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Advances in sensor technology and increased competition in the pharmaceutical indus-
try have generated significant interest in the identification of models for the solution
formation of crystals with multiple characteristic dimensions. A procedure is proposed
that uses a small number of batch experiments to identify the kinetic parameters for
multidimensional crystallization processes. The parameters are estimated simultaneously
from the on-line measurement of infrared spectra and from cross-moments of the crys-
tal size distribution. The identification procedure maximizes the informativeness of the
data produced by each experiment, produces an estimate of the accuracy of the kinetic
parameters, and allows the consideration of competing hypotheses for characterizing the
crystallization kinetics. The parameter identification strategy is applied to the batch
crystallization of potassium dihydrogen phosphate, which forms two-dimensional crys-
tals from solution. To the best of the authors’ knowledge, this is the first time that the
kinetic parameters for a multidimensional crystallization process are identified from a
small number of batch experiments.

1. Introduction

Advances in sensor technology and increased competition in the pharmaceutical
industry have generated significant interest in the characterization of multidimen-
sional crystallization processes.! The crystallization processes considered here have
large numbers of crystals produced from solution. New crystals may be formed di-
rectly from solution, by breakage of existing crystals, by attrition due to collisions,
or by removal of a semi-ordered surface layer through fluid shear. Various crystal-
lization phenomena can occur simultaneously in a crystallizer, and their importance
may vary depending on local conditions. The growth rate may vary among crys-
tal growth planes (faces), which can lead to needle-like crystals or other shapes.
‘While hypothesis mechanisms provide expressions that describe the kinetics for
most crystallization kinetic phenomena,? the parameters in these expressions must
be estimated experimentally. However, the exact estimation of the parameters is
impossible due to the limited and noisy data and the strong sensitivity of most
crystallization processes to trace unmeasured chemical species in the feedstocks.
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This motivates using model identification techniques that quantify the accuracy of
the model parameters.34

A robust model identification procedure is developed for multidimensional crys-
tallization processes. This procedure includes parameter estimation, model selec-
tion, and model-based optimal experimental design applied to infrared and parti-
cle size distribution measurements. A population balance model is used to model
the multidimensional crystallization process. Nonlinear parameter estimation tech-
niques are used to compute the kinetic parameters that best fit the data. Statistical
techniques are used to calculate a confidence region that quantifies the accuracy of
the model parameters. This confidence region is used by the optimal experimental
design procedure to determine the best configuration and conditions for the next
batch experiment. The confidence region is also used to select candidate models for
the fundamental physical phenomena, and to assess the effectiveness of the best
simulation model in representing and predicting the experimental observations.

The next section describes the model identification procedure. The experimental
setup and apparatus are described in Section 3. Then, the approach is demonstrated
for the crystallization of potassium dihydrogen phosphate from aqueous solution.

2. Model Identification

Model identification is an iterative procedure. Initial estimates of the kinetic param-
eters are used to design the first experiment, which is implemented in the laboratory.
The collected experimental data are used to compute improved parameter estimates
and an associated confidence region, which are used to design the next laboratory
experiment.? A detailed study has shown that estimates obtained from this proce-
dure can be more accurate than estimates obtained without optimal model-based
experimental design.5 The relationship among model selection, parameter estima-
tion, and optimal experimental design is illustrated in Figure 1.

2.1. Model development

A population balance equation can account for the distribution in crystal dimen-
sions, purity, and other state variables.® While the approach is rather general, for
specificity the model equations will be written for the two-dimensional batch crys-
tallization process in the laboratory. In this case the crystal shape is characterized
by two characteristic lengths, 7y and r,.” Supersaturation is the driving force for
nucleation and crystal growth. The relative supersaturation is

S = (C - Csat)/csat (1)

where C is the concentration of solute, and C,,; is the saturation concentration.
Let f(r1,72,t) be the crystal distribution function:

f(r1,72,t)dridry = the number of particles in the system in the
range 71 £+ dr1/2 and ro £ dry/2 at time ¢ 2)
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Fig. 1. Iterative process of model identification: u represents all experimental design variables
(e.g., seed distribution, temperature profile), y represents the measurements (e.g., infrared spectra,
crystal size distribution), 8 is the vector of kinetic parameters, and Fy is a confidence region for
the parameters.

Assume that the volume of the batch crystallizer is constant, the crystal slurry is
well-mixed, the growth rate along each axis is size-independent, nucleated crystals
have negligible size, and there is no crystal breakage or agglomeration. Then the
population balance equation for a batch crystallizer is
% + Gl% + ngr—i — B(C,T)5(r1)5(r2) 3)

where G; and G, are the growth rates of r1 and r; respectively, B is the nucleation
rate, and §(-) is the Dirac delta function.

While the model identification procedure is directly applicable to the population
balance equation (3), the method of moments can be used to replace (3) with a small
number of ordinary differential equations:®

dpoo
dt
dp

Wij = iG1(i-1); + IGapti(j-1) i+7>0 (4)

where the ij cross-moment is

,u,ij—z/ / rird f(r1, 72, t)dridry. (5)
o Jo
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The crystallization kinetics are typically written in terms of the supersaturation.
The most widely adopted models are in power law form:?2

B = kabuzl (6)
G1 = kg1 5% (7
Gy = kgy 5% (8)

where S is the relative supersaturation defined in (1), and ks, b, kg1, g1, kg2, and
g2 are kinetic parameters. Three additional parameters, the activation energies
for nucleation and the two growth axes, are required when there are significant
temperature variations.

A solute mass balance completes the model of the crystallizer. The amount of
solute leaving the solution must be accounted by crystal growth:

dC

e —2aG1p11 — aGapo 9)
where o is the geometric-stoichiometric ratio chosen so that the right hand side
of equation has the correct units. This equation makes the assumption that the
geometric-stoichiometric ratio is constant throughout the experiment.

2.2. Parameter estimation

Let 0 be the vector of kinetic parameters,
_ “ .
kg1
g2
0 =
kg2
b
ky

Then the estimation problem is to minimize

(10)

Ny, Na;
®(0) = Z Z wij(Yij — ig)? (11)
i=1 j=1
where y;; and §;; are the measurement and model prediction of the ith measured
variable at the jth sampling instant, w;; is a weighting factor, Ny, is the number
of measured variables, and Ny, is the number of sampling instances for the ith
measurement. The weights are selected based on maximum likelihood or by using
estimates for the standard deviation of each measurement.?

Due to random errors in the measurements, the parameter estimates are stochas-
tic variables with probability distributions. These distributions can be used to es-
timate the hyperellipsoidal confidence region that quantifies the accuracy of the
parameters:

Ey={0:(0-6)TV;'(6-0) < x}, (o)} (12)
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where « is the confidence level, N, is the number of parameters, X'sz,, is the chi-
squared distribution with NN, degrees of freedom, and the parameter covariance
matrix Vy can be computed via linearization or Monte Carlo simulations.®

2.3. Model selection

There are a number of expressions for crystallization kinetics. Depending on the
mechanistic details, alternatives for the nucleation kinetics (6) are

B = kyS°u2, (13)
and
B = kab/.Lu (14)

which are two-dimensional generalizations of one-dimensional nucleation models.?°
While statistical methods for choosing different model structures are available, alter-

native models are commonly compared in terms of the quality-of-fit or the accuracy
of the kinetic parameters.

2.4. Optimal model-based experimental design

2(1+W2)

)
2w

TI(1-W1) fl TH1+W1)

Fig. 2. Seed crystal size distribution: #1 and 72 are the mean characteristic lengths; Wy and W»
are the widths of the distribution.

Reduction of the uncertainty in the kinetic parameters is the primary goal of model-
based experimental design, which computes the experimental conditions that min-
imize the volume of the hyperellipsoid (12). Sequential model-based experimental
design takes into account all the data from past experiments while maximizing the
informativeness of the data collected in the next experiment.® The objective is to
minimize

T(u(t),d) = det (Vo) (15)
where Vy is the covariance matrix based on both current and past data. In (15),
u is the experimental design variables, which can be functions of time ¢. For the
process considered in the next section, u represents the temperature and seed char-

acteristics, where the seed is characterized by its initial mass m two mean

seed’



372 R. Gunawan et al.

characteristic lengths 7, and 73, and the percentage widths Wy and W, (see Figure
2). Then the optimization problem is to minimize (15) subject to the experimental
constraints u(t) € Qexp. For example, the temperature must stay within the oper-
ating range of the crystallizer. Constraints on the states can be included in Qexp by

parameterizing the state variables in terms of u(t), then writing the requirements
in terms of u(t).

3. Experimental Apparatus

The batch cooling crystallization apparatus has (1) a sampling port, (2) a thermo-
couple, (3) a Fourier Transform Infrared (FTIR) Spectrometer with Attenuated To-
tal Reflection (ATR) probe, (4) a model M400L Lasentec Focused Beam Reflectance
Measurement (FBRM) probe, and (5) a model 700L Lasentec Particle and Vision
Measurement (PVM) system with fiber optic probe. The in situ FTIR-ATR probe
provides multiple reflections along the length of a ZnSe crystal inserted in solution
so as to magnify the infrared signal. The ZnSe crystal was designed so that a volume
exclusion effect causes the measured infrared signal to be based almost entirely on
the concentration in the solution phase, and not on the crystals in the slurry.1%11
The construction of the calibration curve that relates the infrared spectra to the
solution concentration for potassium dihydrogen phosphate(KDP)-water slurries is
described elsewhere.'? The FBRM measures the chord length distribution, which
is a single distribution that is a weighted average of the multidimensional crystal
size distribution. The PVM provides snapshots of the crystals in real time.

The temperature of the slurry is specified using a jacket, a valve that sets the ra-
tio of hot and cold water flow rates to the jacket, and a proportional-integral control
system designed via Internal Model Control.!3 A separate Nikon optical microscope
is used to measure the characteristic lengths of crystal samples to determine the
crystal size distribution.

4. Identifiability and Measurement Noise

Before carrying out experiments, it is useful to consider whether the measurements
may have enough information to estimate all of the kinetic parameters (this problem
is known as identifiability). Since the solution concentration provides no informa-
tion on the relative growth rates associated with each crystal axis, the solution
concentration by itself does not provide enough information to estimate the kinet-
ics for multidimensional crystallization processes. Some straightforward analysis
indicates that measurements of the solution concentration and the average length
along each axis do provide enough information to estimate all the nucleation and
growth kinetic parameters.

A second consideration is the relative magnitude of measurement errors associ-
ated with the various cross-moments of samples of slurry collected from the crys-
tallizer. The very small crystals are unobservable in the optical microscope used to
measure the size, so the measurement of pgo, which is the total number of crystals
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per mass of solvent, will be inaccurate. Also, u;; will be inaccurate for large values
of i + 7, since these cross-moments will be sensitive to the low-sampling statistics
of the large particles. Therefore measurements of po9 and p;; for large ¢ + j should
not be used when estimating the crystallization kinetics.

5. Results and Discussion

Table 1 shows the results of applying the model identification procedure. The op-
timal seed mass for both experiments was to use 20 grams of KDP for the 2000
grams of solvent (this was the lower bound, which was specified by the accuracy
of the solution concentration measurement). A large number of size ranges and
distribution widths gave similarly informative data.

After the first experiment, model selection was performed for the three nucle-
ation models (6), (13), and (14). The nucleation model (13) gave a very poor fit to
the data, whereas (14) gave a very similar fit as (6). This agrees with Miller, who
stated that it can be difficult to determine the precise nucleation mechanism based
only on solution concentration and size distribution data.'4

Table 1. Kinetic parameter estimates and their standard deviations using (6) as the nucleation
model. The standard deviations were computed via Monte Carlo simulations.

Parameters Experiment 1 Experiment 2 units
g1 1.4240.06 1.36+0.05 dimensionless
kg1 4314199 4514141 pm/min
g2 1.6340.07 1.6240.06 dimensionless
kg2 2537+743 3308757 pm/min
b 2.061+0.16 1.7940.1 dimensionless
kp 1.28E6+0.21E6 2.26E6+0.48E6 #particles/cm3min
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Fig. 3. The measured solution concentrations for both experiments and the measured moments
(#10 and po1) in experiment 2 along with the simulation profiles (solid lines).

The first experiment used samples collected for every 30 minutes to estimate



374 R. Gunawan et al.

the cross-moments. The second experiment caused a large amount of nucleation to
occur. Due to the very large number of small crystals relative to the number of
seed crystals, it was impossible to obtain accurate estimates of the cross-moments
via sampling, so a weighted normalization was used to estimate the moments from
FBRM data collected for every minute.!®

The growth parameters are quite consistent for the two experiments. Figure
3 verifies the proposed model identification procedure in a multidimensional crys-
tallization process. While the nucleation parameters are significantly different, the
parameter changes in the two experiments have a compensatory effect, so that the
nucleation rates B are approximately equal for the supersaturation values obtained
during most of the experiments. This correlation, which is not captured in stan-
dard deviations written for each parameter, can be quantified using the parameter
covariance matrix (12).
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