is, the data associated with the lowest
and highest solute concentrations are used in the
calibration set (see Table 3). For that data
subdivision, the mean prediction intervals are
similar for all the methods. For the remaining
results, the calibration model for data subdivision
6 and the CPCR method was used.

4.4. Regression coefficients

An error analysis was performed on the regres-
sion curve made from Model 4 with a noise level of
0.004 to verify the assumptions made in the
statistical analysis used to compute the prediction
intervals and to verify the accuracy of the
estimates. The differences between the measured
and predicted values of the solute concentration
are plotted in Fig. 4. While the differences do not
appear to be taken from a random normal
distribution, there is no discernible pattern in the

Table 4

Average prediction interval widths (in wt%, with a confidence

level a ¼ 95%) for Models 1–4 at different noise levels

Model Noise level

0.001 0.002 0.003 0.004 0.005 0.006

1 3.62 3.62 3.62 3.62 3.62 3.62

2 1.30 1.92 2.58 2.83 2.88 2.90

3 1.65 1.79 1.37 1.47 1.46 1.68

4 0.412 0.445 0.464 0.550 0.578 0.588

Table 5

Prediction interval widths (in wt%, with a confidence level a ¼
95% and noise level = 0.004) for Model 4, which uses all

absorbances in the range 750–1392 cm�1

Calibration–validation subdivision

1 2 3 4 5 6

TPCR 1.14 0.688 0.594 0.157 0.213 0.246

CPCR 0.783 0.688 0.422 0.157 0.213 0.246

FPCR1 1.08 0.688 0.504 0.157 0.213 0.258

FPCR2 0.689 0.906 0.375 0.157 0.214 0.246

CIPCR 1.08 0.688 0.504 0.157 0.213 0.258

PLS 3.23 1.65 0.180 0.199 0.373 0.220
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differences. The differences are within the
0.246wt% width calculated for the prediction
interval (see Table 5).
For comparison, Fig. 5 shows the error analysis

for regression coefficients created using Model 1,
which uses the peak at 1074:17 cm�1: The errors
are much larger than those of Model 4, consistent
with its wider prediction intervals. Also, the error
values are not as randomly dispersed as Model 4.

The regression coefficients of Model 4 are
plotted against a KDP spectra in Fig. 6. At first
glance, it may have been expected that the
regression coefficients would be larger for frequen-
cies where the absorbance is high. However, this is
not always true. For example, the regression
coefficients are significantly negative for frequen-
cies corresponding to the peak at 937 cm�1: It is
believed that this is due to the peak shift that
occurs in that region as temperature and solute
concentration changes. Chemometrics can take
this peak shift into account when computing the
regression coefficients in the calibration model.

4.5. KDP solubility

The regression coefficients created from Model 4
were applied to FTIR spectra of KDP slurries at
different temperatures to determine the solubility
curve. Two solubility curves were constructed, one
obtained as the solubility curve was approached
from supersaturation and one obtained as the
solubility curve was approached from under-
saturation. The solubility data calculated using
regression coefficients from CPCR with noise level
of 0.004 are plotted in Fig. 7. Both sets of data
were well fit by a quadratic equation

Csat ¼ ð3:20� 10�5ÞT2 þ ð1:40� 10�3ÞT þ 0:154;

ð2Þ

Fig. 4. Error analysis for the predictions of the chemometrics

model made from Model 4 with a noise level of 0.004 using

CPCR method Subdivision 6. Data include both calibration

and validation sets.

Fig. 5. Error analysis for the predictions of the chemometrics

model made from Model 1 with a noise level of 0.004 using

CPCR method Subdivision 6. Data include both calibration

and validation sets.

Fig. 6. Regression coefficients from Model 4 using CPCR

method subdivision 6 plotted against FTIR spectra of 21%

KDP solution at 371C. The regression coefficients for the

temperature and the constant bias term are not shown.
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where T is in Celsius, and Csat is in g solute/g
solution. This indicated that enough time was
allowed during the solubility experiments for the
slurry to nearly reach equilibrium. It is believed
that the slight differences in the measured solubi-
lity as the temperature is increased and decreased
may be due to background drift. Curves drawn
through both sets of data points show a slight
convexity, which has been reported in other
solubility measurements for KDP [46]. The solu-
bility data in Fig. 7 are in good agreement with
recent literature data (within 0.8 wt% of the data
reported in Ref. [47]). Such a difference is easily
explained by our use of less pure deionized water
than doubly distilled water [47]. Also, this
difference in solubility curves is smaller than
others reported in the literature (for example,
larger deviations occur between the curves shown
in the Refs. [47] and [48]). A plot of the deviations
of the data points from the fitted solubility curve
indicates that the prediction interval width of
0.246 wt% (in Table 5) is consistent with observa-
tions.
A common practice when relating absorbances

to solute concentration is to use the absorbance of
the most prominent peak corresponding to the
substance studied. A calibration model was
obtained using the absorbance at 1074:17 cm�1

(Model 1), using data subdivision 6. When this
calibration model is used to estimate the solute

concentrations associated with the solubility
data, the solubility data obtained is best fit by a
line (see Fig. 8) instead of the slight convexity
exhibited with Model 4. The solubility curve
provided by Model 1 disagrees qualitatively with
solubility data reported in the literature. Because
the data points in Fig. 8 fall almost perfectly on a
line, an unwary user would assume that the
calibration model and the solubility curve are
accurate, although they are highly inaccurate, as
indicated by the large mean prediction interval
width in Table 4. The solute concentrations
calculated using Model 1 are higher than Model
4 on average by 1.4 wt%.
In summary, this indicates that, if only one peak

is used to correlate absorbance to solute concen-
tration, it may result in higher inaccuracy in the
solute concentrations calculated and in incorrect
qualitative behavior of the solubility curve. The
mean prediction intervals in Table 4 indicate that
these inaccuracies also occur when multiple peaks
(Model 2), or when both peaks and valleys are
used (Model 3). These results demonstrate that
multiple absorbances and chemometrics produce
the most accurate calibration models. Also, the
mean prediction intervals should always be com-
puted when using chemometrics (as well as any
other statistical technique), so that the user has a
clear understanding of the accuracy of the solution
concentration measurements.

Fig. 7. Solubility curve constructed from the CPCR subdivi-

sion 6 calibration model with the absorbance data in the

750.19–1392:38 cm�1 range (Model 4) and a noise level of 0.004.

Fig. 8. Solubility curve constructed from calibration model

using Model 1 (absorbance at 1074:17 cm�1) CPCR method

and Subdivision 6.
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5. Conclusions

A major advantage of spectroscopy techniques
for the determination of solution concentration is
its applicability to multicomponent systems. It was
demonstrated that FTIR-ATR spectroscopy with
the proper application of experimental design and
robust chemometrics can provide highly accurate
measurements of solution concentration in slurries
of KDP crystals. Using a wide range of frequencies
within the infrared range in which the solute
absorbs resulted in calibration models able to
determine the solute concentration within
70:12wt% for a confidence level of a ¼ 95%:
An application to solubility data provided another
indication of the accuracy of the calibration
model, as well as to the accuracy estimates of the
prediction interval width. These results indicate
that ATR-FTIR coupled with robust chemo-
metrics can provide sufficiently accurate solute
concentration measurements for use in crystal-
lization modeling, design, analysis, and control.
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