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An approach that couples compartmental modeling with high resolution methods is
developed to simulate spatial variations in the crystal size and shape distribution in so-
lution crystallization processes. This is the first time that compartmental modeling has
been applied to a crystal system with multiple characteristic length scales. The com-
partment model enables a more accurate modeling of the effect of secondary nucleation,
which is key to accurately predicting the crystal size distribution of the final product. A
parallel implementation of the numerical algorithm results in short computation times.

1. Introduction

Crystallization from solution is an industrially important unit operation due to
its ability to provide high purity separations. For efficient downstream operations
(such as filtration and drying) and product effectiveness (e.g., bioavailability, tablet
stability), predicting the crystal size distribution and morphology can be critically
important. This is especially true for the multidimensional (e.g., needle-like) bio-
chemical crystals produced in the pharmaceutical industry. Increased competition
in the pharmaceutical industry has motivated an interest towards understanding
and controlling crystallization processes.}?

The characteristics of the product crystals are determined internally by the
given solvent-solute system and externally by the environment that the crystals
experience. Crystals are not distributed uniformly in most industrial crystallizers.
Such deviations from perfect mixing must be considered in the modeling of crystal-
lization processes in which physical phenomena such as aggregation, attrition, or
secondary nucleation occur. The approach proposed in this paper, which couples
compartmental modeling with high resolution methods, can efficiently simulate the
crystal size and shape distribution to high accuracy while taking spatial variations
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into account. The crystallizer is subdivided into a finite number of compartments, in
which uniform conditions are assumed in each compartment. Each compartment has
input and output streams that share flows with its neighbors. The characteristics
and quantity of crystals in the streams are governed by the local conditions. It will
be shown that the compartmental model enables a much more accurate modeling of
the effects of secondary nucleation, which is the dominant mechanism for producing
new crystals in most seeded batch crystallizers. By not requiring the full solution
of the fluid and particle momentum equations, the approach is computationally
feasible using today’s computer hardware. A parallel programming implementation
further reduces the simulation time.

Another contribution of this paper is the development of a high resolution finite
difference algorithm for simulating multidimensional crystallization processes. High
resolution algorithms are applicable to hyperbolic equations and have been used to
simulate shock waves and to solve the Boltzmann equation for rarefied gases.®* The
algorithms provide second-order accuracy without the undesirable oscillations that
naive second-order methods usually exhibit when applied to hyperbolic equations,
while also eliminating numerical diffusion demonstrated by first-order methods.

The paper is organized as follows. The model of a well-mixed batch multidi-
mensional crystallizer is presented first, followed by a description of compartmental
modeling, the high resolution algorithm, results, and discussion.

2. Multidimensional Crystallization: Well-Mixed Case

While the following description of multidimensional crystallization is rather general,
potassium dihydrogen phosphate (KH,PO,4, KDP) is used to illustrate the key
ideas. The shape of KDP crystals is tetragonal prism in combination with tetragonal
bipyramid, and the angle between the prism sides and pyramid faces is 45°.5 The
two internal dimensions r; and r¢ are the width and length of the KDP crystal,
respectively (see Figure 1). Accordingly, the volume of a single crystal is
1
Ve= ;o;r:f + (r2 —r1)r3. (1)
For a well-mixed batch crystallizer in which the crystals have two characteristic
length scales, the process is described by the population balance equation:5”

0f | = {Gc(t), TIFY
5? + ; 3’!‘j - h(t)

(2)

where f is crystal size distribution, r; refers to each characteristic length scale, G;
refers to the growth rate for the j** length scale, c is the solute concentration, and
h describes the crystal creation mechanisms which can be a function of the crystal
size distribution, the solute concentration, and the temperature.

The growth rates G and G2 are functions of the solute concentration ¢ and the
saturated solute concentration csyt. For KDP these equations are:

Gy = kgy1 S9! )
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Fig. 1. A KDP crystal, a batch laboratory crystallizer, and its simulation model with N com-
partments

Gy = kyp 5%, (4)

where S = (¢ — Csat)/Csat is the relative supersaturation and gy, g, kg1 and kg, are
kinetic parameters. The saturated solute concentration cg,y for KDP is given by®

Csat = 9.3027 x 107572 — 9.7629 x 1075T + 0.2087, (5)

where T is the temperature in Celsius. Secondary nucleation is the dominant mech-
anism for producing new crystals in most seeded batch crystallizers. This type of
nucleation kinetics is usually characterized as being proportional to either the area
or volume of crystals in the crystallizer. In this paper, the latter is assumed:

b 00 poo
h(t) = ks <E—‘—c°—“t) /0 /0 F(r1,72,)Va(r1, 72) dry drg. (6)

A solute mass balance completes the model for a batch crystallizer. With the
assumption that nucleated crystals have negligible size (a good assumption in prac-
tice), the amount of solute leaving the solution must be accounted by crystal growth.
For KDP this equation is

dc % o0 ) )
~C—l—t- = - f(Tl,Tz,t)(zal(’l‘l'f‘z - 7‘1) + Gz'l‘l)d'l'ld'l"z (7)
0 0

where « is the geometric-stoichiometric constant chosen so that the right hand side
of the equation has the correct units. Table 1 summaries the parameter values in
(3) to (6), which were determined using parameter estimation and model-based
experimental design.?10:11,12

3. Compartmental Modeling

Perfect mixing is rarely valid in practice. A 2-liter batch crystallizer is shown in
Figure 1. The crystal size distribution f varies substantially along the height of the
crystallizer. Due to gravity, most crystals stay at the bottom of the crystallizer,
while smaller crystals tend to flow with the water and can be seen in the middle
and upper regions. Few crystals are located near the top of the slurry.
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Table 1. Kinetic parameters determined from laboratory data

Parameters Values Units
g1 1.48 dimensionless
kg1 12.21 %‘gﬁg
g2 1.74 dimensionless
kgo 100.75 ;‘:ccﬁ
b 2.04 dimensionless
-8 particles
kb 7.49 x 10 micron® second

Compartmental modeling has been used to take spatial variations into account
in one-dimensional crystallizers.l"'®> As suggested from Figure 1, the crystallizer
can be subdivided into smaller compartments. Each compartment is assumed to be
well-mixed, that is, the nucleation and growth kinetics are uniform throughout the
compartment, and consequently a variation on (2) can be applied to each compart-
ment. The amount of crystals and the crystal size distribution f may be different
in each compartment.

Using a larger number of compartments can result in a more accurate model
of the system. Each compartment has input and output streams that share flows
with its neighbors. The crystal size distribution in those streams is governed by the
local conditions. The smallest crystals will flow along streamlines; therefore, the
distribution for the smallest crystals in the output streams of the n** compartment
should be equal to the distribution inside the n** compartment. On the other hand,
the downward output stream of the n*" compartment will have bigger crystals than
the upward output stream, when the crystals have a higher density than the fluid.
Two weighting functions W, and W, are used to characterize these distributions.
The crystal size distributions are Wy f, and W, f, in the downward and upward
output streams of the n*® compartment, where f, is the crystal size distribution in
the nt® compartment and

_ By ~_Para
W“ =10 max(rl, ’l”g) max(rl, 7‘2)’ (8)
We=10+ bty Pom 9)

max(ry,72) max(ry, )’

The constants B; and (3, are determined from experiments, and r; and ro are the
characteristic length scales for the crystals. For the nt* compartment, the popula-
tion balance equation is

afn 2 8{G] [C(t), T(t)]fn}
W + Z 87‘]'

F
= h(t) + "—/_(Wdfn—l +Wufni1 —Wafn— Wdfn)(lo)
=1 "
where F' is the flow rate of input and output streams, and V,, is the volume of
the compartment n. A high resolution algorithm that solves this system of partial
differential equations is discussed next.
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4. High Resolution Algorithm

The population balance equation (10) is a multidimensional hyperbolic equation
whose solution confounds many first-order and second-order finite difference algo-
rithms due to the sharp variations of its solution with respect to the characteristic
crystal dimensions. In the literature, first-order methods are often used with special
consideration of mesh size in order to reduce numerical diffusion.!* Higher order
methods can give oscillatory solutions, which for crystallization processes result in
a crystal size distribution with negative values, which are not physically realistic.

High resolution methods have been developed that can effectively handle large
gradients in the solution while retaining second-order accuracy.31%:16:17:18 High
resolution methods have been mostly developed for the 1D wave equation. For the
2D wave equation (10), the direct application of a high resolution method gives only
first-order accuracy.!® To solve (10) to second-order accuracy, a splitting method is
first applied to decompose its homogeneous equation into a pair of 1D equations.
Then a high resolution method is applied to solve each 1D equation. After the
homogeneous equation is solved for time step k, the source term is added to the
corresponding compartments over the same time increment.®

5. Results and Discussion

The parameters for a batch crystallizer are reported in Table 2. The temperature is
assumed to be uniform throughout the crystallizer, with each compartment having
the temperature profile in Figure 2.

Table 2. Parameters used in simulation

Variable | Description | Value Units
k time step 1 second
h mesh size 1 micron
F flow rate 10 cm? /second
|4 volume 2 liter
t batch time 2 hour
51 coefficient 0.1 dimensionless
B2 coefficient 0.1 dimensionless

Increasing the number of compartments makes the simulation time longer if
only a single processor handles all the computations. Parallel programming was
used to reduce the simulation time. Each compartment was assigned to a different
processor. The task for each processor was to compute the solute concentration and
crystal size distribution in the compartment that it was assigned and then pass this
information to its neighbors (the upper and lower compartments). Since the com-
putation is done in parallel, the simulation time can be nearly independent of the
number of compartments. However, the simulation time does increase somewhat
as compartments are increased because it takes time to pass the information to
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Fig. 2. Temperature profile of the batch crystallizer and initial seed crystal size distribution in
the bottom compartment. The average characteristic length scales for the seed are 180 microns.

the neighbors. Table 3 shows the simulation time when different numbers of com-
partments were used. The simulation time increases 15-25% when the number of
compartments doubles.

Table 3. Simulation time for different numbers of compartments. The simulations were done on
64 HP Kayak Visualize Workstations, each with dual PIII Xeon 550 MHz processors, 512k cache
per cpu, and 1GB of memory.

compartments | 4 8 |16 | 32 64

time (min) 67 | 77 | 94 | 118 | 131

As shown in Figure 3, the relative supersaturation at the top of the crystallizer
can be five times higher than at the bottom. This implies that crystals grow faster
in the upper compartments. As the crystals become larger, they tend to leave the
top compartments due to gravity and enter the bottom compartments which are
associated with slower growth rates. At the same time, fresh smaller crystals enter
the top compartments from the bottom. Due to the different growth rates and
circulation inside the crystallizer, the final crystal size distribution is very different
from that computed assuming a well-mixed batch crystallizer (figure not shown
due to space limitations). Significantly larger crystals are produced when spatial
variation is taken into account.

Before crystallization starts, seed crystals are added to the solution to avoid
spontaneous nucleation from solution. The crystal size distribution as various po-
sitions in the crystallizer at the end of the batch run is shown in Figure 4. Most of
the crystals are located at the bottom of the crystallizer, which is also where most
of the secondary nucleation occurs. This suggests that the existing models that as-
sume uniform nucleation throughout the crystallizer do not adequately model this
phenomena for most batch crystallizers.
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Fig. 3. Concentration and relative supersaturation profiles when 64 compartments are used. The
compartments are numbered starting from the top of the crystallizer. The compartment numbers
are: 64 (- - -), 48 (- - -), 32 (-++), 16 (—).

Compartment 16 Compartment 32

Fig. 4. Final crystal size distribution when 64 compartments are used. The distribution of crystals
grown from seed is located to the right in compartment 64. The distribution of crystals initiated
from secondary nucleation is the ridge starting from the origin.

6. Conclusion

Compartmental modeling was coupled with a high resolution algorithm to simulate
the dynamics of a batch multidimensional crystallizer. The simulation results show
that the crystal size distribution and solute concentration significantly vary along



390 D. L. Ma, R. D. Braatz & D. K. Tafti

the height of the crystallizer. The results also show that the secondary nucleation
rate is much larger at the bottom of the crystallizer, and the growth rate is much
larger at the top. The high resolution method provides very satisfactory results. No
spurious oscillations or numerical diffusion occurred. Parallel programming made it
possible to have short simulation times while using a large number of compartments.
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