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Many of the crystals in the pharmaceuticals, photographic, and other industries are multidi-
mensional; that is, their growth is associated with the change of multiple internal coordinates.
The main governing equation for such systems is a highly nonlinear multidimensional population
balance equation that must be solved for a wide range of length scales. For population balance
equations, it is well-known that the standard first-order schemes give diffusive solutions while
the commonly used second-order schemes give spurious oscillations. This paper presents a high-
resolution simulation algorithm that provides short computation times and high accuracy. The
high-resolution algorithm is compared to the upwind difference and Lax-Wendroff methods
through simulations of potassium dihydrogen phosphate (KDP, KH2PO4) crystal nucleation and
growth. No spurious oscillations or numerical diffusion occurred, in contrast to the upwind
method and Lax-Wendroff methods. The numerical stability of the algorithm is assessed using
the Courant-Friedrichs-Lewy condition.

1. Introduction

Many of the crystals in the pharmaceuticals, photo-
graphic, and other industries are multidimensional; that
is, their growth is associated with the change of multiple
internal coordinates.1 Such internal coordinates can
include volume, mass, length, width, composition, or the
number of crystals in an agglomerate. The main road-
block to gaining further understanding of multidimen-
sional crystal growth, as well as the development of
optimal control strategies for these processes, is the lack
of efficient simulation schemes for multidimensional
population balance equations. Although there is a
rapidly growing experimental literature on multidimen-
sional crystal growth from solution2-7 and a large
amount of industrial interest, simulation studies of
multidimensional crystal growth are nearly nonexistent.

Most simulation studies on crystal growth have been
directed toward the solution of the population balance
equation for one-dimensional (1D) crystal growth:8-12

where f(r,t) is the crystal size distribution, t is time, r
is the internal spatial coordinate (e.g., crystal size), c is
the solute concentration, T is the temperature, G is the
growth function, and h is the crystal creation/depletion
function. This equation is augmented with associated
algebraic and/or integrodifferential equations to describe
the energy balance, aggregation, breakage, growth, and
nucleation phenomena. Simulating these equations is
challenging because the crystal size distribution can be
extremely sharp in practice and can span many orders
of magnitude in crystal length scale (0.01 nm to 200 µm)
and time scale (20 µs to 200 min).

Numerical schemes developed for the simulation of
1D crystal growth cannot be directly applied to the

simulation of multidimensional crystal growth. It is
well-known that the standard first-order schemes give
diffusive solutions while the commonly used second-
order schemes give spurious oscillations.13 This paper
presents a simulation algorithm that has second-order
accuracy but does not produce spurious oscillations,
based on high-resolution methods that have been de-
veloped for solving hyperbolic partial differential
equations.14-18 The algorithm obtains second-order ac-
curacy by using a first-order scheme supplemented with
limited antidiffusion terms. The high-resolution algo-
rithm is compared to the popular upwind difference and
Lax-Wendroff methods through simulations of potas-
sium dihydrogen phosphate (KDP, KH2PO4) crystal
nucleation and growth.

2. High-Resolution Algorithm

For a well-mixed crystallizer in which the crystals
have two characteristic length scales, the process is
described by the population balance equation:1,19

where f is the crystal size distribution, rj refers to each
characteristic length scale, Gj refers to the growth rate
for the jth length scale, and c is the solute concentration.
The function h is the net rate of introduction of new
crystals into the system, whether via feed or exit
streams or by processes of nucleation, breakage, attri-
tion, and agglomeration occurring in the crystallizer.

The population balance equation (2) is a multidimen-
sional conservation equation. Standard first- and second-
order approximation methods have difficulties accu-
rately simulating this equation when there are sharp
gradients in its solution. In the literature, the first-order
approximation methods are often used with special
consideration to selecting the mesh size in order to
reduce numerical diffusion. Standard higher order ap-
proximation methods give spurious oscillations, which
usually result in a crystal size distribution with negative
values.13
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High-resolution methods have been developed, pri-
marily by the computational physics community,14-18

to address the numerical problems associated with
standard algorithms for solving hyperbolic equations.
High-resolution algorithms can handle large gradients
while retaining second-order accuracy for all or almost
all of the solution space. However, most high-resolution
methods have been developed for 1D conservation
equations. While some of the direct extensions of 1D
high-resolution methods do not produce higher than
first-order accuracy for the 2D problem,20 second-order
accurate 2D high-resolution methods can be developed
provided that some care is placed in the formulation.15

To solve (2), a splitting method is used to decompose
(2) into a pair of 1D equations. A high-resolution method
is used to solve each of the two 1D equations. While
most high-resolution methods have been developed for
equations in which the right-hand side of (2) is zero,
the crystal creation rate h(t) in (2) can be quite large
and numerically behaves like a source term (although
this term is a function of the crystal size distribution).
This equation can be solved by first solving the homo-
geneous equation

over time step k and then adding the new crystals to
the appropriate cell(s) over the same time increment.16

The following analysis will focus on how to solve (3) with
second-order accuracy.

Some definitions will aid in the following discussion.
For the 1D conservation equation, the grid points are
defined as the points (tm, rn) ) (mk, nh) for positive
integers m and n, where h is the mesh size and k is the
time step. To simplify the presentation, assume that the
ratio of k and h is constant. Let fn

m be the population
density function f defined on the grid point (tm, rn).

At time instant tm-1, (3) is

with initial crystal size distribution

The analytical solution to this partial differential equa-
tion (PDE) at tm is

Now recognize that the same PDE can be solved in two
steps. First, the 1D PDE

is solved. The solution to this PDE is f̂ m(r1,r2) ) f m-1-
(r1-g1

m-1(tm-tm-1),r2). Now use f̂ as the initial condition
to solve the second PDE

The solution to the second PDE at tm is identical to the
solution (6):

The above derivation illustrates that the 2D PDE (3)
can be solved by first splitting it to a pair of 1D PDEs
along r1 and r2 and solving the two PDEs separately at
each time step. Then the two solutions can be combined
to form the solution to the original PDE.

This analytical development motivates the numerical
algorithm discussed next. After splitting and at each
time instant, a high-resolution method is applied to
solve the 1D equation

with the initial condition f(r) ) fj(r). The high-resolution
method used here is a hybrid of the upwind method and
Lax-Wendroff method.15 The upwind method is a first-
order finite difference method that replaces ∂f/∂t by a
forward-in-time approximation and ∂f/∂r by a backward
finite difference:

The main drawback of this method is that it exhibits
severe numerical diffusion. The Lax-Wendroff method
gives second-order accuracy and eliminates numerical
diffusion:

A drawback of this method is that it adds spurious
oscillations. The population density can have negative
values when the local gradients are large. Rewriting the
Lax-Wendroff method provides insight into the cause
of oscillation:

Equation 15 shows that the Lax-Wendroff method
essentially consists of first-order upwind method, supple-
mented with an antidiffusion term

This antidiffusion term prevents numerical diffusion,
but the magnitude of this term is too large near
discontinuities, causing undesirable oscillations. To
remedy this, the high-resolution method restricts the
magnitude of this antidiffusion term:

∂f

∂t
+ ∑

j)1

2 ∂{Gj[c(t),T(t)]f}

∂rj

) 0 (3)

∂f
∂t

+ g1
m-1 ∂f

∂r1
+ g2

m-1 ∂f
∂r2

) 0 (4)

f ) f m-1(r1,r2) (5)

f ) f m-1(r1-g1
m-1(tm-tm-1),r2-g2

m-1(tm-tm-1))
(6)

∂f̂
∂t

+ g1
m-1 ∂f̂

∂r1
) 0 (7)

f̂ ) f m-1(r1,r2) at t ) tm-1 (8)

∂f̃
∂t

+ g2
m-1 ∂f̃

∂r2
) 0 (9)

f̃ ) f̂ m(r1,r2) at t ) tm-1 (10)

f̃(r1,r2) ) f̂ m(r1,r2-g2
m-1(tm-tm-1)) )

f m-1(r1-g1
m-1(tm-tm-1),r2-g2

m-1(tm-tm-1)) (11)

∂f
∂t

+ g ∂f
∂r

) 0 (12)

fn
m+1 ) fn

m - k
h

g(fn
m - fn-1

m) (13)

fn
m+1 ) fn

m - kg
2h

(fn+1
m - fn-1

m) + k2g2

2h2
(fn+1

m - 2fn
m +

fn-1
m) (14)

fn
m+1 ) fn

m - kg
h

(fn
m - fn-1

m) - kg
2h(1 - kg

h ) [(fn+1
m -

fn
m) - (fn

m - fn-1
m)] (15)

kg
2h(1 - kg

h )[(fn+1
m - fn

m) - (fn
m - fn-1

m)] (16)

fn
m+1 ) fn

m - kg
h

(fn
m - fn-1

m) - kg
2h(1 - kg

h )[(fn+1
m -

fn
m)φn - (fn

m - fn-1
m)φn-1] (17)

6218 Ind. Eng. Chem. Res., Vol. 41, No. 25, 2002



The term φn is called a limiter, whose value depends on
the local gradients. Define θn as the ratio of the local
gradients

and let φn be a function of the local gradients so that φn
) φ(θn). It is desired for the limiter function φ to be
selected so that it provides second-order accuracy while
not producing any spurious oscillation. It can be
shown15,18 that these requirements are satisfied if φ is
Lipschitz continuous at θ ) 1, φ(1) ) 1,

and

Many choices for the limiter function φ are available.
Comparisons of various limiter functions are avail-
able.18,21 We have found a good performance with22

3. Simulation Examples

3.1. Solving the 1D Advection Equation. To il-
lustrate clearly the advantages of the high-resolution
algorithm, it is compared with the upwind and Lax-
Wendroff methods applied to the PDE (12) (see Figure
1). In this case analytical solution to PDE (12) is simply
a copy of the initial function shifted to the right by gtfinal.
The wave speed g in the simulation is set to 0.2 µm/s,
and the mesh size and time step are set to 1 µm and 1
s, respectively. The simulation results show that the
upwind method gives a smeared solution while the
Lax-Wendroff method gives an oscillatory solution. The
high-resolution method nearly preserves the shape of
the initial function.

The diffusive behavior of the upwind algorithm can
be understood by modeling its difference equation by a
new PDE for which the difference equation provides a
better approximation. For the upwind method, the new
PDE can be chosen as the advection-diffusion equa-
tion15

The upwind algorithm is second-order accurate for
solving this PDE. The PDE predicts that, when applying
the upwind method to the simulation of crystallization,
the crystal size distribution will propagate with the
speed g while being dissipated with diffusion coefficient
12hg(1 - khg) as time evolves.

The dispersive behavior of the Lax-Wendroff method
can be understood by noting that its difference equation
provides a third-order accurate solution to the dispersive
PDE

Fourier analysis shows that the Fourier components
with different wavenumber ê propagate at different
speeds (see refs 15 and 23 for a detailed analysis). As
time evolves, these components disperse, leading to an
oscillatory solution.

3.2. Simulation of 2D Crystal Growth. Now the
algorithms are applied to the formation of crystals with
two characteristic length scales (2). KDP is selected
because both its nucleation kinetics and growth kinetics
along each crystal growth axis have been identified from
experimental data. The shape of KDP crystals is tet-
ragonal prism in combination with tetragonal bipyra-
mid, and the angle between the prism sides and the
pyramid faces is 45°.24,25 The two internal dimensions
r1 and r2 are the width and length of the KDP crystal,
respectively (see Figure 2). Accordingly, the volume of
a single crystal is

The numerical algorithms are applicable to any of the
many crystal growth and nucleation mechanisms and
their associated rate expressions described in the
literature.26-30 For the KDP-water system, many re-
searchers have experimentally observed that the growth
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Figure 1. Numerical solution to (12) using the upwind, high-
resolution, and Lax-Wendroff methods.
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kinetics for each axis can be represented as a power law
function of the supersaturation:25,31,32

where c is the solute concentration, csat is the saturated
solute concentration, S is the relative supersaturation,
and g1, g2, kg1, and kg2 are kinetic parameters. The
particular kinetic parameters used in this study were
identified by applying nonlinear parameter estimation
and model-based experimental design to batch crystal-
lization data (see Table 1). The saturated solute con-
centration csat for KDP is33

where T is the temperature in degrees Celsius and the
units for csat are g/g of water.

Before crystallization starts, seed crystals are added
to the solution to avoid spontaneous nucleation from
solution. The initial seed crystal size distribution is
shown in Figure 3. Secondary nucleation is the domi-
nant mechanism for producing new crystals in most
seeded batch crystallizers. This type of nucleation
kinetics is usually characterized as being proportional
to either the area or volume of crystals in the crystal-
lizer. In this paper, the latter is assumed:

where δ is the Dirac delta function. The nucleation
kinetic parameters are reported in Table 1.

A solute mass balance completes the model for a batch
crystallizer. With the assumption that nucleated crys-
tals have negligible size (a good assumption in practice),
the amount of solute leaving the solution must be
accounted by crystal growth. For KDP this equation is

where Fc is the crystal density (Fc ) 2.338 × 10-12 g/µm3

in the simulation).
The following discussion of the algorithms uses cross-

moments:

The low-order moments have physical meaning; for
example, µ00 is the total number of crystals in the
system per gram of solvent, and µ10/µ00 is the average
width of the crystals.

While the algorithms have been applied to a wide
range of batch and continuous operating conditions,34

only a subset of the results are provided here because
the qualitative comparisons are similar in the other
cases. Here the crystallizer is cooled linearly, and the
temperature is assumed to be uniform throughout the
crystallizer. These conditions are selected because they
are the easiest for use in comparing the accuracy of the
numerical algorithms. Readers interested in much more
complex and interesting dynamics and changes in the
crystal size distribution are referred to the first author’s
thesis.34

Parameters used in the simulation are summarized
in Table 2. The initial and final crystal size distributions
obtained from the three simulation algorithms are
shown in Figure 3. All of the seed crystals had an aspect
ratio nearly equal to 1. Each final crystal size distribu-
tion shows two distributions, one associated with crys-
tals that grew from seeds and the other associated with
crystals grown from nuclei. For the high-resolution
method, the average length of crystals grown from seeds
is around 800 µm and the average width is around 350
µm, indicating that the crystals are becoming elongated.
The size of the nuclei is small, and hence nucleated
crystals appear at the origin. As time evolves, the
nucleated crystals grow larger in such a way that their
aspect ratios are nearly constant. No oscillations or
severe numerical diffusion are observed.

In contrast, the upwind method exhibits severe nu-
merical diffusion. The distribution of the crystal grown
from seeds becomes very flat as the final time is reached.
The Lax-Wendroff method does not exhibit numerical
diffusion, but it gives an extremely oscillatory solution.
The final crystal size distribution has negative values
which are not physically possible.

The crystallization system used in this paper can be
simulated by using the method of moments,19 which is
used to determine the accuracy of the crystal size

Figure 2. Shape of KDP crystals.

Table 1. Kinetic Parameters Determined from
Laboratory Data32

parameter value units

g1 1.48 dimensionless
kg1 12.21 µm/s
g2 1.74 dimensionless
kg2 100.75 µm/s
b 2.04 dimensionless
kb 7.49 × 10-8 particles/µm3‚s

Table 2. Parameters Used in Simulation

variable description value units

k time step 5 s
h mesh size 1 µm
V volume 2 L
t batch time 2 h
Tinit initial temperature 33 °C
Tfinal final temperature 23 °C
tsim simulation time 10 min
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)g1
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Sg1 (25)
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distributions computed from the simulation algorithms.
The obtained moments are compared with correspond-
ing moments computed directly from the crystal size
distribution which is obtained from the high-resolution,
upwind, and Lax-Wendroff methods. The moment µ00
computed from the Lax-Wendroff method is much
larger than its true value, whereas the high-resolution
and upwind methods are accurate (see Figure 4). The
overestimation by the Lax-Wendroff method is due to
the large oscillations produced by the Lax-Wendroff
method. The upwind and Lax-Wendroff methods are
much less accurate than the high-resolution algorithm
for all moments. For example, for µ31 the high-resolution
method has relative errors of less than 0.001 (the lines
for the method of moments and the high-resolution
algorithms are indistinguishable), whereas the errors
in the upwind and Lax-Wendroff methods are clear in
Figure 4.

A necessary condition for any numerical algorithm to
be numerically stable is the Courant-Friedrichs-Lewy
(CFL) condition:35

This stability condition requires that the domain of
dependence of the finite difference method should
include the domain of dependence of the PDE. In the
case of the high-resolution method, this requires that
the numerical wave speed h/k be faster than the wave
speed in the PDE. For the two-dimensional crystalliza-
tion of KDP, the magnitude of the crystal growth rate
is less than 0.1 µm/s during the entire simulation run.
As a result, the time step k can be chosen as relatively
large to reduce the simulation time. To satisfy the CFL
condition, the ratio k/h can be selected to be 5, which
provides numerical stability and keeps the final errors
small. The speed of the simulation can be further

Figure 3. Initial seed distribution and final crystal size distribution generated by the upwind, Lax-Wendroff, and high-resolution methods.

Figure 4. Cross moments µ00 and µ31 computed using the method of moments (‚‚‚) and the upwind (- ‚ -), Lax-Wendroff (- - -), and
high-resolution methods (s).

|gk/h| e 1 (31)
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increased by recognizing that f has the nonzero values
only in the regions where nucleation has occurred or
the seed crystals reside. The high-resolution method is
only needed in these two regions. The overall computa-
tion effort is then dramatically reduced. An easy-to-
implement method to define regions where f may not
be zero at time tn can be done as follows. Assume that
initially the two regions can be approximated by two
rectangular sets:

and

The set R nucleation grows bigger as the crystals grown
from nuclei become bigger, while the size of the set Rseed
is fixed. The set R seed shifts to the region of larger
values of r1 and r2 as time evolves. At time tn, the two
sets can be approximated as

and

Using the above techniques, the overall simulation time
was reduced to 2 min on a HP Kayak Visualize
Workstation with dual Pentium III Xeon 550 MHz
processors and 1 GB of memory.

4. Conclusion

A high-resolution method was developed that simu-
lates the dynamics of a multidimensional crystallization
process. The high-resolution method provides short
computation times and high accuracy. No spurious
oscillations or numerical diffusion occurred, in contrast
to the upwind method and Lax-Wendroff methods.
With reduction of the computation domain, the final
simulation time for a 2D crystallization process was
reduced to 2 min on a dated personal computer.
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