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Abstract

Needs for increased product quality, reduced pollution, and reduced energy and material consumption are driving enhanced
process integration. This increases the number of manipulated and measured variables required by the control system to achieve its
objectives. This paper addresses the question of whether processes tend to become increasingly more difficult to identify and control
as the process dimension increases. Tools and results of multivariable statistics are used to show that, under a variety of assumed
distributions on the elements, square processes of higher dimension tend to be more difficult to identify and control, whereas the
expected controllability and identifiability of nonsquare processes depends on the relative numbers of measured and manipulated
variables. These results suggest that the procedure of simplifying the control problem so that only a square process is considered is a

poor practice for large scale systems. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Since control is being applied to industrial processes
of progressively higher dimension, it is important to
determine if processes tend to become more difficult to
identify and control as the process dimension increases.
There has been some controversy regarding this question.
While some academic control engineers have claimed that
the identification and control of high dimension processes
is no more difficult than for low dimension, many
industrial control engineers have strongly disagreed (see,
for example, heated discussions at the International
Conference on Chemical Process Control [1]). Although
some evidence has been provided that paper machines
of larger dimension tend to have plant matrices which
are more poorly conditioned [2], no proof was available
that this trend holds for general processes.

This debate is not whether the control of large scale
processes requires more computation, as all engineers
agree on this point, which is being addressed [3-9]. Rather,
the debate concerns whether the inherent identifiability and
controllability of processes tend to become more difficult
as the process dimension increases.
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Here tools and results from multivariate statistics are
used to show that, under a variety of assumed distribu-
tions on the elements, the likelihood that a square process
is difficult to identify and control increases with process
dimension. For various well-characterized sets of square
transfer function matrices, it is shown that: (1) the average
condition number increases with the process dimension,
and (2) the average minimum singular value decreases
with the process dimension. These trends suggest that
large scale square processes tend to be more difficult to
identify and control than smaller scale processes. It is
shown this trend does not hold for nonsquare processes.
This suggests that the common procedure of selecting
only square transfer functions to use for control pur-
poses, as has been popular in the literature and in
industrial practice [10,11], is a poor practice for large
scale processes. Similarly, procedures of ‘‘squaring
down” the process before applying control techniques
[12—-16] are also inappropriate for large scale processes.

2. Results

Define R as the field of real scalars, C as the field of
complex scalars, R as the set of real matrices with m
rows and n columns, and C"*" defined similarly. The
minimum singular value of a matrix P is represented as
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o(P); the Euclidean condition number of P is repre-
sented as «(P). A random variable is said to be standard
if it has zero mean and unit variance. The expected
value of a function f{(P) is represented by E{f(P)}.

In physical terms, a real P corresponds to a steady-
state gain matrix (that is, the mapping between manipu-
lated and measured variables), while a complex P corre-
sponds to the multivariable transfer function evaluated
at some frequency of interest, usually some intermediate
frequency. It will be assumed throughout that P has
been scaled in the standard manner [17]. The tools and
results of multivariate statistics will be used to address
the question of whether the identification and control
problems are inherently more difficult for large scale pro-
cesses. The difficulty associated with the identification and
control of a process will be quantified using o(P) and
k(P), which are commonly used in the literature [18-29]
as well as in practice [11]. It is generally accepted in the
process control community that a process is difficult to
identify and control when ¢(P) is small or «(P) is large
(our research group prefers to use o(P), but «(P) is more
commonly used by other process control engineers). In
terms of process identification, o(P) is the worst-case
signal-to-noise ratio in any process input direction, while
k(P) is the ratio of the best-case signal-to-noise ratio to
the worst-case signal-to-noise ratio [22]. In terms of pro-
cess control, o(P) quantifies the ability of the manipu-
lated variables to reject worst-case disturbances [30],
while «(P) quantifies potential sensitivities to model
uncertainties experienced by the control system [17].

To mathematically quantify the likelihood that a
process is difficult to identify and control, a distribution
must be assumed for the elements of the process transfer
function. It is difficult to assess what the distribution of
all plant transfer functions truly is, as process designs
have a variety of constraints such as the satisfaction of
material and energy balances, and the interconnections
of process units, that suggests that the distribution may
not be of a simple form (e.g. uniform or normal). It is
reasonable to assume, however, that the expected value
of each element of the transfer function is zero, since for
any process transfer function, an equivalent transfer
function can be defined which has the opposite sign in all
of its elements by redefining the signs of the manipulated
or measured variables. In other words, the arbitrariness of
the sign of the elements implies that the expected value of
the elements can be assumed to be zero.

Since the true distribution for the process elements is
unknown, the next best strategy would be to derive trends
that are true irrespective of the distribution. Although this
can be done in some cases (see Lemma 4), in most cases
the results will be a function of the distribution. In these
cases our approach will be to derive results for two dis-
tributions: (i) the normal distribution, which approx-
imates many distributions encountered in practice due to
the central limit effect (for a more thorough discussion of

this, see pages 43—46 of [31]), and (ii) the uniform dis-
tribution, which in many probabilistic matrix analysis
problems can be shown to be the “worst-behaved” dis-
tribution [32,33]. For these distributions, we will show
that the expected values of o(P) and «(P) exhibit the same
general behavior as the process dimension increases. In
the Discussion section, significant literature evidence is
provided which indicates that many other matrix prop-
erties are weakly dependent on the distribution of the
elements, and an explanation for this phenomena is
provided in terms of the central limit effect.

Our interest in the properties of large scale systems
implies that our focus is on the case where the number
of manipulated variables, the number of measured
variables, or both numbers become large. The asymp-
totic results will depend on the relative numbers of
manipulated and measured variables. The results are
most conveniently separated into three classes:

1. the process transfer function is square;
the process transfer function is nonsquare, with a
constant ratio of the number of measured vari-
ables m to the number of manipulated variables
n; and,

3. the process transfer function is nonsquare, with
either the number of manipulated variables or
the number of measured variables fixed.

These classes will be treated in turn.

3. Expected values for square processes

The following result indicates that the average condi-
tion number is proportional to the process dimension,
whereas the average minimum singular value has inverse
proportionality.

Lemma 1 (expected value asymptotes: square normal
case). Consider a matrix P € R">" where each element is
an independent standard normal random variable. Then

lim E{lnk(P) } ~ Inm + 1.537 (D)
lim_ E{ln(mg(P))} ~ —1.688 ?)

Consider a matrix P € C"*" where the complex and real
part of each element is an independent standard normal
random variable. Then

lim E{Inc(P)} ~ Inm + 0.982 (3)
tim_E{In(mo(®))} ~ 0.116 )
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Proof. The first result is Theorem 6.1; the second result
is Corollary 3.2; the third result is Theorem 6.2; and the
fourth result is Corollary 3.4 of [34]. O

Lemma 1 indicates that a square process of large
dimension is more likely to be difficult to identify and
control than a square process of low dimension, whether
at steady-state or at higher frequencies. The asymptotes
in (1)—(4) are actually relatively accurate for small m as
well. As a representative example, the exact values for
E{o(P)} for finite values of m are shown in Fig. 1. The
convergence of E{a(P)} to its asymptote as m increases
is quite rapid. Lemma 2 provides another indication
that the asymptotic relationship between the expected
values and the process dimension is a reasonable
approximation for all m.

Lemma 2 (upper and lower bounds). Consider a matrix

Pe R"™ " where each element is an independent standard
normal random variable. Then

(% - s)lnm <E{ Ink(P) } < <§ + 8>lnm (3)

where ¢ tends to zero as m goes to infinity.

Proof. The lower bound is shown in [35]. The upper
bound is shown in [36]. O

The upper and lower bounds hold for all m, and both
bounds imply a proportionality between the average
condition number and the process dimension.

The general trends for square processes also hold for
processes that are nearly square, that is, processes for
which n—m is equal to a fixed constant as the process
dimension m increases. For example, E{a(P)} =2/m for
n=m+ 1, while E{o(P)}~6/m for n=m+3>10 [37].

For uniform distributions, Fig. 2 indicates that the
average condition number increases and the average
minimum singular value decreases with process dimen-
sion m, although the dependence on m is not exactly the
same as for normal distributions.

4. Expected values for nonsquare processes: fixed relative
number of manipulated and measured variables

In contrast to the square case, for processes in which
the number of manipulated variables is appreciably dif-
ferent than the number of measured variables, the aver-
age condition number approaches a constant and the
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Fig. 1. Expected value of the minimum singular value as a function of m. Each element of P € R”*" is an independent standard normal random
variable. Exact values indicated by asterisks were taken from Table 3 of [37]. The solid line is the asymptote for m— oo, which is E{g(P)}~0.6886/m.
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Fig. 2. Expected values of the minimum singular value (a, ¢) and condition number (b, d) as a function of m. Each element of P € R in (a) and
(b) is an independent standard uniform random variable. The real and imaginary part of each element of P € """ in (c) and (d) is an independent
standard uniform random variable. Values indicated by asterisks were computed using Monte Carlo experiments (50,000 matrices). The solid lines
are the estimated asymptotes as m—o0. For (a), E{ln g(P)}~—0.51 In m —0.80. For (b), E{ln «(P)}~\In m + 1.35. For (c), E{In g(P)}~—0.51 In m

+ 0.12. For (d), E{ln «(P)}~In m + 0.77.

average minimum singular value increases as the process
dimension increases.

Lemma 3 (expected value asymptotes: nonsquare normal
case, fixed m/n). Consider a matrix P € R™>" where each
element is an independent standard normal random vari-
able, with p=m/n € (0,1) equal to a fixed constant. Then

Nim E{lnk(P)} = ln(i i_ ﬁ) +o(1) (6)
lim_ E{lng(P)} - ln<m(1 - ﬁ)2> +o(l) %

Consider a matrix P € C"*" where the complex and
real part of each element is an independent standard nor-
mal random variable, and m/n is equal to a fixed constant
p €(0,1). Then

limE{inc(P)} = ln(i J_r g) +o(1) (8)

lim E{lng(P)}: 1n(2m(1 - ﬁ)z) +o(l) )

m — 00

Proof. The first result is implied by Theorem 6.3; the
second result implied by Proposition 5.1; the third result
implied by Theorem 6.3; and the fourth result implied
by Proposition 5.2 of [34]. O

Lemma 3 implies that large scale nonsquare processes
do not tend to be more difficult to identify and control
provided that the number of manipulated and measured
variables increases in a manner such that their ratio is
equal. In fact, the minimum singular value indicates
that nonsquare processes are easier to identify and con-
trol as the process dimension increases. This is in sharp
contrast to the case where the processes are square or
nearly square. These results suggest that the procedure of
selecting only square transfer functions to control, as has
been popular in the literature and in industrial practice
[10,11], is a poor practice for large scale processes.
Similarly, procedures of “squaring down’ the process
before applying control techniques [12-16] are also
inappropriate for large scale processes.
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Fig. 3 shows that the general trends for uniform dis-
tributions are the same as for normal distributions. The
condition number asymptotes are either identical or
nearly identical—E{x(P)}~1.71 for uniform distribu-
tions and E{«x(P)}~1.76 for normal distributions (this is
computed from Lemma 3 with p=1/2).

5. Expected values for nonsquare processes: fixed m

The next lemma, which holds for fixed m, is especially
interesting because it is independent of the distribution
of the elements of P.

Lemma 4 (expected value asymptotes: nonsquare normal
case, fixed m). Consider a matrix P € R™*" where each
element is an independent random variable with zero
mean and variance o, and m is fixed.

Then

lim E{g(P)} = na (10)

n—o00
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lim Efx(P)} =1 (11

Consider a matrix P € C"*" where the real and ima-
ginary part of each element is an independent random
variable with zero mean and variance «, and m is fixed.
Then

Tim E{g(P)} — 2na (12)
lim Efc(P)} = 1 (13)

Proof. This is a straightforward generalization of argu-
ments given in Section 7 of [37] (note that only the real
case was considered in [37]). O
Lemma 4 indicates that fixing the number of sensors
and adding more actuators will tend to make the iden-
tification and control problems easier. This also holds
when fixing the number of actuators and adding more
sensors (by applying Lemma 4 to the transpose of P).
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Fig. 3. Expected values of the minimum singular value (a, ¢) and condition number (b, d) as a function of m. Each element of P € R”*?" in (a) and
(b) is an independent standard uniform random variable. The real and imaginary part of each element of P € C"*?" in (c) and (d) is an independent
standard uniform random variable. Values indicated by asterisks were computed using Monte Carlo experiments (50,000 matrices). The solid lines
are the estimated asymptotes as m—o00. For (a), E{ln g(P)}~—0.71 + 0.47 In m. For (b), E{ln «(P)}~1.71. For (c), E{ln ¢(P)}~—0.31 + 0.46 In m.

For (d), E{In x(P)}~1.71.
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These statistical results agree with the deterministic
conclusions that either more information (more sen-
sors), or more opportunities for manipulation (more
actuators) should make the identification and control
problems easier [38].

6. Discussion

The general behavior of the average minimum sin-
gular value and the average condition number for matri-
ces whose elements are taken from the normal distribution
is similar to that for the uniform distribution. The
asymptotes in Lemma 4 are completely independent of
distribution. Several researchers in mathematics have
found that the expected values of many properties of
stochastic matrices of large dimension are weakly
dependent on the distribution [39,40]. For example,
Trefethen and Schreiber [40] computed the dependence
of the expected value of various quantities on matrix
dimension n for eight classes of stochastic matrices: (1)
standard normal distribution of zero mean and unit
variance, (2) uniform distribution on [—1, 1], (3) uni-
form distribution on [0,1], (4) discrete distribution with
p(=1)=p(1)=1/2, (5) discrete distribution with p(0)=
p(1)=1/2, (6) symmetric matrices with elements from
the standard normal distribution, (7) Toeplitz matrices
with elements from the standard normal distribution,
and (8) orthogonal matrices distributed by the Haar
measure (this is the distribution in which each column
or row is uniformly distributed on the (n—1)-sphere). It
was found that the expected value of several properties
were essentially the same irrespective of which of the first
seven classes were being considered. Only the eighth class
of stochastic matrices, which represents a rather atypical
distribution, gave results that were different. A large list
of expected values of functions of stochastic matrices that
are completely independent of distribution is provided by
Stewart [39].

The most well-known distribution-free result is the
central limit theorem [31,41], which concerns the prob-
ability distribution of the sample mean as the number of
points approaches infinity. In essence, the central limit
theorem states that, for a sufficiently large sample, the
distribution of the sample mean is nearly independent of
the distribution used to generate the random sample.
This result is closely related to other properties of sto-
chastic matrices of large dimension which are weakly
dependent on or independent of the distribution of their
elements. For matrices of large dimension, the compu-
tation of many matrix properties requires a large num-
ber of operations on the elements of the matrices. This
has a tendency to reduce the dependence of the matrix
property on the distribution of the elements.

The asymptotic results did not explicitly take into
account correlations between process elements caused

by the requirements of material and energy balances
and localization of certain types of measurements and
manipulations. These requirements will cause increased
collinearity of columns or rows of the transfer function
matrix. For example, the transfer function matrix for a
process with multiple temperature measurements located
on the same well-mixed reactor will have rows that are
collinear or nearly collinear. A similar situation can occur
for adjacent tray temperature measurements in a distilla-
tion column. Material balances can cause flow and com-
position measurements to be coupled, again causing
increased collinearity in the process transfer function
matrix. Distributions on the transfer function elements
which take into account the increased collinearity due to
these effects will have a larger average condition number
and a smaller average minimum singular value than for
the transfer functions where the distributions on the
elements are independent. Hence results that indicate
increasingly difficult identification and control problems
with increased process dimension are also valid when
these correlations are taken into account. This conclu-
sion is supported by studies of paper machines [2],
whose transfer function elements are highly correlated.

Another conclusion that will remain valid with corre-
lations are taken into account is that processes with
increased number of manipulated or measured variables
(with the other number fixed) are easier to identify and
control. This will hold because increased information or
increased opportunities for manipulation cannot make
either an identification or control problem more diffi-
cult. A detailed discussion of this for the deterministic
case was presented elsewhere [38].

7. Conclusions

The Monte Carlo simulations and theoretical results
suggest that identification and control difficulties tend to
increase as the dimension of a square process increases,
while these trends do not hold for nonsquare processes. In
fact, for a fixed number of measured variables, processes
tend to be ecasier to identify and control as the number of
manipulated variables is increased. These results imply
that removing variables until a square transfer function
is achieved is a poor practice for large scale processes.
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