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Robust Performance of Cross-directional Basis- 
weight Control in Paper Machines*t 
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A method is developed to design decentralized cross-directional controllers 
for paper machines which possess robust stability, robust performance and 

failure tolerance properties. 
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Abstract--The cross-machine-direction (CD) control prob- 
lem in paper machines is analysed from the viewpoint of 
robust performance. The objective of robust performance is 
to maintain control system stability and to satisfy a bound on 
the maximum singular value of the closed-loop sensitivity 
function despite modelling error. Characteristics common to 
all CD response control problems including paper basis- 
weight control are identified. The response of an important 
actuator for basis-weight control, the paper machine slice, is 
described by a single dimensionless design parameter that 
provides considerable insight about the CD response control 
problem. Sufficient conditions allowing design of robust 
diagonal controllers are developed, Robust stability, 
performance and failure tolerance properties of the 
controllers are proven. 

1. INTRODUCTION 

THE CROSS-MACHINE-DIREC'F1ON ( C D )  c o n t r o l  

problem in paper machines is aimed at 
maintenance of flat profiles of paper sheet 
properties across the paper machine. Basis- 
weight, or paper weight per unit area, is an 
example of one important sheet property. 
Variations in CD basis-weight can result in paper 
that will not lie flat. Successful control of CD 
paper sheet properties can mean significant 
reductions in raw material consumption. For 
example, Eastman Kodak reported a 2.4% 
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reduction in fiber usage as a result of CD control 
(Carey et al., 1975). Minimal variation in CD 
sheet properties enables operators to produce 
thinner paper closer to the target caliper. 
Additional motivations cited for better CD 
control in the paper manufacturing industry 
include: increasing demand for greater produc- 
tion rates; improving product quality despite a 
high turnover rate in the work force resulting in 
inexperienced operators; eliminating breaks, 
rewinds and rejects; and reducing energy 
consumption (Wallace, 1981). 

1.1. Control system robustness objective 
The purpose of this paper is to analyse the CD 

response control problem from the perspective 
of robust performance. In this section the 
objective of robust performance is mathemati- 
cally defined. The formulation is done in a 
manner consistent with the theory of Doyle 
(1982, 1987). First, a set of possible models H is 
used to express uncertainty in knowledge of the 
physical system to be controlled. Control system 
requirements are then proposed--two universal 
requirements for the control system illustrated in 
Fig. 1 are stability and acceptable attenuation of 
the disturbance in the output. If a controller 
satisfies these requirements for the whole set 1I, 
it is said to exhibit robustness with respect to the 
modelling errors. Exactly what is meant by 
stability and acceptable attenuation of distur- 
bances is defined in the following two sections. 

1.1.1. Robust stability. Nominal stability of 
the control system in Fig. 1 for one process 
model P ( s ) e H  and robust stability for the 
whole set II are defined as follows. 

Definition 1. Nominal stability: the control 
system in Fig. 1 with controller C(s) and process 
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FIG. 1. Standard feedback control system with process P(s), 
controller C(s), set point r(s), disturbances d(s) and output 

y(s). 

/5(s) is stable if and only if all of its closed-loop 
poles are in the left half plane. 

Definition 2. Robust stability: the control system 
in Fig. 1 with controller C(s) and process 
P(s) e H is robustly stable if and only if it is 
stable for all P(s) ~ H. 

1.1.2. Robust performance. Before defining 
robust performance, it is necessary to define 
what is meant by performance of the control 
system in Fig. 1. The performance is defined in 
terms of a weight W(s) restricting the magnitude 
(maximum singular value) of the closed-loop 
sensitivity function [1 + P(s)C(s)] -1. 

Definition 3. Nominal performance: the control 
system in Fig. 1 with controller C(s) and process 
P(s) = P(s) exhibits nominal performance if and 
only if it is nominally stable and 

sup Om,x(W(s)[1 + P(s)C(s)]-') < 1. (1) 
s = t t o  

Since the sensitivity function relates system 
outputs y(s) to disturbances d(s) it is desirable 
that it have low magnitude. It is convenient to 
select a weight W(s) equal to a scalar weight 
w(s) times identity, with w(s) given by 

as+ 1 
w(s) = b -  (2) 

as 

with parameter 0 < b < 1 and parameter a > 0. If 
a control system satisfies the performance 
requirement (1) with weight w(s) given by (2), it 
will have a bandwidth of at least 1/a and the 
maximum disturbance amplification will be less 
than 1/b. The concept of robust performance 
now follows from that of nominal performance. 

Definition 4. Robust performance: the control 
system in Fig. 1 with controller C(s) and process 
P(s) ~ H exhibits robust performance if and only 
if it is nominally stable and the bound (1) is 
satisfied for all P(s) e H. 

Define 

~u(to)--= sup Om.x(W(ito)(l + P(ito)C(ito))-'); 
P ( i t o ) e H  

then we have from Definition 4 that robust 
performance is satisfied if and only if the system 

is nominally stable and /~(to)< 1 for all to. The 
relationship between #(to) and Doyle's struc- 
tured singular value (SSV) for weighted 
sensitivity problems is well-known (for example, 
see Theorem 5.4 in Packard, 1988). We use 
/~(w) instead of the SSV because/~(to) is a direct 
measure of the performance of the system for 
the specified set of plants. The results of this 
paper do not depend on which measure of 
performance is used. 

1.2. Controller design strategy 
Design procedures are presented in Section 6 

that result in diagonal and model-inverse-based 
controllers for CD response control systems with 
typically large dimensions (large numbers of 
inputs and outputs). In Sections 4 and 5 it is 
shown that the eigenvalues of useful CD 
response models can be bounded on a segment 
of the positive real axis. The segment is then 
interpreted as gain uncertainty in a SISO process 
model of the form p(s) given in (3). 

= {p(s) I p(s) 

aqnq(S) + . . .  = k [  +_ - [  + a,n,(s) + aono(s) ] -os] 
. + b,--d,(s---) + b,,do(s-----~ J e 

ai e Iaim,., a~m, j ,  bj e [bjmio, b~m,, ], (3) 

Yic [1, q], Vjc[1,  r] 
kE[kmin, kmax], 0 E [0min, 0max]. 

In (3) the terms nj(s), and dl(s) are exact 
functions, while real numerator coefficients ai, 
denominator coefficients bj, gain k and time- 
delay 0 are bounded by minimum and maximum 
values. Since the real parameters in (3) are 
inexactly known, ~r in (3) represents a set of 
process models. Laughlin et al. (1986) show how 
to design a robust SISO controller c(s) via 
internal model control for processes given by the 
uncertainty description in (3). This paper shows 
how to design robust MIMO CD response 
control systems from the SISO controller. 

Analysis tests used to ensure that SISO 
controllers c(s) exhibit robust performance are 
based on regions lr(ito) on the complex plane 
containing all possible p(ito) in (3). A method 
for locating these regions can be found in 
Laughlin et al. (1986). Once these regions are 
located, a convenient test for SISO robust 
stability based on the familiar Nyquist stability 
test can be applied. 

2. MODEL DEVELOPMENT FOR CROSS- 
DIRECTIONAL RESPONSE 

Models relating the response of CD paper 
sheet properties to actuator adjustments are 
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required before control strategies can be 
developed for the paper machine. One distinc- 
tive characteristic of all such models is that they 
are of large dimension. Beecher and Bareiss 
(1970) report a 6.096-m-wide machine with 40 
actuators spaced 15.24 cm apart across the slice. 
Up to 50 slice actuators are reported by Karlsson 
et al. (1982). Paper machines requiring response 
models as large as 100 x 100 are referenced in 
the literature (Wilhelm and Fjeld, 1983). 
Moreover, an established trend is for new 
machines to become wider and faster, increasing 
the dimension of the system and making control 
more difficult (Wallace, 1981)• 

In practice the true CD profile on paper 
machines is not measured--the profile at discrete 
points along the cross-direction is estimated from 
measurements obtained from a scanning gauge 
which continuously travels back and forth across 
the paper (how to perform this estimation is 
discussed in Bergh and MacGregor, 1987). It is 
these CD profile estimates that are made 
available to the CD controller (any additional 
error due to the estimation can easily be 
included in the uncertainty description). We 
assume that the number of CD profile estimates 
is equal to the number of actuators. We also 
assume that the response of CD paper sheet 
properties to actuator adjustments is stable; that 
is, the CD sheet profile settles following actuator 
adjustment to a point where successive measure- 
ments are nearly identical. These are reasonable 
assumptions for most paper machines. 

2.1. Actuator dynamics, time-delay, and 
interactions 

Features common to all CD response models 
are actuator dynamics, time-delay and interac- 
tions. A paper machine slice is designed so that 
it can be adjusted upward or downward by 
actuators at evenly spaced points along its 
length. No matter what mechanism is used to 
manipulate the slice, it is commonly assumed 
that every actuator along the slice can be 
modelled by the same dynamics (Wilhelm and 
Fjeld, 1983). This means that scalar actuator 
dynamics (for example a first-order lag pa(s) = 
ka/(Tos + 1)) multiplies the entire matrix transfer 
function used to model CD response. Since 
basis-weight, moisture or caliper measurements 
are taken some distance down the machine- 
direction from the slice, time passing before 
actuator manipulations are sensed must be 
included in the CD response model as delay 
pa(s) = e -°s. The importance of this delay in CD 
response models varies from machine to machine 
as production speeds vary from less than 
1 m sec -1 of paper to over 10 m sec-L 

When one actuator is manipulated, CD sheet 
properties invariably change from some distance 
either side of the position directly downstream 
from the actuator• These observed interactions 
are incorporated into the CD response model for 

n , m  n actuators through a constant matrix PCD. It is 
usually assumed that interactions are the same 
for all actuator locations across the paper 
machine. Moreover, interactions are assumed to 
be symmetric about each actuator location. 

t l , m  These assumptions cause matrix PCD to take on 
a "banded symmetric" structure as indicated in 
(4). Matrix ,.m PCD can therefore be identified by 
measuring the CD sheet response to changes 
made at a single actuator--saving huge ex- 
perimental effort when the slice has as many as 
100 actuators. 

n , m  POD 
rpl P2 

P2 Pl 

i P2 Pl 

Pm i P2 

0 Pm : 
• • " , .  

• " ,  " ,  

, °  . . . .  

• " • P m  

Pz  " ' "  

P2 

" ' "  P 2  

P i n  • ° " 

0 Pm 

n ~ n  

° . . . . .  0 

Pm ".  " .  : 

. . . .  ° 

". : Pm 0 

P2 i Pm 

Pl P2 i 

P2 Pl P2 

"'" P2 Pl 

(4) 

Occasionally, elements in ,.m PCD near the upper 
left and lower right corners are modified to 
represent slight differences in CD response near 
the edges of the paper machine. The overall 
dynamic model for CD response P~'~(s) is given 
by the product of pa(s), pd(S)  and P~'~'. 

2.2. Model parameter uncertainties 
Model uncertainty is inevitable in CD 

response. During normal operation, a paper 
machine experiences changes in speed, vacuum 
and other wet end process conditions that affect 
CD response in both magnitude and shape 
(Richards, 1982). Headbox hydraulics are 
complicated and are subject to change with 
changing pulpwood characteristics. Time-delay 
can vary significantly: Beecher and Bareiss 
(1970) report production speeds from 0.762 to 
3.81msec -~ on a single paper machine. There 
are two ways to handle variations in time-delay: 
(1) apply gain-scheduling on the time-delay, or 
(2) design a single controller by treating the 
time-delay as being uncertain, but in some 
known range. If the second method were used, 
the paper machine above would have 67% 
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uncertainty in the time-delay 0. These and other 
uncertainties in the physical process are included 

n,m in the set of process models l'IcD defined by 

{ I P~'~(s) = p ( s ) P ~  
1-I~'~ = P ~ ( s )  p(s)  • :r ) (5) 

where real elements p; in the interaction matrix 
n,m PCD are bounded as in 

Pi • [Pimi,' P i m J  

and the set :r is given by (3). For example, 
consider first-order actuator dynamics with 
time-delay: 

f kae-°S I = l p ( s )  I p(s) =p:(s)pd(S) = ,g 

(6) 
k : e [ k : . i . , k  .... ], r,•[~m~.,qm.x], 

0 • [0min ,  0max] .  

Each real parameter in the scalar dynamics in (6) 
is allowed to vary between the specified upper 
and lower bounds independent of the other real 
parameters. Note that the other scalar dynamics 
in (6) are possible, though the choice of 
first-order with time-delay is often appropriate 
for the CD paper sheet response model. 
Uncertainity in actuator dynamics (6) is repre- 
sented by the bounds for ka and ~a; time-delay 
uncertainty, by the bounds for 0. 

n , m  Uncertainty in the CD interaction matrix PeP 
is conveniently expressed by p~ • [Pg.,.,Pim.J in 
model (4). This type of correlated coefficient 
uncertainty in P~'~' can naturally reflect observed 
deviations in experimentally measured CD 
response interactions. McFarlin (1983) cites 
ignorance of such interaction uncertainty as a 
probable cause of instability in CD response 
control systems. 

2.3. Properties o f  cross -directional model 
The proposed or experimental models in 

Table 1 of interactions in CD basis-weight 
response to a change at actuator Pl are reported 
in the literature. They have been normalized so 
that response at position p~ is 1.0. Note that the 
reported references have PCD models of the form 
discussed in this paper. 

The extent of interaction in CD response 
varies considerably among the models reported 
in the literature. The data from Karlsson et al. 
(1982) indicate that there is some correlation 
between thicker product and interactions ex- 
tending over a greater number of actuator 
positions on the slice. Negative CD response 
elements can be found in many of the models 
reflecting the observation that efforts to increase 
the basis-weight downstream from one actuator 
position may actually decrease it on either side 
of that position. Strong interactions lead to large 
positive and negative off-diagonal elements in 
matrix P~D in the response model. It has been 
reported that such strong interactions cause 
difficulties in the control of CD response. 

On more fundamental grounds it has been 
shown that the system characteristics discussed 
below are necessary for the design of a CD 
control system to be possible which provides 
good performance and has other desirable fault 
tolerance and tuning properties. 

Low condition number. A measure of the 
severity of expected control difficulty is the 
condition number ], of the CD response model, 

n , r n  
Omax(PCD) n,m . ( 7 )  

Y ( P c D )  Omin(P~,~) 

That high condition number processes can be 
difficult to control is well understood---Skogestad 

TABLE 1. REPORTED CD RESPONSE DOWNSTREAM FROM ACTUATOR POSITIONS 

Pl Pz P3 P4 P5 P6 P7 P8 Py Pl~J 

1.0 1.2 0.6 -0 .4  -0.9 -0.2 -0.2 
1.0 0.4 -0.5 0.05 
1.0 0.4 
1.0 -0.15 0.03 -0.01 
1.0 0.2 
1.0 0.4 
1.0 0.5 -0.5 
1.0 0.1 -0.3 
1.0 1.3 0.8 -0 .6  -0.3 0.0 -0.1 
1.0 0.9 0.7 0.8 1.0 0.6 -0.5 -0 .4  -0 .2  -0 .2  
1.0 0.45 -0.55 
1.0 0.4 -0.2 -0.4 -0.2 
1.0 0.2 -0.1 -0.1 

(1)* 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 
(8)* 
(9)* 

(10)* 
(11)* 
(12)* 
(13)* 

Models marked with * appear to be actual process data. 
Sources: (1) "Swedish Research Labs" (Wallace, 1981); (2) (Wilkinson and Hering, 1983); (3) (Boyle, 1978); 

(4) actuator model (Tong, 1976); (5), (6), (7) (Wilhelm and Field, 1983); (8), (9), (10) newsprint, sack paper and 
paper board, respectively, from Karlsson and Haglund (1983) discretized here at 20-cm actuator spacing; (11) 
(Richards, 1982); (12) (Cuffey, 1957); (13) change in slice opening only (Cuffey, 1957). 
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and Morari (1988) discuss the properties of high 
condition number processes at length. High 
condition number of the CD response model 
means that strong control action is required to 
attenuate disturbances entering the process in 
the direction of the left singular vector 
corresponding to the minimum singular value. 
Strong control action taken in the wrong 
direction, however, can lead to instability or 
poor performance. It is therefore difficult or 
impossible to design an acceptable controller 
based on CD response models with high 
condition number, when input uncertainty or 
uncorrelated interaction-element uncertainty is 
also present. Efforts must be taken to avoid 
these types of model uncertainty descriptions 
when they are not physically motivated, so that a 
controller with good performance can be 
designed. 

In the limit of ),---~ 0% the CD response model 
/1,m PCD is singular. If this is the case, CD response 

is uncontrollable because upstream actuator 
positions causing measured downstream resp- 
onse profiles cannot be determined. That strong 
enough interactions could result in a singular CD 
response model was recognized by Wilhelm and 
Field (1983). Paper machines must be con- 

n,m structed to have nonsingular PCD SO that CD 
control is possible. 

For CD interactions P~'~' as given by (4), the 
condition number ~, is a function of both 
interaction and dimension. Figure 2 illustrates 
the condition number of "'~ Pco with elements 
p~=l .0 ,  p2=r ,  and p3 = - r  for 0 -< r --- 0.5 as a 
function of model dimension n. The plot has 
been truncated at ), = 50.0 to improve scale--), 
increases to o0 above each of the "flat" peaks in 
the plot. For values of r greater than 0.25, 
models of all dimensions 6 -< n -< 20 have at least 
one singularity. Values of r at which singularities 
occur change dramatically as the dimension 
of the system changes. Given the level of 
interaction r=0.424,  for example, a 7 x 7  
system has relatively low condition number 

],=6.77, while a 14× 14 system is singular. 
Building a paper machine twice the width of one 
on which CD control is easily accomplished can 
result in CD response that is impossible to 
control. 

Positive loop gain. Let the controller C(s) in 
Fig. 1 be of the form C(s)= (k/s)C'(s) where 
C'(0) is bounded. Then it can be shown (Morari, 
1985) that the closed-loop system will be 
unstable for arbitrarily small values of k when 
any of the eigenvalues of P(O)C'(O) are in the 
left half plane. The implications for CD control 
are profound. Assume that a simple scalar 
control system is desired: C(s)= c(s). I, where 
c(s) is a scalar controller with integral term. 
Such a design is feasible in practice only if all 

PCD are eigenvalues of the CD response model n,m 
restricted to a half plane or in the case of a 

n,,~ PCD is positive definite. symmetric Pco, if n.m 
Assume on the other hand that the control 

system is of the steady-state-inverse type as 
has been reported in the literature. Then 
P(0)C'(0) = 1 and no problems arise. If P(0) is 
ill-conditioned, however, then even for small 
errors in the model of P(0) [the design basis for 
C'(0)], P(O)C'(O)~I and some of the eigen- 
values of the product can very well fall into the 
left half plane. Then the closed-loop system will 
be unstable, even if the actuators are adjusted 
infrequently in pseudo-steady-state fashion. 

Fault tolerance. Often it is desirable to design 
a set of SISO controllers so that the overall 
system remains stable even when some actuators 
are taken out of service. It can be shown (Morari 
and Zafiriou, 1989) that for this to be possible it 

n ,m is again necessary that all eigenvalues of PCD be 
in the right half plane. 

In summary, for good control it is essential 
that the actuator be designed such that the CD 
response model is well conditioned. For good 
failure tolerance and to allow simple control 
structures it is also desirable that PcD be positive 
definite. These characteristics are analyzed later 
in the paper for the models in Table 1. 

CD Response Condition Number 

50.0 t ~ I 

'° 2 
Dimension I5 ~ 

0.0 0.25 0.5 
Parameter r 

n,3 FIG. 2. Condition number of PCD with p~ 1, p 2 = r  and 
P3 = --r. 

2.4. Slice actuator design to influence interactions 
The design of the paper machine slice has a 

significant effect on the interactions in CD 
response. The actuators must be located near 
enough to one another so that narrow uneven 
streaks in the paper can be eliminated. 
However, each actuator-slice junction can 
behave as a fulcrum, causing negative elements 
in the CD response model (Cuffey, 1957). 
Wilhelm states that strong interaction in the CD 
response model is the result of poor choice of 
actuator spacing (Wilhelm and Fjeld, 1983). 
Interactions introduced at the slice propagate 
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FIG. 3. Deflection of the slice actuator as a function of  the 
dimensionless design parameter  D..  

down the paper machine and can often be 
exacerbated by subsequent processing steps. The 
nature of interactions introduced and the 
balance between design parameters have been 
investigated by Laughlin (1988) who modelled 
the slice as a beam supported by springs equally 
spaced at actuator locations. It was found that 
the displacement of the slice at the actuator 
positions depends on the dimensionless slice 
actuator design parameter Do = ksa3/6EM which 
is related to the Winkler spring constant. Here ks 
is the spring constant, a is the distance between 
actuators, E is the elastic modulus of the beam, 
and M is the moment of inertia of the beam 
cross-section. The limiting behavior of slice 
displacement for extreme values of Da is easy to 
interpret physically and mathematically. For 
Da = 0 the slice is perfectly rigid and level; for 
D~ = o0 the springs representing the actuators are 
perfectly rigid causing the slice to bend between 
their fixed endpoints. This behavior and other 
slice displacements for intermediate values of Do 
are illustrated in Fig. 3. Note that deflection of 
the slice is negative for certain actuator positions 
on either side of center--this accounts for 
negative elements in the CD response model. 

Tong proposed that the slice be modelled as a 
beam in simple bending between rigid 
actuators--such a model corresponds to the limit 
D,---~ oo. Interactions labeled 4 in Table 1 were 
calculated from his model (Tong, 1976). The 
extension of such a model to allow for 
compressible actuators provides insight about 
how the slice might be designed to suppress 
interactions. 

The effect of slice design on condition number 
and therefore on achievable control quality will 
be illustrated later in the paper. 

2.5. Wave propagation on the Fourdrinier 
Slice deflection alone cannot account for the 

magnitude of some of the larger negative 

off-diagonal elements in CD response models in 
Table 1. Bernoulli's equation applied to flow 
under the slice results in velocity proportional to 
the slice opening. If no further effects are taken 
into account, CD response models with small 
negative off-diagonal elements like (4) from 
Tong (1976) result. Water waves on the 
Fourdrinier wire can propagate interactions 
introduced by the slice even further along the 
cross-machine-direction. Wrist (1961) reports a 
study showing that radioactively marked fibers 
traveled 15.24 cm in the cross-machine-direction 
through the wet end of a newsprint machine 
producing paper at a rate 8.128msec-l. 
Behavior of the water waves is similar to that of 
a wake behind a ship---waves propagate in a "V" 
formation downstream from the location where 
an actuator is adjusted. An analysis by White 
(1979) indicates that higher waves will travel 
faster in the cross-machine-direction on the 
Fourdrinier wire than will lower waves. The 
effect of this is to flatten the peak of the wave 
exiting at the center of the slice opening in Fig. 
3. Since interactions in CD response elements 
are normalized so that the center response is 
one, the off-diagonal elements become propor- 
tionately larger. The magnitude of this effect is, 
of course, dependent on machine speed, product 
caliper, fluid properties of the furnish fiber 
suspension, speed of deposition of fibers on the 
Fourdrinier wire, length of the wire, mechanical 
shake applied to the wire etc. 

3. R E P O R T E D  C O N T R O L  S T R A T E G I E S  

Control systems for regulation of CD paper 
sheet properties have been on line in paper mills 
for some time (e.g. see Beecher and Bareiss, 
1970; or Carey et al. 1975). Two control schemes 
are reported in the literature for CD response 
control in paper manufacturing: linear-quadratic- 
optimal (LQ) and model-inverse-based control. 
The following researchers report using LQ 
controller design methods minimizing quadratic 
cost functions penalizing both deviations in 
paper sheet properties and slice position: 
Wilhelm and Field (1983), Tong (1976), Boyle 
(1978), Richards (1982) and Wilkinson and 
Hering (1983). Mostly steady-state models are 

PCD. New con- proposed--interaction matrices ,.m 
trol actions are often taken only after steady 
state is reached. In model-inverse-based control- 

n , m  lers the inverse of PCD is used to define control 
actions (Wilkinson, 1983).  Often P ~  is 
identified on-line and used in some type of 
adaptive control scheme. Additional review of 
control methods applied to the paper manufac- 
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turing industry can be found in the article by 
Dumont (1986). 

One weakness of reported controller design 
techniques is that they do not address the issue 
of robustness with respect to errors in the CD 
response model• In light of the many ditficult-to- 
model process characteristics, for example, wave 
propagation on the Fourdrinier wire, such 
modelling errors are inevitable. A more 
satisfactory controller design technique would 
guarantee system stability and performance 
despite modelling errors. Another weakness of 
both model-inverse-based controller design 
methods and LQ controller design methods is 
that they lead to complicated control algorithms 
for large dimension systems• The inverse of a 

n , m  band diagonal CD interaction model P C D  is in 
general a full matrix--a 100 x 100 system would 
lead to a controller with 10,000 elements. A 
more desirable controller structure would be 
diagonal or band-diagonal so that paper sheet 
properties at one point could be controlled by 
manipulating a few actuators on either side. 
Later in this paper, a robust controller design 
procedure is developed that results in a diagonal 
controller structure. A robust controller design 
procedure that results in banded controllers is 
developed in Laughlin (1988)• 

4. S P E C I A L  M O D E L S  F O R  C R O S S - D I R E C T I O N A L  

S H E E T  P R O P E R T I E S  

Special properties of three models for CD 
response enable convenient robust controller 
design despite correlated parameter uncer- 
tainties in response interactions• The models are 
centrosymmetric, Toeplitz symmetric and cir- 
culant symmetric matrices• General examples 
and selected properties of the three special CD 
interaction matrices are given in this section• 
Nomenclature for these matrix forms is standard 
in the mathematics literature--additional pro- 

perties of the three forms can be found in the 
works by Davis (1979), Bellman (1970) and 
Aitken (1954)• Transformations relating the 
three forms are presented that allow develop- 
ment of tight bounds on CD response model 
eigenvalues despite parameter uncertainties. The 
bounds establish that with similar interactions 
the three forms closely resemble one another for 
large-dimension systems. This result enables 
development of convenient robust controller 
design techniques• 

4 . 1 .  M o d e l  s t r u c t u r e s  

The three special model structures, centro- 
symmetric, Toeplitz symmetric and circulant 
symmetric, imply certain assumptions about the 
nature of CD response interactions• Assump- 
tions that accompany each form are given in the 
following three sections of this paper. It is 
important to consider the appropriateness of 
these assumptions for a particular CD control 
problem• Whether or not the assumptions are 
accurate can mean success or failure of the 
control system design based on one of the 
models• 

4 . 1 . 1 .  C e n t r o s y m m e t r i c .  Centrosymmetric mod- 
els have elements that are symmetric about 
the center of the matrix• If a paper machine 
were constructed to be symmetric with respect to 
a vertical plane through the center of the sheet, 
then the physical CD response would be e x a c t l y  

centrosymmetric. Centrosymmetric models can 
represent edge effects observed in the CD 
response, that is, slight differences in response 
observed at different distances from the center of 
the sheet• An example of a centrosymmetric 
matrix P~'~ is given by (8). If it is further 
assumed that the effect of actuator adjustment at 
position i on response at position j is the same as 
that at position j on response at position i, then 

Pl l  P12 " '" Pl,,, 

P 2 1  P 2 2  P 2 3  ' ' "  

: P 3 2  " . " 

P ,,,1 " .  Prom 

0 PinE " 

• 0 " .  : 

: " •  " •  . 

0 

PEn 
• ° ° 

t " " "" " ' .  0 

. . . . . . . . . . . .  

nX~ 

. . . . . . . . . . . .  

0 " . .  : 
• ° • ; 

0 

Pro1 

P 2 m  P 2 1 j  

0 P " I  

• ° 

• ° 

• ° 

• ° • 

• ° ° 

• • ° 

: "- .  0 

• " . : Pro2 

P , ,m  " " " 

• • P 3 2  

• " " P 2 3  P 2 2  

Pl,,, " " " P I 2  

(8) 
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p ~ m  = 

~ 1  P2  " ' "  P m  0 " ' "  0 p ~  " '"  p21 

Pz Pl  P2 " '"  p ~  0 " "" " 

Pz Pl P2 " ' "  Pm ". ". P~ 

Pm " P2 Pl  P2 " . ". " 0 

0 Pm : P2 " ' .  "" : p ~  0 " 

" 0 P m  : " ' .  "" PZ " P m  0 

0 " "" . . . .  P2  P l  P2  " Pm 

P m  " .  Pm " ' "  P2  P l  P2  

• " "" "" " "  0 P m  " ' "  Pz P l  Pz 

~P2 " ' "  P m  0 " ' "  0 P ,  " ' "  P2  PJ 

n X? l  

(9) 

P~'s m is centrosymmetric symmetr ic .  When P~'~ is 
Pcss in this paper. symmetric it is denoted by ~.m 

4.1.2. Toepli tz  symmetr ic .  In Toeplitz sym- 
metric models the same element is repeated 
along each diagonal of the matrix. The 
assumption, that changes observed downstream 
from one actuator caused by adjustments at the 
nearest neighboring actuators is independent of 
position across the machine, leads to a Toeplitz 

n,m symmetric model. The CD response model PCD 
in (4) is Toeplitz symmetric~this is the CD 
response model most often found in the 
literature. Toeplitz symmetric CD response 

PCD in this paper. models are denoted by ~,m = p~.m 

4.1.3. Circulant symmetr ic .  A circulant sym- 
metric structure p~.m is given by (9). 

For simplicity, p~.m is often written 
circ(pj, P2 . . . . .  Pm, 0 . . . . .  O, p . . . . . .  P2). Cir- 
culant symmetric matrices are both Toeplitz 
symmetric and centrosymmetric. As such, p~,m 
represents CD response interactions of a paper 
machine without  edge effects similar to the 
truncated infinite dimensional model cited by 
Wilhelm and Fjeld (1983). Such a model 
structure is appropriate for circular machines, as 
are used in some plastic extrusion applications 
(Martino, 1991). Circulant matrices commute 
with one another--the eigenvalues of the 
product of two circulant matrices are equal to 
the product of the eigenvalues of the two 
matrices. Circulant matrices lend valuable 
insight about properties of related CD response 
models, because their eigenvalues and eigenvec- 
tors can be determined by inspection. Eigen- 
values 3q of circulant symmetric matrices are 
given by (10). 

3q(circ ( p , ,  P2 . . . . .  P m ,  O , . . . ,  O, Pm . . . . .  P2)) 
= p t + 2 R e [ w i ] P 2 + 2 R e  [wi]p32 

+ . - .  + 2Re  [w~-~]pm (10) 

where w~ is one of the n roots of w ~ = 1  (for 

proof see Bellman, 1970). Equation (10) is a 
powerful tool for bounding the eigenvalues of 
p~,m despite correlated element uncertainties 
given by P i e [ P i m ~ . , P ~ ] .  Evaluating (10) is 
straightforward even when uncertain pi  are 
bounded on the real axis--addition of 
uncorrelated line segments is all that is required. 

4.2. Transformat ions  relating special  models  
Transformations given in this section relate 

,,m p~.,, the special models Pcss and to a larger 
circulant symmetric model p~+2(m-l).m. The 
transformations and subsequent eigenvalue 
bounds will demonstrate that the three models 
closely approximate one another for large 
dimensions n-- the large system dimensions 
usually encountered in CD paper response 
control. These transformations are used to prove 
the theorems in the following section. 
Transformation 1. Orcu lan t  s ymmet r i c  to 
Toepli tz  symmetr ic .  The transformation from 
the circulant symmetric matrix p~+2(m-l),m to the 
Toeplitz symmetric matrix p~,m is given by 

p~.,m = t o n , m  ~ r D n + 2 ( m - l ) , m D n , m  (11) 
~, l l  C - * T /  ~ C  I ~ C ~ T  

where 

on,m ~r (0n×(m-0 In×n 0~×(m--I)) 
• • C ~ T ]  = 

E ~ n X n + 2 ( m - - 1 ) .  

This transformation extracts the center section of 
a circulant symmetric matrix, which is Toeplitz 
symmetric. 
Transformation 2. Toepl i tz  s ymme t r i c  to centro- 
symmetr ic  symmetr ic .  The transformation from 
the Toeplitz symmetric Pff' '  defined in Transfor- 
mation 1 above to the centrosymmetric 
symmetr ic  matrix P~'s'~ is given by 

n,m l ' c n , m $ l / 2 p n , r n [ c n , m $ l / 2  (12) Pcss = ~ocss/ XT ~?Jcss/ 
where 

n , m _  . . Scss - diag (st, s2 . . . . .  sx, . s2, sl) 
~ n X n ,  S i > 0 
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is a diagonal centrosymmetric matrix with 
x = n / 2  for even n or x = (n + 1)/2 for odd n. 
(Scalar sx appears twice for even n.) 

5. ROBUST STABILITY AND PERFORMANCE 
RESULTS 

The robust stability and performance results 
are based on the following arguments: the 
minimum and maximum singular values of a 
Toeplitz symmetric and a centrosymmetric 
symmetric matrix are bounded by those of a 
circulant symmetric matrix of larger size. Bounds 
on the singular values of a circulant symmetric 
matrix in the presence of parameter uncertainty 
can be easily established through (10). The 
proofs of the results are in the appendix. 

Theorem 1. If the SISO control system with loop 
transfer function kp(s)c(s) is robustly stable for 
all p(s)  ~ ~r and all k E [Omin(p~+2(m-l)'m), 
Omax(p~+2tm-l)'m)], where p~+2(m-l),m is positive 
definite symmetric, then the MIMO control 
systems with the loop transfer functions 

[P~'mp(s)l{c(s)} 

[P~-'mp(s)]{c(s)} 

[P~sP (s)] { c (s) (S~'s"~) - l} 

are robustly stable for all p ( s ) e ~  for all 
dimensions n -< q. 

Theorem 2. If the SISO control system with loop 
transfer function kp(s)c(s) exhibits robust 
performance in the sense that 

Iw(ito)(1 + kp(iw)c(ito))-ll  < 1 

for all to, for all p(s)  ~ ~r, and for all 

k E [Omin(p~+2(m-l)'m), Omax(t~+2(m-l)'m)], 

where p~+2(m-~).m is positive definite symmetric, 
then the MIMO control systems with the loop 
transfer functions given in Theorem 1 exhibit 
robust performance for all dimensions n-< q in 
the sense that 

Omax[W(ito)(1 + P~'mp(ito)c(ito))-l] < 1 Via 

Om~x[w(ito)(l + P~'mp(ito)(c(iw))-l] < 1 Vto 

Omax[w(ito)(l + P~'~sp(ito)c(ito)(S~'sms)-l) -l] 

< 1  Vto 

for all p(s) e :r. 
Not only can robust stability and robust 

performance of properly designed MIMO CD 
response control systems be guaranteed, but 
robust failure tolerance can be guaranteed as 
well. That is, both robust stability and robust 
performance requirements of the remaining 

system will be satisfied when one or more 
sensors and actuators are taken out of the 
control loop. Actuator/sensor failure is equiv- 
alent to premultiplication and postmultiplication 
of the loop transfer function by R r and R, 
respectively, where R e ~n×, is a matrix (r < n) 
such that RrR  = F ×'. Matrix R r is such that R r p  
eliminates rows of P where sensors fail. Matrix R 
is such that CR eliminates columns of C where 
actuators fail. Robust failure tolerance of MIMO 
CD response control systems with diagonal 
controllers is guaranteed when the conditions of 
Theorem 3 are satisfied. 

Theorem 3. Let R ~ ~n×r be a matrix ( r < n )  
such that RrA  eliminates rows of A with 
RrR = F ×r. If the SISO control system with loop 
transfer function kp(s)c(s) exhibits robust 
performance in the sense that 

Iw(ito)(1 + kp(iw)c(ito))-~l < 1 

for all to, for all p(s)e~r,  and for all 
k ~ [Omin(p~+2(m-l)'m), (7max(p~+2(m-l)'m)], where 
p~+2(m-1).m is positive definite symmetric, then 
the MIMO control systems with the loop transfer 
functions given in Theorem 1 premultiplied by 
R r and postmultiplied by R exhibit robust failure 
tolerance for all dimensions r < n  <-q in the 
sense that the systems are robustly stable and 

Omax[W(ito)(I + Rrp~'mp(ito)c(ito)R) -1] 
< 1  Vto 

Omax[W(ito)(I + Rrp~'mp(ito)c(ito)R)-l)] 

< 1  Vto 
amax[W(ito)(I + RrP~'smsp(ito)c(ito) 

< 1 voJ 

for all p(s)  ~ ~t. 

6. CONTROLLER SYNTHESIS METHODS 

In this section two design methods utilizing 
results in Theorems 1-3 are presented for CD 
response control. The design methods lead to 
diagonal and full matrix transfer function 
controller structures. The proposed methods 
enable design of CD response controllers for 
robust performance, where previous design 
methods cannot be successfully applied. 

Prior to this work, two alternatives existed 
that could theoretically address the problem of 
designing CD response controllers for robust 
performance. The first design method is 
DK-iteration (commonly called "#-synthesis"), 
which is summarized in Doyle (1987). This 
method involves iterative Ho:optimization, is 
only directly applicable to processes with 
complex uncertainties and gives high-order 
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full-matrix controllers. The second alternative is 
the robust decentralized controller design 
method of Skogestad and Morari (1989). It is 
beyond the capability of the existing software to 
design robust CD response controllers using 
either of these methods because realistic CD 
problem sizes involve huge It problems with 
repeated real scalar perturbation blocks. 

The following design methods can be easily 
applied to CD response control problems with 
many inputs and outputs. Large numbers of 
parameter uncertainties in the scalar dynamics 
and interaction parameter uncertainties can also 
be accommodated. 

6.1. Decentralized controller design 
It has been demonstrated that the eigenvalues 

of positive definite CD response interaction 
n,m matrices PCD can be conveniently bounded on 

the real axis. By treating this segment on the real 
axis as uncertainty in gain k, it is possible to 
design a robust diagonal controller c(s)(S"m) -~ 
for the MIMO process P~'~(s)=p(s)P~'~ by 
designing a robust controller c(s) for the SISO 
process kp(s). The gain k can reflect CD 
interaction uncertainty through bounded para- 
meters Pi in (10). Interaction uncertainty and 
more severe CD response interactions lead to 
eigenvalues on a slightly different/larger segment 
of the real axis. Most importantly, by treating 
interaction uncertainty in this way, robust 
performance of the MIMO system is implied by 
robust performance of the SISO system. 

6.1.1. Synthesis method. For a CD response 
n,m model with interactions given by p~.,m or Pcss, 

the diagonal controller synthesis method is 
outlined as follows. 
(1) Determine the circulant symmetric matrix 

p~+2(m-I) ,m corresponding to the model p~,m 
n,m or Pcss (these are defined in Section 4.1). 

(2) Model uncertainty in SISO dynamics p(s)= 
p,(s)pd(S) as in (6). 

(3) Calculate ~.min(P~ +2(ra-l)'m) and 
•max (p~+2(m- l ) ,m)  from (10). 

(4) If ~.i(P~ +2( '-I) ' ' )  > 0  Yi continue--scalar 
times diagonal integral control is possible 
only for positive definite matrices 
p~+ 2(m - 1),m. 

(5) Select a performance weight w(s) as in (2). 
(6) Design a controller c(s) for robust perfor- 

mance for the SISO process kp(s) with 
p(s) • z~, where k ~. [ ,~min(e~+2(m-l) 'm),  
/~maxkgpn+2(m-t)'m~lc 11 (see Section 1.2). 

(7) Scale MIMO controller C(s)= c(s)F ×" with 
the appropriate matrix (S "'m)-j (from 
Theorem 1) for robust performance of the 
MIMO system. This scaling is only necessary 

when the plant matrix is centrosymmetric 
symmetric. 

Alternative methods exist for the SISO robust 
performance problem in Step (6). The internal 
model control (IMC) design method presented 
by Laughlin et al. (1986) for robust performance 
despite model parameter uncertainties solves this 
problem. The IMC method involves the design 
of an H2-optimal controller with a detuning 
filter. Increasing the filtering decreases the 
control action and increases robustness to model 
uncertainty. The control action may need to be 
limited to prevent damage to the slice. 

6.1.2. Example 1. The first example problem 
is design of a diagonal controller for the system 
p2%3(S) in (5), with interactions "CDO211"3 = p2O.3 
defined as follows: 

p~ = 1.0; P2 • [0.1, 0.2]; P3 • [--0. l, --0.05]. 
(13) 

These values are typical of those reported in 
Table 1 from both experiments and theory. 

Uncertain first-order actuator dynamics with 
time-delay are given by 

k,e-  a~ 
p(s) -- - -  

"t',s + 1 (14) 

k, e [0.9,1.1]; 0 • [0 .8 ,  1.2]; v~•[0.7,1.3]. 

Minimum and maximum eigenvalues of p~4.3 are 
given by (10) as follows: 

Am,,(P 24'3) = 0.4 

Z .... (p24.3) = 1.3. 

Since p~a.3 is positive definite, the design 
procedure applies. The performance weight w(s) 
is selected to assure a bandwidth of at least 
0.25 radsec -l (b = 1/2 and a =4).  Next, a SISO 
controller is designed for kp(s) with k •  
[0.4, 1.3] following the IMC design procedure of 
Laughlin et al. (1986). In this case the IMC 
controller results in a Smith predictor controller 
given by 

1 s + l  
c(s) = 0.85 2s + 1 -e-""  (15) 

Figure 4 is the region Nyquist plot for this 
example. Since none of the regions sr(ito) 
contain ( -1 ,0 ) ,  the SISO system is robustly 
stable. In Fig. 5, Curve 1 is /~(~o) for this 
example, where /~(to) is the supremum of 
[w(iw)[1 +p(iw)c(io))]-l[ over all p(s) • ~r. 
Since it(o)) < 1 for all to, sufficient conditions in 
Theorem 2 for robust performance of the MIMO 
system are satisfied. 

The value of the special robustness results 
derived for the special structure of the CD 
problem can be seen from the following. 
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FIG. 4. Robust stability test for kp(s )c(s )  for all p(s )  ~ :t and 

for all k e [~.mi.(p24'3), Amax(P24'3)]. 
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FIG. 5. Plots of #(to) for the CD response control system 
designed in Section 6.1.2. Curve 1 is #(to) for the SISO 
system. When #(to) is less than one for all frequencies, 
robust performance for the MIMO system is guaranteed (by 
Theorem 2). Curve 2 is #(to) for the MIMO system with real 

parameter uncertainties covered by complex uncertainties. 

Existing structured singular value software (e.g. 
#-tools, Balas et  a l . ,  1991) can be used only by 
covering the real parameter uncertainties with 
complex uncertainties--this leads to the conser- 
vative estimate of #(to) shown as Curve 2 in Fig. 
5. The sufficient conditions from Theorem 2 for 
MIMO robust performance are satisfied for the 
20 x 20 system, but existing software fails to 
indicate this result. 

The bound for #(to) from Theorem 2 is 
actually not conservative at all for this example. 
#(to) for the MIMO system was calculated by 
extensive gridding (this took many hours on a 
Sun Sparcstation 2) and found to be within 1% 
of #(to) for the SISO system (Curve 1). 

The resulting MIMO controller for this 
example is simply c ( s ) l  2°×2°. Response of the 
closed-loop system to step disturbances is 
illustrated in Fig. 6. Parameters in the process 
model used for the simulation given by 

p ( s )  - - -  
1.1e -o.8~ 

0 .7s+1  

1.0 

0.2 

-0.1 

0 

0 

0.2 -0 .1  0 . . .  0 

1.0 0.2 " • " •. : 

0.2 " . .  ". " . .  0 

" . .  " . .  0.2 - 0 . 1  

"- .  " . .  0.2 1.0 0.2 

• . • 0 - 0 . 1  0.2 1.0j 

(16) 

u 1 
b) R e s p o n s e  to db 

1 . 0 - ~ 0  
0.0 2 
-1.0-' 

16 

o ~ CD position 

u 1 

FIG. 6. Simulations of CD response to step disturbances d., 
d b and d c. Note that response to D b in the direction of the 
vector corresponding to the minimum singular value is 

sluggish. 

are far from their mean values to demonstrate 
controller robustness. The three step distur- 
bances used in the simulations enter the system 
in different directions: 

da = (1, 0.8, 0.4, -0 .4,  -0.8,  -1 ,  -0 .8,  

-0.4,  0.4, 0.8, 1, 0.8, 0.4, -0 .4,  -0 .8,  

-1 ,  -0.8,  -0 .4,  0.4, 0.8) 

db----(1,  --1, 1, --1, 1, --1, 1, --1, 1, --1, 1, 

-1 ,  1, -1 ,  1, -1 ,  1, -1 ,  1, - 1 )  

dc = (1, 0.9, 0.7, 0.4, 0, -1 ,  1, - 1 ,  

-0.7,  -0.3,  0.3, 0.7, 1, -1 ,  1, 0, 

-0.4,  -0.7,  -0 .9,  -1) .  

Note that the response to disturbance db  is more 
sluggish than that to da. Disturbance d b enters 
with a large component in the direction of the 
vector corresponding to the minimum singular 
value and is therefore difficult to reject. This 
behavior could have been predicted by calculat- 
ing the vector vi corresponding to the minimum 
eigenvalue (and hence singular value) of the 
circulant symmetric matrix p20.3 = circ (1, 0.2, 
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- 0 . 1 , 0  . . . .  , 0 , - 0 . 1 , 0 . 2 ) ,  with w i = - 1  in (10). 
Disturbance da enters in a more favorable 
direction. The response to disturbance dc 
displays elements of both favorable and un- 
favorable directions. We see for this example 
that the controller rejects disturbances with large 
spatial second derivatives in the cross-direction 
much more poorly than disturbances that have 
smooth spatial variation in the cross-direction. A 
disturbance like db also causes more stress on 
the slice--this makes a disturbance like db 
particularly bothersome. For a more detailed 
discussion of the effects of disturbance direction, 
see Skogestad et al. (1988). 

6.2. Model-inverse-based controller design 
In case the CD response mode is not positive 

definite, Laughlin (1988) discusses the design of 
a diagonal precompensator C(s) to make it 
positive definite. If this scheme fails, the 
following technique is useful when interaction 
uncertainty is small. The SISO controller c(s) is 
designed as in Section 6.1. The MIMO controller 
is calculated from c(s): 

C ( s )  = C ( S ) ( P ~ ' ~ )  - 1 .  (17) 

The model-inverse-based controller design 
procedure applied to the system with CD 
response model PZ~3(s), with exact interactions 
P 20'3-1~20'3 defined by mean values in (13), C D  - -  ~ T  

scalar dynamics defined by (14), and perfor- 
mance requirement w(s) defined by (2) with 
b = 1/2 and a = 4, leads to the controller 

s + l  
C(s) - (Pg'3)--~ (18) 

• s +  1 - e  -1 

with IMC filter parameter • = 1. For • = 0, C(s) 
is the H2-optimal controller for step disturbances 
(Morari and Zafiriou, 1989). A larger • detunes 
the H2-optimal controller to give smaller control 
actions and increased robustness to model 
uncertainty. The control action may need to be 
limited to prevent damage to the slice. For 
simplicity, in this example we consider only the 
detuning required to increase robustness to 
model uncertainty. Detuning the controller with 
• = 1 was required to satisfy the sufficient 
conditions for robust performance despite 
parametric uncertainties in the scalar dynamics. 
The #(to) plot for this system is illustrated as 
Curve 1 in Fig. 7 indicating that the robust 
performance objective has been met. 

When CD response interaction uncertainty is 
significant, the above design procedure does not 
apply. Unless structured singular value analysis 
is used to evaluate robust performance with 
respect to interaction uncertainties and real 

1.5 , ,,,,,,,, , ,,,,,,,, , , , , , , , ,  

Z~ 0.5 

° 

• ] "" 

I I I I I [ 1 1 1  I I I I I l l l  1 i i i i i  I 

10-2 10-1 100 101 

Frequency 

FIG. 7. Plots of #(to) for the CD response control systems 
designed in Section 6.2. Curve 1 is #(to) for the SISO system 
[this is a conservative bound on #(to) for the MIMO system 
with no interaction uncertainties]. Curve 2 is #(to) for the 
MIMO system with interaction and actuator uncertainties 
covered with a conservative norm-bounded multiplicative 

complex uncertainty. 

parameter uncertainties in the scalar dynamics, 
the only alternative is to detune the controller 
for robust performance with respect to a 
conservative norm-bounded multiplicative un- 
certainty 1 + Lm(s) with tImax[Lm(s)] <-]lm(s)l, 
where Ilm(S)l is given by 

Ilm(S)l = Ilil + Ild(S)l + Ilil Ild(S)l, (19) 

li is the multiplicative error representing 
interaction parameter uncertainties and ld(S) is 
the multiplicative error representing scalar 
dynamic uncertainties. For example, consider 
the uncertain interaction parameters given by 
(13) in model p~,.3 written in the form 
t ' ~  '3 = P~"3[1 + ( P ~ " 3 ) - ' e g q ,  with nominal 
/5~0.3 given by mean values in (13) and 
norm-bounded elements e~ in additive interaction 
error E 2°'3 given by l e d = 0 ,  leal-<0.05 and 
le31 - 0.025. Let E 24'3 be the circulant matrix that 
would result in E-~ °'3 after "chopping off" the 
corners. The maximum singular value of E~ 4'3 is 
equal to 0.15 [from (10)]. Since Omax[E-~'3]~-~ 
Omax[E~ 4'3] an upper bound on the magnitude 
of multiplicative interaction error Ilil = 
Omax[(P.~'m)-lE 20'3] is easily calculated as 
follows: 

Ilil < 0 uP2°'3x-110 fE 24'31 - -  maxt l ,  T ) ] m a x [  C 1 

= 1.8 x 0.15 = 0.27. 

The magnitude of multiplicative error IG(s)l 
representing scalar dynamic uncertainties in (14) 
(by p(s)=,6(s)[1 + ld(s)]) is given by a formula 
in Laughlin et al. (1987). Magnitude of the 
resulting l=(s) in (19) is displayed in Fig. 8. The 
IMC filter parameter required to detune the 
controller in (18) for robust performance with 
respect to perturbation Lm(s) and the perfor- 
mance weight w(s) defined by (2) with b = 1/2 
and a = 4 is • = 2.6. When the indicated nominal 
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FIG. 8. Magnitude of multiplicative error Ira(s) used for the 
model-inverse-based design in Section 6.2 with interaction 

parameter uncertainties. 

model and single multiplicative perturbation 
Lm(s) are considered in this example #(to) is 
easily calculated because the nominal loop 
transfer function is scalar p(s)c(s) times identity. 
The plot of #(co) for this design is displayed as 
Curve 2 in Fig. 7. Robustness with respect to 
interaction parameter uncertainties requires 
greater detuning of the controller--bandwidth of 
the nominal control system is reduced to achieve 
robustness with respect to perturbation L,,(s). 
Conservativeness introduced by using the 
lumped uncertainty Lm(s) in the design proce- 
dure will be more severe for high condition 
number processes. 

6. 3. Generality of proposed design methods 
Consider CD response interactions in Table 1 to 

be elements in PT ~'m, where m is the appropriate 
integer. Eigenvalue bounds for the models 
calculated from p20+2~m-1),,, are displayed in 
Table 2. The ratios ~.max/3.mi, equal to condition 
numbers for positive definite models are listed in 
Table 2 as well. Table 2 indicates that the 
diagonal controller design procedure developed 
in this paper can be applied to eight of the 
models reported in the literature (those that are 
positive definite). The model-inverse-based or 
banded (from Laughlin, 1988) controller design 

TABLE 2. CONDITION NUMBERS AND EIGENVALUE BOUNDS 
FOR C D  RESPONSE MODELS IN TABLE 1 

/~'min ~rnax Y 

(1)* - 1 . 2  2.44 
(2) - 0 . 9  1.16 
(3) 0.20 1.80 9.00 
(4) 0.74 1.38 1.86 
(5) 0.60 1.40 2.33 
(6) 0.20 1.80 9.00 
(7) - 1 . 0  1.25 
(8)* 0.20 1.01 5.05 
(9)* 0.19 3.26 17.2 

(10)* - 0 . 4  6.40 
(11)* - 1 . 0  1.18 
(12)* 0.20 1.19 5.95 
(13)* 0.60 1.13 1.88 

See legend to Table 1. 

procedure would have to be used for models that 
are not positive definite. 

7. CONCLUSIONS 

The procedure presented in this paper enables 
design of robust, large-dimension, diagonal 
controllers for CD response in paper manufac- 
turing. Robust performance is addressed in the 
spirit of the structured singular value theory by 
Doyle (1982). Robust performance of a particu- 
lar SISO control system design based on singular 
value bounds of the CD interaction matrix 
implies robust performance of the corresponding 
MIMO system despite interaction parameter 
uncertanties. Moreover, the control system 
based on such a design exhibits robust 
actuator/sensor failure tolerance. 

The robust controller design procedure de- 
veloped in this paper is applicable to cross- 
machine-direction control problems other than 
paper basis-weight control. Similar interaction 
models result, regardless of the CD response 
being controlled or the actuator selected. Other 
candidate CD control systems in the paper 
manufacturing industry include: water sprays 
immediately downstream of the slice for CD 
basis-weight control (Wallace, 1981); hot and 
cold air showers on calendar stack for CD 
caliper control (Wilhelm and Fjeld, 1983); 
sectionalized steam boxes or steam showers for 
CD moisture control (Wallace, 1981). Applica- 
tions outside the paper manufacturing industry 
include plastic sheet fabrication and thin film 
coating operations (Braatz et al., 1992). When- 
ever wide flat sheets of uniform products are 
manufactured, a similar control problem is 
encountered. 

It was shown that the paper machine slice 
actuator has a significant effect on interactions in 
the CD response model. The CD basis-weight 
response model can be tailored to improve 
controllability with the aid of the dimensionless 
slice design parameter Da and slice actuator 
model. Cross-machine-direction response models 
can be calculated as direct functions of Da if 
basis-weight is assumed to be proportional to the 
area under the slice in Fig. 3 (this assumption 
corresponds to an infinitely fast machine with no 
CD wave propagation on the Fourdrinier wire). 
Eigenvalues and condition number bounds based 
o n  p20+2(ra-I),m for the resulting CD response 
models pET°'' are plotted as functions of Da in 
Fig. 9. Recall that in the proposed controller 
design procedures large condition numbers 
translate into large gain uncertainty--hence the 
sufficient conditions for robust performance 
require highly detuned controllers. Robust 
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FIG. 9. Eigenvalue and condition number bounds of CD 
response model p~0.,, as functions of the dimensionless 
actuator design parameter Da (assuming no CD wave 

propagation on the Fourdrinier wire). 

diagonal controllers with good performance are 
therefore possible on paper machines with slices 
described by large values of DA. Since 
elimination of narrow, uneven streaks in paper 
requires narrow actuator spacing, more flexible 
slices are necessary to maintain large DA if a 
diagonal or banded controller is desired. In his 
review of the application of control methods to 
the pulp and paper industry, Dumont (1986) 
recognizes that, because the industry is old, 
many mills were not designed with concern for 
their controllability. Upgrading slice actuators 
with CD control in mind may well be required. 
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APPENDIX: PROOFS 

This appendix contains proofs for the theorems presented 
in the paper. First bounds on singular values (and hence 
bounds on eigenvalues for positive definite Pet))  of CD 

Pep  are response interaction models ~ ' '  derived. All eigen- 
values of ~T "'~ and appropriately scaled P~c~ are found on 
the same segment of the real axis as are those of a 
corresponding matrix p~+2(,,-o.,,,. The bounds form the 
basis for the robust stability, robust performance and robust 
failure tolerance results in Theorems 1-3 in which this 
segment of the real axis is treated as if it were gain 
uncertainty in a SISO model. 

Bounds from singular values of  p~.+2(m-I).m 
Lemma 5 establishes that the singular values of positive 

ecss  are definite symmetric p~,m and ,,m bounded by those of 
positive definite symmetric p~+Z(m-O.,,,. Lcmma 4 is used to 
prove Lemma 5. Theorems 1-3 follow from Lemma 5. 

Lemma 4. The singular values of matrix A bound the 
singular values of matrix B when A~9~  ~xq is a real 
symmetric matrix and B e  ~t ~×" (n < q )  is equal to RrAR 
where R ~ ~t q×" is such that RTR = 1~×~: 

o m l n ( A  ) ~ o m i n ( B )  < O m a x ( B  ) --- O m a x ( A  ) ,  

Proof of  Lemma 4. Since matrix A is symmetric, 
A = AV2A trz, where A 1/2 is symmetric. Since RTE ~nx# the 
range of R is a subset of ~*. Then, by definition 

OmadA"2)= max IIAl/Exll2 
~,~,*0 11~ll2 

IIA'm~ll2 -> max 
, ~ R a n g e  (R) :#0  II~lh 

because the maximization on the right occurs over a smaller 
set ~ R a n g e ( R ) = ~ * .  Since Ry is nontrivial for all 
nontrivial y: 

IIA v2~ ll2 IIA VZR~ll~ 
max max 

~ . . ~ ) * o  11-~112 ; ~ - * o  IIR~II2 " 

When A is symmetric, then B = RTAR is symmetric and the 
following equalities hold: 

IIA lt2R~ll2 [yTRT(A trz)r A l/2Sy~ I,'2 
max . = max 
~.o IIRylh ; . o  [ ~ ] 

," yT R rAR-~ ~/2 =maxl l 
;.o L y y J 

-T = max f ~ ' ]  I/2 
; , o  L y y J  

= max  [ Y ~ ( ~ " ~ ) ~ " ~ Y q  ' ' ~  

; .oL ~ J 
IIB~/2Ylh 

m a x -  
;.o II~lh 

= Om.dBt~). 

Therefore, o'm~(A tr2) --> O'm~(B ~r2) and O'm~(A) -> o'=~(B) 
when A is symmetric. The same analysis with max replaced 
by min and -> replaced by < leads to omi.(A v2) ~ o,.~.(B ~/2) 
and Omi.(A) -< O'min(B) when A is symmetric. 

Further, if A is positive definite, then 

(R~, A R ; )  = (fi, RrAR~) = (~, B; )  > 0  V~:#0 

so B is positive definite. [] 

Since matrices P ~ "  and PCSSn'm result from transformations 

(sn.m)'t2RrAR(Sn.m),/2 

where matrix A is p~+2(m-I).m, I.emma 4 can be used to 
bound their singular values by those of the circulant 
symmetric matrix. 

Lemma 5. If p~+2(m-1),m is positive definite symmetric, then 
~ "  and P~ds"~ defined by Transformations 1 and 2 are 
positive definite symmetric and singular values of 
~c  +2("-0,m bound the singular values of matrices p~,m and 
P ~  as follows for all dimensions n <-q: 

n,rn Omi,,(~c+2("*-0 . ' ' )  < oi(P T ) - Om~(pq +2( ' - t ) ' ' ' )  

O /" o q  +2 (m - -  I ) . m ' ~  . ~  a I / c n . m ~  - I / 2 D n . m l ' c n . m ~ t - -  I / 2 ~  
mint, z C / - -  ~ i t , [ ° C S S J  * C S S t , ° C S S /  / 

<__ a~.ax(~ ÷~'~- D'% 

Proof of  Lemma 5. Matrix ~/c +2(m-I)'m from which matrices 
PT ' '  and P"c~"~ are derived in Transformation 1 and 2 is 
symmetric. Let p~+2(m-O,m be positive definite as well. By 
definition, R r R = I  ~×~ in Transformation 1. Also by 
definition matrix Scs s~''~ in Transformation 2 is real positive 
definite diagonal. Therefore Lemma 4 proves the bounds on 
singular values of p~..m and Pcssn'm and that P~:" and Pcss"" are 
positive definite for all dimensions n -< q. [] 

Lemma 4 exploits the knowledge that Toeplitz symmetric 
matrices are cut out of the center of a larger dimension 
circulant symmetric matrix through Transformation 1. 
[,emma 5 then guarantees that eigenvalues of positive 
definite ~c  +2(m-O'" will bound those of P~-'' for all 
dimensions n less than or equal to q. Since centrosymmetric 
matrices P c ~  are derived from Toeplitz symmetric matrices 
through Transformation 2, their eigenvalues can be bounded 
by those of a higher dimension circulant symmetric matrix as 
well. 

Proofs of  Theorems 1-3 
Proof of Theorem 1. If pq+2(m-o,,, is positive definite 
symmetric, then by Lemma 5 the following matrices with 
n<-q are positive definite symmetric with eigenvalues 
] ~ [ a  [ l D q + 2 ( r a - - l ) . m ' t  a / D q + 2 ( m - - I ) . m ' ~ ] .  
~ i  ~ t V m i n ~ * C  r ,  Wmax~XC )1" 

p~+2(m t),m 

(s~'~"~)-"2P~'~(s~'~"~)'/2. 

Each of the symmetric matrices above can be expressed as 
UAU r, where U is unitary, and A = diag (~.i)- Since the 
SISO control system with loop transfer function kp(s)c(s) is 
robustly stable for all p(s) and for all k ¢~,i, the fully 
diagonal MIMO control system with loop transfer function 
Ap(s)c(s) is robustly stable for all dimensions n <-q. (Robust 
stability for a fully diagonal system is equivalent to robust 
stability of all individual loops.) Premultiplication of the loop 

T I transfer function by U and postmultiplication by U = U-  
do not change the robust stability of the system. Therefore 
the MIMO control system with loop transfer function 
UAp(s)c(s)U r is robustly stable. Since p(s) and c(s) are 
scalars, the control system with loop transfer function 

T T UAU p(s)c(s) is robustly stable. Now UAU is equal to 
n m I / 2  n m n m 112 ( S ~ ) -  P~:'ss(S~:'ss)- for the third matrix above where 

S~s-~s is either scalar times identity or centrosymmetric 
n m 1/2 m n m I/2 diagonal. Premultiplication of (S~:'~)- ~q'~(Si~'~)- by 

n , n  I/2 hc n b . m -""  a h e  t (S~'~) and postmultip" atio y (S~'ss)- nd t fac 
that diagonal matrices commute with one another proves the 
robust stability results. [] 

Proof of  Theorem 2. If pq+2(,.-t),,,, is positive definite 
symmetric, then by Theorem 1 the three matrices high- 
lighted in the proof of Theorem 1 are positive definite 

[ ~ "  ( g f * q + 2 ( m - - I ) , m "  t symmetric with eigenvalues ~,i ~ t"mi.~" c p, 
omx(~c+2¢ ' -O' ' ) ] .  Therefore, each of the matrices can be 
expressed as UAU r where U is unitary, and A = diag (gi)- 
Since the SISO control system with loop transfer function 
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kp(s)c(s) exhibits robust performance in the sense that 
[w(im)(1 + kp(ioJ)c(io~))-I[ < 1 for all to, for all p(s) ~ ~, 
and for all k = 2.  the fully diagonal MIMO control system 
with loop transfer function Ap(s)c(s) exhibits robust 
performance in the sense that 

Omax[W(Ro)(l + Ap(i¢o)c(i~o)) -t] < 1 VoJ 

for all p(s ) •  :~. (The maximal singular value of a diagonal 
matrix is equal to the magnitude of the largest diagonal 
element.) The maximum singular value is invariant to unitary 
transformation, so 

omax[w(i¢o)(l + UAp(iw)c(ioJ)UT) -I] < 1 Vw. 

Since p(ioJ) and c(iw) are scalars, 

~.,a~[w(iw)(l + UAUrp(iw)c(ioJ)) -I] < 1 Vw. 

Now UAU r is equal to/c,.,,,~-lrz~,,,m~c,.,,~-Jf2 ~ocssp • css~ocssJ in the third 
matrix listed in the proof of Theorem 1 above, where S ~  is 
centrosymmetric diagonal. Premultiplication of 

[w(i¢o)(l + UAUrp(iw)c(iw)) - l] 

by wcssJtC"'mxl/2 and postmultiplication by (S~s)  -1/2 do not 

n , m  change its maximum singular value ore. ~ when Scs s is 
ccntrosymmetric diagonal. This establishes the robust 
performance results. [] 

Proof of  Theorem 3. If p~+2(m-I),m is positive definite 
symmetric, then by Lemma 5 the three matrices highlighted 
in the proof of Theorem 1 are positive definite symmetric 
with eigenvalues AiE[om~n(P~+2("-°'"*), Om.x(~+2("-I)'m]. 
Actuator/sensor failure is equivalent to premuitiplication and 
postmultiplication of these three matrices by R r and R, 
respectively, where R ~ ~,nx, is a matrix with r < n such that 
RrR = 1 "x'. By Lemma 4 the eigenvalues of 

R r x R  

where X is one of the three matrices listed in the proof of 
Lemma 5 above, are bounded on the real axis by 
omi.(Pqc +2(m-1)'") and O.,.x(~C+2(m-l)"). Therefore, theor- 
ems 1 and 2 with the fact that S"XnRnXr=Rn×rs rxr for 
diagonal matrices S (appropriate rows and columms of S n×- 
are eliminated in S "×r) prove the robust stability and robust 
performance results for actuator/sensor failure. [] 


