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Abstract

The optimal batch control of a multidimensional crystallization process is investigated. A high resolution algorithm is used to
simulate the multidimensional crystal size distribution under the operations defined by two optimal control trajectories. It is
shown that a subtle change in the optimal control objective can have a very large effect on the crystal size and shape distribution
of the product crystals. The effect of spatial variation is investigated using a compartmental model. The effect of differing numbers
of compartments on the size and shape distribution of the product crystals is investigated. It is shown that the crystal size
distribution can be very different along the height of the crystallizer and that a solution concentration gradient exists due to
imperfect mixing. The nucleation rate can be significantly larger at the bottom of the crystallizer and the growth rate can be much
larger at the top. The high resolution method provides high simulation accuracy and fast speed, with the ability to solve large
numbers of highly nonlinear coupled multidimensional partial differential equations over a wide range of length scales. A parallel
programming implementation results in simulation times that are short enough for using the simulation program to compute

optimal control trajectories. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Crystallization from solution is an industrially impor-
tant unit operation due to its ability to provide high
purity separations. For efficient downstream operations
and product effectiveness, controlling the crystal size
and shape distribution can be critically important. This
is especially true for the multidimensional crystals pro-
duced in the pharmaceutical and photographic
industries.

This paper investigates the effectiveness of optimal
control for providing the desired product characteristics
for a batch crystallization process with multiple growth
axes. A high resolution algorithm accurately simulates
the multidimensional population balance equation
along the optimal control trajectories. While not well
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known in the crystallization or control communities,
high resolution algorithms have been used in the com-
putational physics community for a wide variety of
applications (Harten, 1983; LeVeque, 1992, 1997; Osher
& Chakravarthy, 1984; Sweby, 1984; Yang, Huang, &
Tsuei, 1995). High resolution algorithms can provide
second-order accuracy without the spurious oscillations
that naive second-order methods usually exhibit, while
also reducing numerical diffusion inherited by first-or-
der methods. The wide range of length scales inherent
in crystallization processes makes these numerical issues
especially critical.

This paper also investigates the effect of spatial vari-
ations on the multidimensional crystal size distribution.
In batch crystallization, the crystal product characteris-
tics are determined by the seed characteristics, the
supersaturation profile, and the mixing conditions. The
compartmental modeling approach can be used to take
imperfect mixing into account (Braatz & Hasebe, in
press, Kramer, Dijkstra, Neumann, Meadhra, & van
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Rosmalen, 1996). The crystallizer is subdivided into a
finite number of smaller sections (called compartments).
Perfect mixing is assumed in each compartment. Each
compartment has input and output streams that share
flows with its neighbors. The quantity of crystals and
the crystal characteristics in the input and output
streams are governed by the local hydrodynamic condi-
tions. The compartment model enables a much more
accurate modeling of the formation of new crystals,
which is key to quantifying the quality of the crystal
size distribution of the final product. This approach is
computationally feasible using today’s computer hard-
ware, whereas the full solution of the fluid and particle
momentum equations is too computationally intensive,
at least for design or control purposes in which multiple
simulations are required.

The paper is organized as follows. The model of a
KH,PO,—H,O crystallizer is presented first, then the
optimal control formulation for two-dimensional crys-
tallization is introduced, followed by a summary of the
compartmental modeling approach and the high resolu-
tion method, and the results, discussion, and
conclusions.

2. Multidimensional crystallization: well-mixed case

While the following description of multidimensional
crystallization is rather general, potassium dihydrogen
phosphate (KH,PO,, KDP) is used to illustrate the key
ideas. The shape of KDP crystals is tetragonal prism in
combination with tetragonal bipyramid, and the angle
between the prism sides and pyramid faces is 45°
(Mullin & Amatavivadhana, 1967). The two internal
dimensions r, and r, are the width and length of the
KDP crystal, respectively (Fig. 1). Accordingly, the
volume of a single crystal is

1
chgr%“‘(”z_rl)r%- (1)
For a well-mixed batch crystallizer in which the
crystals have two characteristic length scales, the pro-
cess is described by the multidimensional population

balance equation (Hulburt & Katz, 1964; Randolph &
Larson, 1988):

af(rlar2st) + i a{(;j(rler’C(t)aT(Z))f(rl=r2at)}
ot i or;

= h(f(rlarZ’t)ac(t)’T(t)) (2)
where f is crystal size distribution, r; refers to each
characteristic length scale, G, refers to the growth rate
for the jth length scale, ¢ is the solute concentration,
and /& describes the crystal creation mechanisms. The
temperature is described by an energy balance for the
crystal slurry (the crystals are small enough that their
temperature is equal to the temperature of the sur-
rounding liquid), which is a function of the overall heat
transfer coefficient, the heat of crystallization, the crys-
tallization kinetics, and the mass of chemical species
transferred between the solution and crystal phases. In
practice, this temperature is the setpoint trajectory for a
feedback control system that manipulates a valve for a
flow to a jacket on the crystallizer. The solution con-
centration is specified by a material balance on the
solution phase, given later.

For KDP, the growth rates are independent of the
width and length of the crystals. For the range of
temperature considered in this study, the growth rates
G, and G, are functions only of the solute concentra-
tion ¢ and the saturated solute concentration c,, (Gu-
nawan, Ma, Fujiwara, & Braatz, in press):

(O —cadDN? e
Golc(@).T(1)) = kg2< Csat(T) > _ngS > “4)

where S is the relative supersaturation, and g,, g, kgl’
and kg2 are kinetic parameters. The saturated solute
concentration for KDP is given by Togkalidou, Fuji-
wara, Patel, & Braatz, 2000, 2001

Cau(T) =9.3027 x 10 °T2 —9.7629 x 10 ~°T + 0.2087,
©)
where 7T is the temperature in Celsius. Secondary nucle-

ation is the dominant mechanism for producing new
crystals in most seeded batch crystallizers. This type of
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Fig. 1. A KDP crystal, a batch laboratory crystallizer, and its simulation model with N compartments.
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Table 1
Kinetic parameters determined from laboratory data (Gunawan et
al., in press)

Parameters Values Units

g 1.48 Dimensionless
kg, 12.21 pr.n/s .

2 1.74 Dimensionless
kg, 100.75 urp/s .

b 2.04 Dimensionless
k,, 7.49 %108 particles/um? s

nucleation kinetics is usually characterized as being
proportional to either the area or volume of crystals in
the crystallizer. For the range of temperature consid-
ered in this study, the nucleation kinetics for KDP are
(Gunawan et al, in press):

h(f(r1,r2,0),¢(1),T(2))

b w0 (foo
- k("(f) 5o (r>) j f S Vdrr)drdr,
(6)
where 0 is the Dirac delta function. This assumes that
nucleated crystals are small enough to have negligible
size. The validity of this assumption has been confirmed
by re-simulating the crystallization process with a range
of realistic nuclei dimensions and observing that the
results are not affected.

A solute mass balance completes the model for a
batch crystallizer. With the assumption that nucleated
crystals have negligible size, the amount of solute leav-
ing the solution must be accounted by crystal growth.
For KDP this equation is

de(r) o [
ds - _ch;) J;)f(rI’VZ’t)

X (2Gy(c(1), T@))(ryr — 1] + Goc (1), T(1))r})
x dr,dr, (7

where p. is the crystal density (p,=2.338 x 1012 g/
um?® n the simulation). Table 1 summarizes the parame-
ter values in Eq. (3)-Eq. (6), which were determined
using parameter estimation and model-based experi-
mental design (Chung, Ma, & Braatz, 2000, 1999a; Ma,
Chung, & Braatz, 1999; Matthews & Rawlings, 1998;
Miller & Rawlings, 1994).

The following analysis also uses cross-moments
which are defined as

wy(1) = f J Sy, t)rirddr dr,. ()
o Jo

The low order moments have physical meaning. For
example, u,, is the total number, y,, is the total width,
and u,, is the total length of the crystals in the system
per gram of solvent. Hence the average width of crys-
tals 1S 0/ 1o, and the average length is /g0

3. Optimal control for a well-mixed crystallizer

In a well-mixed batch KDP crystallizer, the final
crystal product is determined by the supersaturation
profile, the initial seed mass, and the seed crystal size
distribution. In this paper, we only consider the case
where supersaturation is created by reducing the tem-
perature 7(¢z), although other methods of achieving
supersaturation such as antisolvent addition (Char-
molue & Rousseau, 1991) can be formulated in a
similar manner. Based on a past study, the effect of the
width of the seed crystal size distribution is not as
important as the effect of the seed mass (Chung, Ma, &
Braatz, 1999b). Also, in practice changing the seed
mass is much easier than varying the seed crystal size
distribution, which would require an additional unit
operation, such as milling (which creates undesirable
fines) and/or screening. Here the shape of the initial
seed distribution is fixed to

f(rlarZ:O)
= —0.00034786r% + 0.1363609r, — 0.00034786r3
+0.1363609r, — 26.5486 )

for 180 <r; <220 and 180 <r, <220, and zero other-
wise. This distribution is multiplied by a scalar to
achieve a specified initial seed mass M.4. This is based
on crystals that are readily available in the laboratory.
Hence the optimal control variables are the seed mass
and the temperature profile. The optimal control for-
mulation is

optimize @

T(t)s Mseed
subject to  g(1) =Ty — T(2) <0
gZ(t) = T([) - Tmax < 0
dT(r)
1) = — Ry <0
g3( ) dl max
a7 (1)
— R, — <0
g4(t) min dt
85 = c(lﬁnal) — Cmax < 0 (10)

where @ is some desired characteristic of the crystals at
the end of the batch (details below), which is computed
using a cross-moments model (Gunawan et al., in
press). The temperature constraints g,(¢)—g,(t) ensure
that the temperature profile stays within the operating
range of the crystallizer. The constraint gs is the mini-
mum Yyield constraint, as the final solute concentration
specifies the amount of crystals produced. This optimal
control problem is solved by a successive quadratic
program (Zhou, Tits, & Lawrence, 1989) that iteratively
calls the cross-moments model.
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To the authors’ knowledge, the optimal control ob-
jectives for multidimensional crystallization have not
been investigated in the literature, whereas several ob-
jectives have been recommended to favor downstream
operations or product quality for one-dimensional crys-
tallizers (Ajinkya & Ray, 1974; Braatz & Hasebe, in
press, Eaton & Rawlings, 1990; Jones, 1974; Rawlings,
Miller, & Witkowski, 1993). These objectives can be
used for multidimensional crystallization with slight
modification. Controlling the aspect ratio of two-di-
mensional crystals can be another useful optimal con-
trol objective (Ma & Braatz, 2001).

In this paper, two optimal control objectives are
investigated—maximizing the number-weighted aver-
age length of the crystal and maximizing the mass-
weighted average length of the crystals. While both
objectives are based on average length, the different
weighting has a significantly different dependence on
the size of the crystals. Because the small crystals have
a significant effect on the number-weighted average
length, it would be expected that maximizing this opti-
mal control objective would keep the number of nucle-
ated crystals as small as possible. The mass-weighted
average length is affected very little by small crystals.
Both objectives can be calculated directly from the
cross-moments:

Objective 1: number-weighted average length,

="t (1)
Hoo
Objective 2: mass-weighted average length,
2
Moo — §ﬂ31
= 12
) 5 12)
Moy — §ﬂ3o

4. Compartmental model

Perfect mixing is rarely true in practice. A 2-1 batch
crystallizer is shown in Fig. 1. The crystal size distribu-
tion f varies substantially along the height of the crys-
tallizer. Due to gravity, most crystals stay at the bottom
of the crystallizer while smaller crystals tend to flow
with the water and can be seen in the middle and upper
regions. Few crystals are located near the top of the
slurry.

Compartmental modeling has been used to take spa-
tial variations into account in one-dimensional crystal-
lizers (Braatz & Hasebe, in pressKramer et al., 1996).
As suggested from Fig. 1, the crystallizer can be subdi-
vided into smaller compartments. Each compartment is
assumed to be well-mixed, that is, the nucleation and
growth kinetics are uniform throughout the compart-
ment, and consequently a modification of Eq. (2) can

be applied to each compartment. The amount of crys-
tals and the crystal size distribution may be different in
each compartment.

Using a larger number of compartments can result in
a more accurate model of the system. Each compart-
ment has input and output streams that share flows
with its neighbors. The crystal size distribution in those
streams is governed by the local conditions. The
smallest crystals will flow along streamlines; therefore,
the distribution for the smallest crytstals in the output
streams of the nth compartment should be equal to the
distribution inside the nth compartment. On the other
hand, the downward output stream of the nth compart-
ment will have bigger crystals than the upward output
stream, when the crystals have a higher density than the
fluid. Two weighting functions W, and W, are used to
characterize these distributions. The crystal size distri-
butions are W,f, and W,f, in the downward and up-
ward output streams of the nth compartment, where f,
is the crystal size distribution in the nth compartment
and

W, =1.0— Biry . Bar, , (13)
max(ry,r;)  max(ry,r,)
Wy=1.0+ 0 Py (14)

max(ry,r,)  max(ry.r,)

The constants f, and f, can be determined from
experiments, and r; and r, are the characteristic length
scales for the crystals. For the nth compartment, the
population balance equation is

o . & LG (c(),T()),}
E—i_ Z or;

j=1 j

= h(f,c(0),T(21))

B W fy A Wfyr = Wofy=Wafy)  (13)

n

where F is the flow rate of input and output streams, V,
is the volume of the compartment n, and each f, is a
function of r, r,, and z. A high resolution algorithm
that solves this system of highly nonlinear coupled
partial differential equations is discussed next.

5. A high resolution algorithm

The population balance equation Eq. (15) is a multi-
dimensional conservation equation with widely varying
length scales (very small to 100s of microns). Solving
this equation presents great challenges to naive first-or-
der and second-order finite difference algorithms. In the
literature, the first-order approximation methods are
often used with special consideration of mesh size in
order to reduce numerical diffusion (Sotowa, Naito,
Kano, Hasebe, & Hashimoto, 2000). The most popular
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higher order approximation methods give spurious os-
cillations, which can result in a population density of
crystals with negative values.

High resolution methods have been developed pri-
marily by the computational physics community
(Harten, 1983; LeVeque, 1992, 1997; Osher &
Chakravarthy, 1984; Sweby, 1984). These methods can
well handle large gradients and can give second-order
accuracy without producing spurious oscillations or
smeared solutions. This motivates the use of such al-
gorithms for the simulation of crystallization. The first
step of the algorithm is to solve the homogeneous
equation

of | & HG[c),TO}
&+ Z or; N

0 (16)
j=1
over time step k, then add the crystals on the right hand
side of Eq. (15) to the corresponding cells over the same
time increment (LeVeque). To handle the multiple crys-
tal dimensions in Eq. (16), a splitting method is used to
decompose (Eq. (16)) into a pair of 1D equations, each
of which is solved by a high resolution method. Since
the algorithm is applied in the same manner to different
compartments, the index n will be dropped to simplify
notation, and the description will be with respect to a
single compartment.

For the 1D wave equation, the grid points are
defined as the points (z,, r,) = (mk, ph) for positive
integers m and p, where 4 is the mesh size and & is the
time step. Fix the ratio of k and % to be constant. Let
J,” be the population density function f defined on the
grid point (¢, r,).

First we will describe how Eq. (16) can be reduced to
two one-dimensional partial differential equations. At
the time instant ¢ this equation is

af ' m— 1@

a_‘_gl or,

m—1»

mflgzo

+ey 'S a”
2

with initial crystal size distribution
f=1m" ). (18)
The analytical solution to this PDE at ¢, is

f:fM71(rl _gill771(t’11_

tmf l)arZ - ggn B l(tm - tmf 1))
19)

Now recognize that the same PDE can also be solved
in two steps. First, solve the 1D PDE

of ..o
a5 =0 (20)
f=f"""rr) at t=t, . 1)

The solution to this PDE is /"(r,,ry) ="~ '(r, —

g4t —t,_1).). Now use the obtained f as the
initial condition to solve the second PDE,

of | .o _
Rt 55‘0 (22)
f=/"r,ry) at t=t,_,. (23)

The solution to the second PDE at ¢, is Eq. (19)
since

./?(Vl»rz) =fm("1a”2 —g5 l(tm —1,_1)

=fM7 l(rl _gq”7 1(tm - tmf I)JZ _g)2”7 l(lm - [mfl))'
(24)

This derivation shows that the 2D PDE Eq. (16) can be
solved by first splitting it to a pair of 1D PDEs along r,
and r,, and then solving the two PDEs consecutively at
each time step. Then the two solutions can be combined
to form the solution to the original PDE.

With Eq. (16) split into a pair of 1D equations, at
each time instant a PDE in the form of

o, U,

ot + g&r B
must be solved with the initial condition f(r)=f(r).
High resolution methods are specially suitable for solv-
ing this equation (LeVeque, 1992).

This paper will use a high resolution method that is
essentially a hybrid of the upwind method and the
Lax—Wendroff method. The upwind method is a first-
order finite difference method. It replaces df/0t by a
forward-in-time approximation and Jf/dr by a back-
ward finite difference. The difference equation obtained
for £, is

(25)

k
VR i (Vi (26)

The main drawback of this method is that it exhibits
severe numerical diffusion. The Lax—Wendroff method
on the other hand gives second-order accuracy and
reduces the numerical diffusion:

kg
fZH—l = 1"_ﬂ(f;n+1 _f;7—1)
kzgz
to e =2 ) 27

The drawback of this method is that it introduces
spurious oscillations. The population density can have
negative values when the local gradients are large,
which occurs in crystallization processes. Rewriting the
Lax—Wendroff method in the following form provides
insight into the cause of oscillation:

k
f[r;7+l: 1)11_%(]0;7_](?_1)

kg

kg v om
—yil—h>mmﬂ—ﬂn—u;—ﬂm.

(28)
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Eq. (28) shows that the Lax—Wendroff method con-
sists of the first-order upwind method, supplemented
with an anti-diffusion term

ke

kg
M<P—hy0%1—ﬂ0—0?—ﬂqm- (29)

This anti-diffusion term prevents the diffusion, but
the magnitude of this term might be too large, causing
spurious oscillations. To remedy this, the high resolu-
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Fig. 2. The temperature, solution concentration, and relative super-
saturation profiles that maximize the number-weighted average length
(objective 1, —) and the mass-weighted average length (objective 2,

).

Table 2
Final objective values

Number-averaged r, Mass-averaged r, (um)

(um)
Objective 1 334 484
Objective 2 297 855

tion method restricts the magnitude of this anti-diffu-
sion term:

k
R VA

kg kg .
_2h<1 —h>((fZ’+1 _ﬂJ)¢p_(f;n _fz’fl)gbpfl)'

(30)

The term ¢, is called a limiter, whose value depends
on the local gradients. Define 0, as the ratio of the local
gradients
@:ﬁflzi 31)

p+1 _(f;n
and let ¢, be a function of the local gradients so that
¢, = ¢(0,). The limiter function ¢ is selected so that
the difference approximation is consistent with Eq. (25)
and does not produce any spurious oscillation. It is also
desired for the limiter to give a difference approxima-
tion that is second-order accurate. It can be shown that
the limiter function ¢ satisfies the above requirements if
¢(1)=1 with ¢ Lipschitz continuous at § =1, and ¢
satisfies the constraints (LeVeque, 1992; Sweby, 1984):

o<¢$ﬂ<2 (32)
and
0<¢(0,)<2. (33)

Many choices for the limiter function ¢ are available,
and detailed comparison have been made (Sweby, 1984;
Zalesak, 1987). This paper found good results using the
limited function (van Leer, 1974)

_10,[+6,

¢(@J—~TIPZT (34)

6. Results and discussion

An optimal control study is followed by a consider-
ation of the effects of spatial variation on the multidi-
mensional crystal size distribution.

6.1. Optimal control study

Fig. 2 shows the optimal temperature, the solution
concentration, and the relative supersaturation profiles
for the two objectives. Table 2 gives the final objective
values. For objective 1, the cooling rate is more nearly
uniform during the crystallization run. The solution
concentration decreases nearly linearly during the batch
run, and the relative supersaturation is kept relatively
small ( <0.02). For objective 2, the temperature is kept
constant initially, then it is dropped as fast as possible,
then it is kept constant at its final value throughout the
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Fig. 3. Final crystal size distribution with optimal control objective 1.

800
o 600

Fig. 4. Final crystal size distribution with optimal control objective 2.
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Fig. 5. Temperature profile of the batch crystallizer.

Table 3
Parameters used in simulation

Variable Description Value Units

k Time step 1 s

h Mesh size 1 pm

F Flow rate 10 cc/s

14 Volume 2 1

t Batch time 2 h

IR Coefficient 0.1 None

ps Coefficient 0.1 None
Mooy Seed mass 0.02 g/g water

rest of the batch run. This temperature trajectory gener-
ates larger relative supersaturation during the second
quarter of the batch run. The optimal seed mass for

objective 1 is 0.08 g/g solvent, and for objective 2 is
0.016 g/g solvent.

These results are related to an observation made in
an earlier study, that the optimal control objective must
be selected very carefully for the resulting operations to
give the desired product (Chung et al., 1999b). In
particular, a past study showed that using the coeffi-
cient of variation, which has been used in a number of
past optimal control studies, can easily lead to undesir-
able batch operations. Similarly, a number of weighted
average characteristic lengths have been studied in past
studies. Above it is demonstrated that the weighting
used to define the average length can have a significant
effect on the optimal control trajectory. Because of this,
it is important when evaluating optimal control trajec-
tories to simulate the entire crystal size distribution,
rather than just a simple moment model as is com-
monly done in the literature. Simulation of the crystal
size distribution enables an understanding of the opti-
mal control results (such simulations were used to reach
the conclusions in the last paragraph), which can be
used to develop an improved optimal control
formulation.

The well-mixed batch crystallizer operating under the
two optimal control trajectories was simulated using the
high resolution method. The final crystal size distribu-
tions for the two objectives are plotted in Fig. 3 and
Fig. 4. Comparing these two figures, the seed crystals
are much fewer and larger for objective 2; however,
objective 2 also gives a wider variation in size for the
crystals growth from nuclei. Objectives 1 and 2 have
different tradeoffs between the mechanisms of nucle-
ation and growth, which could have a significant effect
on downstream processing (Togkalidou, Braatz, John-
son, Davidson, & Andrews, 2001).

6.2. Effect of spatial variations

When considering the imperfect mixing case, first
consider the case where the KH,PO,—H,O crystallizer
is subdivided into eight compartments. The eighth com-
partment is at the bottom of the crystallizer; the sixth,
fourth, and second compartments are one, two, and
three quarters above the bottom, respectively. The tem-
perature is uniform throughout the crystallizer. Fig. 5
shows the temperature profile for each compartment.
Parameters used in the simulation are summarized in
Table 3.

Before the crystallization starts, seed crystals are
added into the solution so that secondary nucleation is
the dominant nucleation mechanism. The seeds are
loaded into the bottom compartment. The average
length and width of the seeds are 200 um. The seed size
distribution is given in Fig. 6. After 2 h of crystalliza-
tion, the crystal size distribution is shown in Fig. 7. The
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two distributions in each compartment are the crystals
grown from seeds and from nuclei. The average length
of the crystals grown from seeds is around 800 pm and
the average width is around 450 pm, indicating that the
crystals are elongating. The size of new nuclei is small
(the sharp peak at r;, =r, =0), and as time evolves, the
nucleated crystals grow larger. The largest crystals tend
to stay at the bottom of the crystallizer. Note that there
are no spurious oscillations or significant numerical
diffusion observed in Fig. 7.

The final crystal size distribution is a strong function
of the number of compartments. Figs. 8—11 show the
final crystal size distribution when the number of com-
partments is changed while keeping the flow rate F and
initial seed mass constant. Figs. 12—16 show the corre-
sponding solution concentration and relative supersatu-
ration profiles. Those figures indicate how the
concentration gradient develops as more compartments
are used. As shown in Fig. 16, the relative supersatura-
tion near the top is nearly five times higher than the one
at the bottom. This implies that crystals grow faster in
the top compartments. As crystals become larger, they
leave the top compartments due to gravity and enter
the bottom compartments which are associated with a
slower growth rate. At the same time, fresh small
crystals enter the top compartments from the bottom.
Due to the different growth rates and the circulation
inside the crystallizer, the final crystal size distribution
is very different from the one when the crystallizer is
nearly well-mixed (Fig. 8). When there is a large num-
ber of compartments, the distributions of crystals
grown from seeds and from nuclei are much broader.
An unattentive researcher not realizing that the spatial
variations in the crystallizer were significant, could
mistakenly conclude that growth dispersion (Randolph
& Larson, 1988) was significant in cases when it is not.
This implies that researchers studying growth disper-
sion must be absolutely certain their crystallizer is
well-mixed before attempting to quantify the magnitude
or type of growth dispersion.

Compartment 8

N W & O

600
400
200 o

s

Fig. 6. Initial seed crystal size distribution when 8 compartments are
used.

Compartment 2

Fig. 7. Final crystal size distribution when 8 compartments are used.

The nucleation rate is much higher at the bottom of
the crystallizer than the top (Fig. 17). For 64 compart-
ments, the nucleation rate at the top is negligible for the
first 4000 s, while there is significant nucleation at the
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bottom of the crystallizer for the entire batch crystal- Increasing the number of compartments makes the
lization run. There can be several orders of magnitude simulation time significantly longer if only a single
variation in nucleation rate across the crystallizer. processor handles all computations. Parallel computa-

Compartment 1 Compartment 4

Fig. 8. Final crystal size distribution when 4 compartments are used. Fig. 9. Final crystal size distribution when 16 compartments are used.
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Fig. 10. Final crystal size distribution when 32 compartments are Fig. 11. Final crystal size distribution when 64 compartments are
used. used.
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tion was used to speed up the simulation. Each com-
partment was assigned to a different processor. The
task for each processor was to compute the solute
concentration and crystal size distribution in the
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Fig. 12. Concentration and relative supersaturation profiles when 4
compartments are used. The compartments are numbered starting
from the top of the crystallizer. The compartment numbers are: 4
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Fig. 13. Concentration and relative supersaturation profiles when §
compartments are used. The compartments are numbered starting
from the top of the crystallizer. The compartment numbers are: §

(=), 6 (- ). 4 (). 2 (—)

o
o w
w =

B8

concentration (g/g water)

0.28 :
0 2000 4000 6000 8000
time (sec)
0.025
§ 002
®
$0.015 [
@ " s
s UL
@ 0.01 /-/ ST~
2 4 - I~
£ -
‘© 0.005
0
0 2000 4000 6000 8000
time (sec)

Fig. 14. Concentration and relative supersaturation profiles when 16
compartments are used. The compartments are numbered starting
from the top of the crystallizer. The compartment numbers are: 16
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compartment that it was assigned, and then pass this
information to its neighboring upper and lower com-
partments. The simulation time increases as the number
of compartments are increased (Table 4) because it
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Fig. 17. Nucleation rate at the top and bottom of a batch crystallizer
with spatial variation modeled with 64 compartments.

Table 4
Simulation time for different number of compartments

Number of compartments 4 8 16 32 64
Kayak (min) 59 65 75 90 102
Origin (min) 290 326 420 445 470
Table 5

Domain sizes for varying numbers of compartments

takes time to pass the information to the neighbors,
and because the size of the simulation domain for r,
and r, grows as the number of compartments is in-
creased. The simulations were done on a linux cluster
and an Origin 2000. The linux cluster was constructed
from HP Kayak Visualize Workstations, each with dual
PIII Xeon 550 MHz processors, 512k cache per CPU,
and 1GB of memory. Each R10000 processor of the
SGI Origin 2000 has 32GB of memory and a clock
speed of 195 MHz. The simulation results show that the
time increases 15-20% when the number of compart-
ments doubles.

To determine the efficiency in the use of the parallel
computer’s resources, the individual effects of the do-
main size and the cost of information transfer on the
computation time were determined. The final domain
sizes are listed in Table 5. Table 5 reveals that the
number of elements increases 51% when the number of
compartments triples (from 4 to 64), while the compu-
tation time shown in Table 4 increases 62—73%, de-
pending on which parallel computer is used. Hence
almost all of the increase in computation time as the
number of compartments increases is due to the in-
crease in domain size. The parallel efficiencies up to 64
processors are 85 and 93% on the linux cluster and the
Origin 2000, respectively.

Hence there is good scaleup and fast results for both
parallel computers. This is especially interesting for the
linux cluster, as it is relatively inexpensive (~ $1000/
node). For 64 compartments, the simulation model
consists of 64 highly nonlinear coupled multidimen-
sional partial differential equations describing the crys-
tal size distribution that are solved simultaneously with
64 coupled integrodifferential equations describing the
solution phase. The computed crystal size distributions
exhibits a wide range of spatial length scales, from 1 um
to approximately 1000 um, with the nucleated crystals
being represented by Dirac delta functions. The compu-
tation time of 102 min for 64 compartments is quite
reasonable for using the simulation to compute optimal
control trajectories. A lower order model is preferred
for specifying control objectives (as done here), for
on-line optimization in model predictive controllers,
and for providing initial convergence toward the opti-
mal control trajectory before switching to the more
complicated simulation model.

Number of compartments 4 8 16 32 64
ry (nm) 849 952 1048 1102
ry (Lm) 437 466 495 508

Number of nodes 372 300

395148

445051 520 304 561 427
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7. Conclusions

The optimal control of the batch formation of multi-
dimensional crystals was investigated. It was shown that
a subtle change in the optimal control objective could
have a very large effect on the crystal size and shape
distribution of the product crystals. The effect of spatial
variation was investigated using a compartmental model.
The simulation results show that crystal size distribution
can be very different along the height of the crystallizer
and a solution concentration gradient exists due to
imperfect mixing. The results also show that the nucle-
ation rate is significantly larger at the bottom of the
crystallizer and that the growth rate is much larger at the
top. A high resolution method provided very satisfactory
simulation accuracy and speed. No spurious oscillations
or significant numerical diffusion was observed. Parallel
programming techniques made it possible to have short
simulation times while still using a large number of
compartments to represent smooth spatial variations
across the crystallizer.
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