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Abstract: A key bottleneck in the production of pharmaceuticals and many other 
products is the formation of crystals from solution. The control of the crystal size 
distribution can be critically important  for efficient downstream operations such as 
filtration and drying, and product  effectiveness (e.g., bioavailability, tablet stability). 
This paper provides an overview of recent developments in the control of crystal- 
lization processes, including activities in sensor technologies, model identification, 
experimental  design, process simulation, robustness analysis, and optimal control. 
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1. INTRODUCTION 

Control of crystallization processes is critical in 
a number of industries, including microelectron- 
ics, food, and pharmaceuticals, which constitute 
a significant and growing fraction of the world 
economy (Adler et al., 1998; Eisenberger, 1996). 
For example, the microelectronics industry has 
an average annual growth of 20%, with sales 
of $200 billion in 2001. Microelectronic devices 
are created by a large number of steps, most 
of which involve either the etching or growth of 
crystalline material. High performance feedback 
control is needed to achieve the small length scales 
required for future microelectronic devices to pro- 
vide high computat ional  speed (National Research 
Council, 1992; Semiconductor Industry Associa- 
tion, 2001). As another example, the pharmaceu- 
ticals industry grows 10-20% annually and had 
sales of $150 billion in 2000. In the pharmaceutical 
industry, the primary bottleneck to the operation 
of production-scale drug manufacturing facilities 
is associated with difficulties in controlling the 
size and shape distribution of crystals produced 
by complex crystallization processes (Kim, 2002; 
Rodriguez-Hornedo and Murphy, 1999; Shekunov 

and York, 2000). Poor control of this crystal size 
distribution can completely halt the production 
of pharmaceuticals, certainly a serious concern for 
the patients needing the therapeutic benefit of the 
drug. 

This paper provides an overview of recent ad- 
vances in the control of the formation of large 
numbers of crystals from solution, which is a key 
bottleneck in the production of pharmaceuticals 
and many other products. For efficient down- 
stream operations (such as filtration and dry- 
ing) and product  effectiveness (e.g., bioavallabil- 
ity, tablet stability), the control of the crystal 
size distribution can be critically important.  Also 
important  are the crystal purity and the crystal 
shape. The crystal size and shape affect the dis- 
solution rate, which is important  in most phar- 
maceutical applications. In the pharmaceutical  
industry, the relative impact of drug benefit versus 
adverse side effects can depend on the dissolution 
rate. Control of crystal size and shape can enable 
the optimization of the dissolution rate to maxi- 
mize the benefit while minimizing the side effects. 
Poor control of crystal size and shape can result 
in unacceptably long filtration or drying times, or 
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Fig. 1. Microscope image of paracetamol  crystals 
taken from a batch crystallizer (paracetamol 
is the active ingredient in Tylenol). 

in extra  processing steps, such as recrystallization 
or milling. Pur i ty  is especially important  in the 
food and pharmaceut ical  industries, in which the 
crystals will be consumed. 

Figure 1 shows the variability in crystal shape 
tha t  can occur at a single position and time 
instance in a pharmaceut ical  crystallizer. This 
particular drug, paracetamol  (also known as ac- 
etaminophen),  can have three different crystal 
morphologies when grown from aqueous solution 
(Finnie et al., 1999). 

The fundamental  driving force for crystallization 
from solution is the difference between the chemi- 
cal potential  of the supersaturated solution and 
tha t  of the solid crystal  face (Kim and Myer- 
son, 1996; Mullin and Sohnel, 1977). It  is common 
to simplify this by representing the nucleation 
and growth kinetics in terms of the supersatura- 
tion, which is the difference between the solution 
concentration and the saturat ion concentration. 
Supersaturat ion is typically created in crystalliz- 
ers by cooling, evaporation, and/or  by adding a 
solvent for which the solute has a lower solubility. 

The challenges in controlling crystallization are 
significant. First, there are significant uncertain- 
ties associated with their kinetics. Par t  of the 
difficulty is tha t  the kinetic parameters  can be 
highly sensitive to small concentrations of contam- 
inating chemicals, which can result in kinetic pa- 
rameters  tha t  vary over time. Also, many crystals 
are sufficiently fragile tha t  the crystals break after 
formation, or the crystals can agglomerate or have 
erosion or other surface effects that  are difficult to 
characterize. Another  significant source of uncer- 
tainty in industrial crystallizers is associated with 
mixing. Although crystallization models usually 
assume perfect mixing, this assumption is rarely 
true for an industrial-scale crystallizer. 

Crystallization processes are highly nonlinear, 
and are modeled by coupled nonlinear algebraic 
integro-partial  differential equations. The very 
large number  of crystals is most efficiently de- 
scribed by a distribution (e.g., see Figure 2). For 
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Fig. 2. The crystal size distribution with two char- 
acteristic length scales (rl  and r2) and nu- 
cleation and growth kinetics identified from 
laboratory data  (Ma et al., 2002b). 

the case of distribution in shape as well as overall 
size, there are at least three independent variables 
in the equations. Simulating these equations can 
be challenging because the crystal size distribu- 
tion can be extremely sharp in practice, and can 
span many orders of magnitude in crystal length 
scale (0.01 nm to 200 #m) and time scale (20 ps 
to 200 min). The short t ime scales are especially 
relevant in impinging jet crystallizers, in which 
crystal nuclei are formed directly from solution 
under conditions of very high supersaturation.  

Another challenge in crystallization is associated 
with sensor limitations. The states in a crystallizer 
include the temperature,  the solution concentra- 
tion, and the crystal size and shape distribution. 
The solution concentration must be measured 
very accurately to specify the nucleation and 
growth kinetics. Obtaining an accurate measure- 
ment of the full crystal size distribution (CSD) 
is even more challenging. Hence it is desirable to 
estimate the states from the noisy measurements 
that  are available. 

The subsequent sections review recent efforts to- 
wards the control of crystallization processes. A 
description of the current s tatus of sensor tech- 
nologies is followed by a description of an ap- 
proach for model identification and experimental  
design. Next, recent advances are discussed in 
the simulation, robustness analysis, and optimal  
control of crystallization processes. 

2. SENSOR T E C H N O L O G I E S  

Measurements of both  the solution concentration 
and the crystal size distribution are necessary for 
effective identification and control. 



2.1 Solut ion Concentrat ion Measuremen t  
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The nucleation and growth rates are strongly de- 
pendent on the solution concentration, making 
its measurement necessary for estimating kinetic 
parameters and highly useful for feedback con- 
trol. A significant advantage of at tenuated to- 
tal reflection (ATR) Fourier transform infrared 
(FTIR) spectroscopy over most other methods 
for solution concentration measurement is the 
ability to provide simultaneous measurement of 
multiple chemical species. The feasibility of ATR- 
F T I R  spectroscopy for the in situ measurement 
of solution concentration in dense crystal slur- 
ries has been demonstrated (Dunuwila et al., 
1994; Dunuwila and Berglund, 1997; Groen and 
Roberts, 2001; Lewiner et al., 2001a; Lewiner et 
al., 2001b; Togkalidou et al., 2000). In ATR-FTIR 
spectroscopy, the infrared spectrum is character- 
istic of the vibrational structure of the substance 
in immediate contact with the ATR immersion 
probe. The crystal of the ATR probe is selected 
so that  the depth of penetrat ion of the infrared 
energy field into the solution is smaller than the 
liquid phase barrier between the probe and solid 
crystal particles. Hence, when the ATR probe is 
inserted into a crystal slurry, the substance in im- 
mediate contact  with the probe will be the liquid 
solution of the slurry with negligible interference 
from the solid crystals. 

The combination of ATR-FTIR spectroscopy with 
advanced chemometrics analysis can measure so- 
lution concentrations with accuracy as high as 
+0.1 wt% in dense crystal slurries (Togkalidou 
et al., 2001b). The absorbances measured in the 
mid-infrared range using ATR-FTIR are usually 
linearly related to the solution concentration, so 
nonlinear chemometrics analysis such as used in 
near-infrared spectroscopy (Amrhein et al., 1996) 
is usually unnecessary. The ATR-FTIR approach 
has been applied to a number of complex phar- 
maceutical compounds in academic and indus- 
trial laboratories. This includes applications to 
several polymorphic crystal systems with multi- 
ple solvents and solutes at Merck (Togkalidou et 
al., 2002a). Figures 3 and 4 show the ATR-FTIR 
spectra and solubility curve for the paracetamol- 
water system (Fujiwara et al., 2002), which is 
an especially challenging system due to the rela- 
tively low solubility of paracetamol in water. The 
reliability and consistency of this approach are 
expected to result in even more applications to 
industrial crystallization processes in future years, 
both in academia and industry. 

2.2 Crystal  Size Dis tr ibut ion Measuremen t  

To accurately model a crystallizer, it is necessary 
to characterize the size and shape distribution 
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Fig. 3. ATR-FTIR spectra for paracetamol-water 
solution at different concentrations and tem- 
perature, in ascending order: 0.010 g/g water 
(33°C), 0.015 g/g water (38°C), 0.020 g/g wa- 
ter (43°C), 0.025 g/g water (48°C), 0.030 g/g  
water (53°C), and 0.035 g/g water (58°C). 
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Fig. 4. Solubility curve for paracetamol in water 
constructed from ATR-FTIR spectroscopy 
and advanced chemometrics analysis. 

of the crystals in situ. Recently sensors have 
become available that  can take measurements in 
slurries with high crystal solids density, as occurs 
in industrial operations. 

The laser backscattering approach is based on 
inserting a probe directly in the crystallizer, fo- 
cusing a laser beam forward through a window 
in the probe tip, and collecting the laser light 
scattered back to the probe (see Figure 5). The 
updated version of the instrument, the Lasentec 
Focused Beam Reflectance Measuremen t  (FBRM), 
has been applied to numerous industrial crystal- 
lizers (Togkalidou et al., 2001c; Tahti et al., 1999). 

Like any laser-based method applied to a crystal 
slurry, a transformation is required to relate the 
collected laser light to the crystal size distribution. 
The FBRM instrument measures the chord length 
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Fig. 5. Schematic for FBRM probe. 
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Fig. 7. The laser beam crosses the front of the 
particles from the right to the left. A chord 
is equal to the distance across a particle. 
The chord measured for a particular particle 
depends on its orientation and position in the 
b e a m .  

distribution (see Figure 6) as the laser beam 
emit ted from the sensor randomly crosses two 
edges of a particle, with this distance being the 
chord length (see Figure 7). There have been 
efforts to relate the chord length distribution to 
the crystal  size distribution, bo th  by the Lasentec 
company mad by some independent researchers 
(Ruf et al., 2000; Tadayyon and Rohani, 1998). 
This relationship is dependent  on a large number 

Fig. 8. Images of agglomerates of paracetamol  
crystals taken by Lasentec PVM 700L. 

of operating variables, whose effects are not easy 
to model theoretically, especially for dense crystal  
slurries (Monnier et al., 1996; Monnier et al., 
1997). Chemometrics methods have been used to 
relate the chord length distribution to the crystal 
size distribution (Togkalidou et al., 2001a) and 
to other variables such as the filtration resistance 
(Johnson et al., 1997; Togkalidou et al., 2001c). 

A weakness of the laser backscattering and re- 
lated laser-based sensors is tha t  the distribution of 
crystal shape cannot be directly determined. For 
example, a collection of rod-like crystals are char- 
acterized mathemat ica l ly  by a two-dimensional 
distribution (one dimension being the length, 
and the other dimension being the breadth),  
but the light scattering instrmnents only provide 
one-dimensional distributions. It  is impossible to 
uniquely determine a two-dimensional distribu- 
tion from a one-dimensional distribution. The 
shape information is averaged out to obtain a one- 
dimensional distribution. 

An alternative method for measuring the crys- 
tal size distribution is through periodic sampling, 
video microscopy, and image analysis (Puel et 
al., 1997; Rawlings and Patience, 1999). Sampling 
can be problematic in an industrial environment. 
A commercial instrument that  has become avail- 
able is the Lasentec Particle and Vision Measure- 
ment (PVM) system, in which images of crystals 
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in solution are obtained using a probe inserted 
directly into the dense crystal slurry (see Figure 
8). This video microscope can collect 10-30 images 
a second, providing two-dimensional snapshots of 
the crystals in real time. On-line video microscopy 
can image crystals as small as 5-15 microns (Pacek 
et al., 1994), not as small as obtained by laser 
scattering instruments. However, the quality of 
the images for most dense crystal slurries limits 
the ability of imaging software to automatically 
identify individual particles and quantify the char- 
acteristics of these particles (e.g., maximum axis, 
minimum axis, aspect ratio). An advantage of on- 
line video microscopy is the direct observation of 
the crystals, which allows shape information to be 
obtained. Also, the PV1VI in particular is a rugged 
instrument suitable for use in industrial applica- 
tions. The main use of on-line video microscopy 
today is for qualitative troubleshooting, with only 
some researchers using the images for quantitative 
prediction (Baier and Widmer, 2000). Recently, 
the on-line estimation of characteristics of the 
crystal shape distribution has been demonstrated, 
using a combination of the PVM, the FBRM, and 
robust chemometrics (Togkalidou et al., 2001a). 
Given the importance of crystal shape in pharma- 
ceutical applications, and that  progress becomes 
easier as computers continue to increase in speed, 
the accuracy of such predictions can be expected 
to improve in future years. 

3. ITERATIVE MODEL IDENTIFICATION 
AND EXPERIMENTAL DESIGN 

In the past two years, iterative model identifi- 
cation and experimental  design has been applied 
to several crystallization processes, including for 
crystals with different rates along their growth 
axes (Gunawan et al., 2002). The approach is sim- 
ilar to approaches used for linear lumped param- 
eter systems, except generalized to the nonlinear 
distributed parameter  equations needed to model 
crystallizers (see Figure 9). A model selection step 
(not shown in the figure) is used to select among 
different model structures, which correspond to 
different nucleation and /or  growth mechanisms. 

The overall closed loop crystal product  quality 
can be used as the objective of the experimental 
design (Ma and Braatz,  2002), instead of the com- 
monly used D-optimal experimental design objec- 
tive (Box et al., 1978; Miller and Rawlings, 1994), 
which focuses on the uncertainty in the model pa- 
rameters. Experimental  design variables that  have 
been optimized between each batch experiment 
include the tempera ture  profile, antisolvent addi- 
tion rates, and various characteristics of the seed 
distribution (Chung et al., 2000). Accurate model 
parameters are typically obtained with as few 
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Fig. 9. Iterative model identification and exper- 
imental design: 0 is the vector of nominal 
model parameters, Ee quantifies the uncer- 
tainty in the model parameters,  u is the vec- 
tor of manipulated variables used in experi- 
mental design, ~ is the vector of manipulated 
variables used in optimal control, and y is the 
vector of measured variables. 

as four batch crystallization experiments. A typ- 
ical comparison between model predictions and 
measurements are shown in Figure 10, where the 
moments #10 and #01 are closely related to the 
average width and length of rod-like crystals in the 
slurry. The moments were computed by weighted 
normalization of the FBRM data  (Tadayyon and 
Rohani, 1998). This approach has been applied to 
several pharmaceutical crystallization processes 
(Togkalidou et al., 2002b). It is becoming increas- 
ingly common for companies to identify models 
for use in scaling up crystallization processes. 

4. SIMULATION 

A significant roadblock to the development of 
identification and control strategies for crystalliza- 
tion processes, especially for crystals that  change 
shape during the growth process, was a lack of 
efficient simulation schemes for the population 
balance equations. Many simulation studies on 
crystal growth have been directed toward the 
solution of the population balance equation for 
unidirectional crystal growth (Braatz and Hasebe, 
2002; Kumar and Ramkrishna, 1996a; Rawlings ct 
al., 1993): 

Of O{G[c(t), T(t), r]f} = h(r, t) (1) 
0-7 + Or 

where f ( r , t )  is the crystal size distribution, t is 
time, r is the internal spatial coordinate (e.g., 
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Fig. 10. (top) The measured solution concentra- 
tions for two experiments and (bottom) the 
measured moments (#a0 and #01) in the sec- 
ond experiment along with the model pre- 
dictions (solid lines). The crystallization pro- 
cess was the cooling of potassium dihydrogen 
phosphate in aqueous solution. The sensor in- 
strumentation was a Lasentec FBRM M400L 
and a F T I R  spectrometer with ATR probe. 

crystal size), c is the solution concentration, T 
is the temperature, G is the growth function, 
and h is the crystal creation/depletion function. 
This equation is augmented with associated alge- 
braic and/or  integro-differential equations to de- 
scribe the energy balance, aggregation, breakage, 
growth, and nucleation phenomena. The challenge 
in simulating these equations is that  the crystal 
size distribution can be extremely sharp in prac- 
tice, and can span many orders of magnitude in 
crystal length scale (0.01 nm to 200 #m) and time 
scale (20 #s to 200 min). 

Several numerical techniques have been pro- 
posed for solving population balance equations 
(Ramkrishna, 1985). The techniques can be sepa- 
rated into four broad categories: 

(1) method of moments, in which only lower or- 
der moments of the crystal size distribution 

are simulated, and unknown parameters of an 
assumed distribution are fitted to the com- 
puted moments (Hulburt and Katz, 1964) 

(2) weighted residuals/orthogonal collocation meth- 
ods, in which the solution is approximated as 
linear combinations of basis functions (Singh 
and Ramkrishna, 1977) 

(3) finite difference methods/discretized popula- 
tion balances, in which equation (1) is re- 
placed by difference schemes (Kumar and 
Ramkrishna, 1996a) 

(4) Monte Carlo simulation, in which the his- 
tories of individual particles are tracked, 
each exhibiting random behavior in accor- 
dance with a probabilistic model (Maisels 
et al., 1999; Shah et al., 1977; Song and 
Qiu, 1999). 

The advantage of the method of moments is that 
only a small number of ordinary differential equa- 
tions needs to be solved when the moinents are 
closed (that is, form a finite number of equations 
describing the lower order moments which are not 
a function of the higher order moments). A weak- 
ness of the method of moments is that. the mo- 
ment equations are not closed for most processes, 
leading to an infinite number of coupled ordinary 
differential equations to solve. Another weakness 
is that, even when the moment equations are 
closed, the numerical errors in a fitted assumed 
distribution can be arbitrarily large if the assumed 
distribution does not accurately parameterize the 
true distribution. Hence a general  nuinerical so- 
lution of the population balance equation cannot 
be developed based on the method of molnents. 
However, the method of moments does apply to 
many well-mixed batch and continuous crystalliz- 
ers with nucleation and growth. These assump- 
tions can be reasonable in bench scale crystallizers 
such as used in teaching laboratories (Braatz et 
al., 2000b). The method of moments is also useflfl 
for testing the accuracy of more sophisticated 
numerical simulation codes. 

In the application of the method of weighted resid- 
uals to the population balance equation, the pop- 
ulation density is approximated by a linear com- 
bination of user-specified time-independent basis 
functions with time-dependent weighting factors. 
The basis functions are selected so that the popu- 
lation density can be well approximated with only 
a finite number of terms. The linear combination 
of basis functions is substituted into the popu- 
lation balance equation, and ordinary differential 
equations for the coefficients are derived with the 
intent to minimize the error (or residual) in the 
population balance equation. The system of or- 
dinary differential equations can be solved using 
any standard solver (Barton et al., 1998). A fast 
numerical algorithm results when only a small 
number of terms are needed in the expansion, 
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which has been demonstrated for some crystalliz- 
ers (Rawlings et al., 1992; Witkowski and Rawl- 
ings, 1987). The primary weakness of the method 
of weighted residuals is that basis functions that 
work well for one type of crystallization process 
may not work well for another, which makes it 
difficult to derive a general fast algorithm for 
crystallization simulation using this method. This 
also applies to orthogonal collocation, which is 
essentially a class of weighted residual algorithms. 
Reviews of early work on the method of weighted 
residuals are available (Ramkrishna, 1985; Rawl- 
ings et al., 1993), including summaries of algo- 
rithms that combine orthogonal collocation with 
finite elements (Gelbard and Seinfeld, 1978). 

Several discretizations of the population balance 
equation have been investigated and have been 
applied to various particulate systems (Gelbard 
et al., 1980; Hounslow, 1990; Hounslow et al., 
1988; Marchal et al., 1988; Muhr et al., 1996). 
This includes an application to the simulation of a 
crystallization process in which the crystals have 
two characteristic growth axes, so that changes 
in the crystal shape distribution are simulated 
(Puel et al., 1997). Many of these algorithms were 
formulated with the intent to conserve moments 
of the computed population density. Different al- 
gorithms conserve different moments, and several 
choices of discretization points have been investi- 
gated (Batterham et al., 1981; Kumar and Ramkr- 
ishna, 1996a; Kumar and Ramkrishna, 1996b; Lit- 
ster et al., 1995). Various numerical problems can 
occur when performing direct discretizations of 
the population balance equations. An approach 
that removes these problems is to combine the 
discretization with the method of characteris- 
tics (Kumar and Ramkrishna, 1997; Sotowa et 
al., 2000), which has been applied to particulate 
processes with pure growth, simultaneous aggre- 
gation and growth, and simultaneous nucleation 
and growth (Kumar and Ramkrishna, 1997). 

The governing equations for most pharmaceutical 
crystallization processes are more than two or- 
ders of magnitude more complex than equation 
(1), as their shape variation requires at least one 
more independent variable. High resolution finite 
difference schemes have recently been developed 
that  are significantly more computationally effi- 
cient than previous methods (Ma et al., 2002a). 
The high resolution methods are able to obtain 
second-order accuracy without the undesirable os- 
cillations that  can occur with naive second-order 
methods. 

Figure 2 shows the size distribution for potassium 
dihydrogen phosphate crystals with two charac- 
teristic length scales and nucleation and growth 
kinetics identified from laboratory data. Even 
with the sharp distribution in Figure 2, the entire 

computation time was less than 10 minutes on a 
PC. Numerical analysis indicates that  the method 
can allow a coarse time discretization, which is 
the main reason for the short computation times. 
High resolution algorithms have been extended 
to simulate the effect of nonideal mixing (Ma et 
al., 2002c), as occurs in most industrial crystal- 
lizers. Exploiting sparsity and using parallel com- 
puting keep the simulation times reasonable. 

Computational fluid dynamics (CFD) codes are 
suitable for the simulation of crystallizers that  are 
not perfectly mixed, since in this case the simula- 
tion is best handled by solving the complete trans- 
port  equations (Sha et al., 1999). CFD codes use 
either finite elements or finite volume methods, 
in which the conservation equations are applied 
directly to subregions to obtain numerical values 
for the variables of importance (Koenig, 1998). 
While such codes should probably be applied in 
the design of any industrial-scale crystallizer, the 
computations are rather intensive for such simu- 
lations to be used for the development of identifi- 
cation and control algorithms. 

Monte Carlo methods are especially suitable for 
simulating stochastic population balance equa- 
tions, especially for complex systems (Ramkrishna, 
1985). The number of papers applying Monte 
Carlo techniques has rapidly grown in recent 
years. Processes that  have been simulated include: 

(1) a continuous crystallizer with size-dependent 
growth rate (Lim et al., 1998), 

(2) protein crystal growth (Durbin and Fe- 
her, 1991), including the case where both  
monomers and aggregates attach to the crys- 
tal surface (Ke et al., 1998; Strom and Ben- 
nema, 1997) 

(3) imperfectly mixed draft tube baffled and 
forced circulation crystallizers (Lim et al., 
1999b) 

(4) a crystallizer with attrition, in which there 
is a distribution of volumetric shape factors 
(Lim et al., 1999a) 

(5) crystallizers with simultaneous growth rate 
dispersion and aggregation (Van Peborgh 
Gooch and Hounslow, 1996; Van Peborgh 
Gooch et al., 1996) 

(6) continuous crystallization of sodium chloride 
(Sen Gupta and Dutta,  1990b) and sucrose 
(Sen Gupta and Dutta,  1990a) 

An advantage of Monte Carlo methods is tha t  
such code is relatively easy to write. A disad- 
vantage of Monte Carlo methods is that  they 
can be rather computationally expensive, which 
is a drawback when incorporating such models 
into identification and control algorithms. Also, 
the main capabilities provided by Monte Carlo 
methods- - the  ability to handle nearly arbi t rary 
stochastic phenomena and to handle extremely 
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complex s y s t e m s - - m a y  not be needed for most 
industrial-scale crystallizers. The measurement  
noise is probably  larger than other stochastic 
phenomena for most  crystallizers (Rawlings et 
al., 1993), in which case an adequate model can 
be obtained by appending additive stochastic 
variables to the results of a deterministic pop- 
ulation balance equation simulation. Recent pa- 
pers have shown tha t  non-Monte Carlo simula- 
tion techniques (such as method of moments  and 
finite differences) can be applied to more com- 
plex multidimensional crystallization processes, 
without  requiring a significant increase in algo- 
r i thm complexity (Braatz et al., 2002; Ma et 
al., 2002b; Togkalidou and Braatz,  2000). 

5. ROBUSTNESS ANALYSIS 

Stability in a strict mathemat ica l  sense is not an 
issue in ba tch  or semibatch crystallization pro- 
cesses, since the states of such a process cannot 
blow up in finite time. On the other hand, hav- 
ing consistent product  quality during parameter  
variations or disturbances is a concern. The sin- 
gular value decomposit ion can be used to calcu- 
late per turbat ions  in the model parameters  that  
have a strong effect on the supersaturat ion pro- 
file (Mat thews et al., 1996; Miller and Rawl- 
ings, 1994). Several researchers have shown that  
the crystal  product  quality can be sensitive to 
uncertainties in the crystallization kinetics and to 
the ability of a feedback controller to closely track 
the t empera tu re  profile in a cooling batch crys- 
tallizer (Bohlin and Rasmuson, 1992; Chianese et 
al., 1984; Ma et al., 1999a). 

The impact  of variations in model parameters  and 
disturbances on the product  quality can be quan- 
tiffed without  exhaustive simulation of all possible 
process conditions (Ma et al., 1999a; Ma and 
Braatz,  2001). These approaches are applicable 
to finite-time nonlinear distributed parameter  sys- 
tems, whether  the simulation models are stochas- 
tic or deterministic (Nagy and Braatz,  2002). The 
knowledge of the worst-case model parameters  can 
be used to determine where experimental  effort 
should be focused to improve model accuracy. 
The robustness analysis with regard to control 
implementat ion uncertainties can guide the se- 
lection of the control instrumentat ion,  by deter- 
mining where high precision sensing and actu- 
ation are required (Eaton and Rawlings, 1990). 
The computa t ion  of the worst-case external dis- 
turbances determines which disturbances signifi- 
cantly affect the product  quality and should be 
suppressed by redesign of the process or feedback 
control. This robustness analysis has been applied 
to several batch crystallizers, both  in simulations 
and in experiments  (Ma et al., 1999a; Ma and 

Braatz,  2002). Robustness est imates are provided 
with reasonable computat ional  requirements. 

6. O P T I M A L  CONTROL 

An open loop control problem can be formulated 
where the seed mass, the mean size of seed crys- 
tals, the width of the seed crystal size distribution, 
and the tempera ture  profile are decision variables 
(Chung et al., 1999; Miller and Rawlings, 1994). 
Many objective functions have been studied, in- 
eluding the mean size of product  crystals, the ratio 
of standard deviation to mean size, and the ratio 
of nucleated crystal mass to seed crystal  mass at 
the end of operation (Eaton and Rawlings, 1990). 
The optimal solution for each objective function 
is calculated using successive quadratic program- 
ming. A parametr ic  analysis shows the significant 
importance of optimization of the seed distribu- 
tion for a wide range of nucleation and growth 
kinetics (Chung et al., 1999). Under the presence 
of disturbances, modeling error, or tracking error, 
the states of the crystallizer do not follow the 
optimal path. One way to address this problem 
is to incorporate robustness into the computa t ion  
of the optimal pa th  (Ma and Braatz,  2000; Ma 
et al., 2002b). However, the performance of this 
approach will be limited by the chosen measured 
variables and the use of open loop control. 

Several optimal feedback control algorithms in- 
cluding model predictive control have been pro- 
posed for batch processes (Braatz and Hasebe, 
2002; Eaton and Rawlings, 1990; Rawlings et 
al., 1993). Even more recently, feedback con- 
trol algorithms are being developed to reduce 
the sensitivity of the product  quality to model 
uncertainties and disturbances, while being ap- 
plicable to nonlinear distributed paramete r  sys- 
tems (Chiu and Christofides, 2000; Lee et al., 
2002). One approach, which couples geometric 
control with bilinear matr ix  inequalities, allows 
the direct optimization of robust performance 
(Togkalidou and Braatz,  2000; VanAntwerp et 
al., 1997; VanAntwerp et al., 1999). In contrast  
to most approaches to robust nonlinear control, 
this approach introduces no conservatism during 
the controller synthesis procedure. Also, no prior 
limitations are required regarding the speed of the 
unmodeled dynamics; instead, engineering intu- 
ition is incorporated into weights which bound the 
unmodeled dynamics, similarly to the linear t ime 
invariant case (Morari and Zafiriou, 1989; Sko- 
gestad and Postlethwaite, 1996). Application to 
a crystallization process demonstra ted robustness 
to a wide range of nonlinear and t ime-varying 
per turbat ioni  (Togkalidou and Braatz,  2000). 

While most recent publications have focused on 
particular control algorithms, the best control 
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formulation is still unclear. Usually the feedback 
controller is designed to follow a temperature  
t ra jectory that  comes from, for example, solving 
an open loop optimal control problem. It has 
been conjectured, however, that  a lower sensitiv- 
ity to parameter  uncertainties and disturbances 
may result by using the solution concentration 
as a function of temperature  as the setpoint tra- 
jectory instead (Fujiwara et al., 2002; Gutwald 
and Mersmann, 1990). Such a formulation, which 
includes time only as an implicit variable in the 
setpoint trajectory,  can be used in formulating 
either open loop or closed loop optimal control 
design procedures. More research is needed to 
completely resolve whether such implicit-in-time 
optimal control formulations are superior to the 
s tandard formulation. 

7. CONCLUSIONS 

Faster computers and advances in sensor tech- 
nologies and simulation and control algorithms 
are removing the main bottlenecks that  limited 
progress in crystallization control in the 1970s- 
1980s. Model identification, experimental design, 
and optimal control algorithms are being increas- 
ingly applied to crystallization processes in indus- 
try, including to pharmaceuticals processes which 
have been resistant to systematic first-principles 
approaches. Further  advances are expected to lead 
to even more utilization of these techniques to 
reduce t ime-to-market,  which is key in the phar- 
maceutical industry, and to increase productivity, 
which is important  in the bulk chemicals industry. 
Crystallization processes have all the characteris- 
tics tha t  make an interesting control p roblem--  
partial differential equations, nonlinear dynamics, 
significant uncertainties, unmeasured state vari- 
ables, significant disturbances, sensor noise, etc. 
Crystallization processes pose a rich array of con- 
trol problems that  are expected to keep control 
engineers engaged for the next decade. 
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