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Past dynamic studies of blown-film extrusion have been confined to the stability 
analysis of the linearized equations. The full set of nonlinear equations comprises a 
system of partial differential and algebraic equations with boundary conditions that 
vary from author to author. In this paper, the Numerical-Method-of-Lines, which 
combines finite-difference methods with ordinary differential/algebraic equation inte- 
grators, is used to solve the full system. Appropriate boundary conditions are selected 
to give physical results that compare well with experiment. An important boundary 
condition is the "minimum order reduction" condition on the gradient of the bub- 
ble-tube radius with respect to distance above the extrusion die (the axial position). 
Transient startups and operational disturbances are examined. Calculations show 
the influence of oscillations in operating conditions such as heat transfer or inflation 
pressure on the bubble-tube radius and film thickness. Steady-state results obtained 
by integrating the transient equations for a sufficiently long time are qualitatively in 
agreement with experiment, in contrast to past simulations of these equations. 

INTRODUCTION 

lown film extrusion is used to manufacture plas- B tic bags and sheets of thin thermoplastic films 
(1). Although sign&cant effort has been made in the 
steady-state analysis of blown film extrusion, little 
has been attempted other than linearized stability 
analysis for the dynamic modeling of this process. Dy- 
namic modeling enables the examination of strategies 
for process startup, for handling process upsets, and 
for process control. 

Here the system of PDEs for the dynamic modeling 
of blown film extrusion is solved using Numerical- 
Method-of-Lines (NMOL) (2). The dynamic and steady- 
state solutions are presented for the Pearson-Petrie 
model (3, 4), which has been a mainstay for modeling 
blown film extrusion of thin films. The NMOL method 
(spatial discretization of variables and approximation 
of derivatives by finite differences, followed by time in- 
tegration to steady-state) avoids the instability of 
shooting methods used to solve steady-state equa- 
tions directly. We show that the NMOL method yields 
steady-state results that are qualitatively different 
from the simulation results reported for the Pearson- 
Petrie model by Liu et d (5). Furthermore, our results 
are in good qualitative agreement with the experimen- 
tal results (6). This finding is important, because the 
steady-state simulation results obtained by Liu 
caused him to advocate an alternative model, the 
quasi-cylindrical model, to the thin shell model of 
Pearson and Petrie. This quasi-cylindrical model was 
used by subsequent researchers (7). 

This paper describes the blown film extrusion pro- 
cess, presents the dynamic equations for Pearson- 
Petrie model, discusses some steady-state results (ob- 
tained from the dynamic model at long times), and 
examines the dynamic response of the model to both 
startup and various process disturbances. 

DESCRIPTION OF THE BLOWN FILM 
EXTRUSION PROCESS 

Molten polymer is extruded through an  annular die 
while air is fed through an inner concentric bubble- 
tube (see Rg. 1 ) .  This internal air causes the cylindri- 
cal film to inflate, increasing the radius of the polymer 
bubble by stretching it, and decreasing the film thick- 
ness. Simultaneously, the guide rolls above the die 
flatten the film and the nip rolls subject the film to 
tension in the axial (upward from the die) direction. 
External air supplied from a concentric outer ring 
cools the film. The resulting temperature reduction in- 
creases the viscosity of the rising film and eventually 
induces crystaUization as the temperature drops be- 
low the melting point of the polymer. The crystalliza- 
tion, in turn, causes an  additional increase in viscos- 
ity, and the polymer solidifies. 

The solidification zone is called the freeze zone or 
frost zone (1). Within this region, the rapidly increas- 
ing viscous stiffness causes the bubble radius and the 
film thickness to stabilize, changing very little as the 
film heads upward toward the nip roils. The nip rolls 
and the bubble inflation create an elongating force on 
the polymer bubble-tube. Also, the inflating air causes 
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Fig. 1 .  Schematic of blown Jzh 
extrusion 

a circumferential tension on the bubble-tube. The re- 
sulting biaxial stress can further induce crystalliza- 
tion, an action termed flow-induced crystallization. Al- 
though this effect has been included in a recent paper 
(7). it is neglected in most models of blown film extru- 
sion (8, 9, 10). 

Pearson and Petrie and  others have developed 
steady-state models to describe the blown film extru- 
sion process in the limit of very thin films (1 1, 12). In 
these models, variations of the physical variables 
across the thin film are neglected, leaving the vari- 
ables as functions of axial position (height above the 
die) only. Generally, these models involve the continu- 
ity equations, momentum equations in the axial and 
circumferential directions, and some type of constitu- 
tive relation. In later applications, these were coupled 
with equations for energy and crystallization kinetics 
in order to follow the effect of temperature and crys- 
tallization on the viscosity (5, 13). 

PREVIOUS DYNAMIC MODELS 

The time-dependent equations for the thin film 
model of blawn film extrusion have been presented by 
various authors (8, 10, 14). The equations were lin- 
earized in order to pedorm stability analysis, but so- 
lutions for the original nonlinear equations were not 
presented. Owing to differences in numerical methods 
and constitutive relations, there is some disagreement 
in the results reported by these investigators. 

Freeze Zone 

Guide Rolls 

AP 

R #- 

< 

I 
Air 

Yeow (14) presented the unsteady-state extension of 
the Pearson-Petrie model for blown-film extrusion. He 
derived the dynamic deformation rate tensor for the 
moving film and performed a stability analysis on the 
linearized version of the dynamic equations. Cain and 
Denn (8) followed up this work using a finite differ- 
ence method and found qualitatively and quantatively 
Werent results. Yoon and Park (10) rederived the dy- 
namic equations and performed another linearized 
stability analysis. 

In this paper, we solve the dynamic continuity and 
momentum equations by the numerical method of 
lines (2). These equations are augmented with the dy- 
namic energy balance equations and the constitutive 
relation used by Liu et aL (5), which allows reduction 
in viscosity by stress-induced deformation thinning as 
well as an increase in viscosity by temperature reduc- 
tion and crystallization. 

DYNAMIC PEARSON-PETRIE MODEL 

Like the steady-state Pearson-Petrie model, the dy- 
namic model of film motion neglects inertial terms, sur- 
face tension, drag effects of the cooling air, and gravity. 
Dimensionless variables are used in the equations that 
follow. The dimensional and dimensionless variables 
are defined in Tables 1 and 2, respectively. The axial 
position variable 2 is bounded by 2 = 0 at the die and 
2 = L at the upper boundary of the frost zone, which is 
called the frost line. The frost zone begins at the onset 
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Table 1. Symbols for Variables and Constants: Dimensional. 

b 
CP 
c3 
HO 
H 
HL 
kcrys 
L 
NZ 
R 

VL 
VO 
Z 

Exponent for denominator term of viscosity factor 
Specific heat of polymer 
Coefficient in crystallization rate expression 
Film thickness as it exits the die at Z = 0 
Film thickness at axial position Z 
Film thickness at top boundary of freeze zone 
Crystallization rate coefficient 
Axial position corresponding to top boundary of freeze zone 
Number of grid points in discretization of axial coordinate 
Radius of film bubble tube at axial position Z 
Final radius of film bubble tube at top boundary of freeze zone 
Radius of film bubble tube as it exits the die at 2 = 0 
Time 
Temperature of film bubble tube at position 2 
Temperature of cooling air 
Equal to Tg - 30 K, where Tg is the polymer glass transition temperature 
Melt temperature of polymer 
Temperature of film bubble tube as it exits die at 2 = 0 
Activation energy for segmental jump rate in polymers 
Velocity of film at axial position Z 
Velocity of film at top boundary of freeze zone 
Velocity of film as it exits the die at 2 = 0 
Axial position measured upward from position of die 
Adjustment coefficient for viscosity factor 
Adjustment coefficient for crystallization term in viscosity factor 
Adjustment coefficient for temperature dependence of viscositv factor 
Exponent for crystallization dependence of viscosity factor 
Local fraction of crystallinity 
Final crystallinity 
Heat of crystallization 
Inflation pressure, relative to ambient pressure 
Relaxation time 
Second invariant of the deformation rate tensor 
Polymer density 
Universal gas constant 
Viscosity of polymer 
Viscosity of polymer as it exits die 

of crystallization and ends where further changes in 
bubble-tube dimensions are imperceptible because of 
the extremely large viscosity. In simulations L is taken 
to be sufficiently large that the bubble tube is in this 
frozen state at 2 = L. 

In the Pearson-Petrie thin shell model, the dynamic 
continuity equation takes the dimensionless form (10): 

(1) 

where $ = dl + (ar/as)'. The dynamic momentum 
equation in the axial direction is: 

r ah rhy ay rhav m a h  
+ 87 llr3 a7 q2 as q~~ as 

F, + B(r2 - r 3  
27 

+--+ 

where 
ar y = -, 
as (3) 

F, is the dimensionless machine tension, B is the di- 
mensionless inflation pressure defined in Table 2, and 
r, is the value of the dimensionless bubble radius r at 
s = L/R, and time 7. For the purpose of computing 
steady-state results and subsequent interpretation, 
the modified tension F = F, - Brf2 is used in this 
paper. The modified tension F is especially useful as a 
continuation parameter in getting around turning 
points when generating blowup ratio versus thickness 
reduction plots. 

The dynamic momentum equation in the circumfer- 
ential direction is: 

The boundary conditions for the Pearson-Petrie 
model have been the subject of some discussion. At 
the die, the three boundary conditions for bubble- 
tube radius, film thickness, and film velocity are 

r = l  at s = O ,  (5) 
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Table 2. Symbols for Variables and Constants: Dimensionless. 

B 
F Modified tension 
Fln Dimensionless machine tension 
h 
r 
rL 

V 

VL Take-up ratio = VL/V, 
Y 

r) 
e Dimensionless temperature = T/T, 
eair 

Dimensionless pressure force = AP R,*/[2 po H, V,] 

Dimensionless film thickness = HIH, 
Dimensionless film bubble-tube radius = WR, 
Dimensionless film bubble-tube radius at top boundary of freeze zone 

Dimensionless film velocity = V/V, 

Dimensionless derivative of radius with respect to axial position = ar/as 

Dimensionless viscosity factor = p/k 

Dimensionless temperature of air = T&T, 

X Dimensionless crystallinity = WX, 

s Dimensionless axial position = Z/ R, 

V 
7 

Dimensionless frequency of oscillation, cycles per dimensionless time unit 
Dimensionless time = t V,/R, 

JI Dimensionless curvature 

h = l  at s = O ,  

u = l  at s = O ,  

respectively. 

suggested boundary conditions are 
For the axial gradient of the bubble-tube radius, the 

y = y o  at  s = O  (84 
or 

or 

B -4J2 at s = L/Ro 
rl 

(84 

The first choice corresponds to the emergence of the 
molten polymer from the die at some preset angle to 
the vertical direction (e.g., yo = 0 for perfectly parallel 
flow). The difficulty with the fist  boundary condition is 
the tendency for the melt leaving the die to expand or 
contract instantly. The second boundary condition is 
equivalent to cessation of the bubble-tube expansion 
at the top boundary of the frost zone 2 = L. The prob- 
lem with this boundary condition is the tendency for 
the gradient of the bubble-tube radius to become ex- 
ceedingly small anyway because of the stiffening of the 
polymer, and the imposition of Eq 8 b  creates a non- 
physical kink at s = L&. The last boundary condition 
(Eq 8c) results from setting @/as to zero in Eq 4. This 
type of boundary condition has been discussed and 
implemented by Schiesser (2) in the context of general 
convection-diffusion equations, in which extensive lit- 
erature has been written on the selection of outflow 
boundary conditions (15). We show later that Eq 8c is 
the preferred boundary condition at s = L/&. 

The energy balance and crystallization equations 
are 

- + + - - B B , F , ( l - x ) = O  ax ax 
a7 as 

where 

uh RO B ,  = 
P Cpf HOVO 

Here, the heat-loss term takes the form of Newton’s 
law of convective cooling. Heat loss due to radiation is 
about 20% of that due to convection, so the effect of 
radiation has been lumped into the convection term 
by increasing the heat transfer coefficient U,. The 
function F, is the temperature-dependent factor for 
the rate of crystallization: 

F, = 0 for e 2 8, (144 

where the dimensionless constants B,,, %, Om, and 
8, are 

U* 
BFl = - 

!Yl To 

c3 

T2, 
BF2 = - 
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Tm 

= To 
0 = -  

Like previous studies of blown-film extrusion (an ex- 
ception being Doufas and McHugh (7)), flow-induced 
crystallization is ignored. 

The temperature and degree of crystallization are 
specified at the die 

CONSTITUTIVE RELATION 

A non-Newtonian constitutive relationship for de- 
scribing the viscosity of the polymer during its extru- 
sion, that takes deformation thinning into account, is 
(5) 

where the base viscosity po is 

and the dimensionless viscosity factor 11, which ac- 
counts for temperature change and crystallization, is 

Here, aI, az, PI ,  Pz. and b are measured or adjusted 
constants, and IId and A are the second invariant of 
the deformation rate tensor and the relaxation time, 
respectively. In terms of the dependent variables, the 
expression for nd is 

Whenever A = 0, Eq 23 describes a Newtonian fluid. 
Equation 23 was elected for the calculations re- 

ported here as it was the constitutive relation used by 
Liu et d (5). This allows a direct comparison of re- 
sults obtained with our numerical method and the in- 
clusion of the exit boundary condition, Eq 8c, with 
those of Liu. 

NUMERICAL METHOD OF SOLUTION 

The above system of algebraic and partial differential 
equations is solved using the numerical method of lines 
(NMOL) (2). This involves discretizing the equations in 
the spatial variable s at a number of grid points N,. 
Spatial derivatives such as a v/a s are approximated as 
five-point finite differences in order to achieve 4th-order 
accuracy, thus eliminating the spatial variable as an in- 
dependent variable. A variable-grid spacing technique 

that allows a choice of such S-point finite differences 
is  coded in the subroutine DSS032 (16). The spatial 
discretization converts Eq 1 ,  2, 4, 8c, 9, and 10 to a 
set of (5N, + 1) coupled ordinary differential equa- 
tions containing time derivatives for the values of r, h, 
y, 0, and x at each grid point. Upon discretization, Eq 
4 gives a set of N, algebraic equations (no time deriva- 
tives). The boundary conditions (Eqs 5, 6, 7. 19, and 
20) are included in the DAE system as algebraic 
equations. 

The resulting system of or- differential and al- 
gebraic equations (DAEs) is solved using the double 
precision version of the solver DASSL (17, 18). All 
computations were performed in double precision For- 
tran using a 900 M H z  Athlon processor-based com- 
puter. In coding the dynamic equations, the first grid 
point was selected at the beginning of the die ( Z  = 0). 
Then the discretized equations were written for each 
grid point before moving on to the next. This resulted 
in a banded Jacobian that greatly speeded up the cal- 
culations with DASSL. 

The calculations started with 41 grid points, which 
were increased until the computed results were un- 
changed within a minimum of four sigmficant figures 
of accuracy. The grid point allocation that met this 
criterion was 71 points uniformly distributed from s = 
0 to 0.4, and 30 points uniformly distributed from s = 
0.4 to 1.0. Spatial derivatives were approximated by 
using five-point biased upwind differences for ar/as, 
ah/as, av/as, aO/as, and ax/& and using five-point 
centered differences for ay/& (which is equal to 
a2r/as2). 

The startup condition used in the calculations con- 
sisted of extruding and attaching the bubble tube to 
the nip rolls under conditions of uniform (with respect 
to 2) bubble-tube radius and film thickness. The two 
stress constants B and F, are then increased from 
zero to positive values by using the switching func- 
tions: 

B( 1 - exp( - T"/T:)) 

where T~ is a switching time constant that can be set 
to be fast or slow, depending on the simulation. The 
switching function goes from zero to one as increases 
from zero. 

The value of B is dependent on the pressure differ- 
ence AP across the film, as shown in the definitions of 
Table 1. Whenever a given steady-state take-up ratio 
is desired, F, (or F) is adjusted until the take-up ve- 
locity reaches the desired value. The adjustment of F, 
(or F) is accomplished by regula falsi interpolative root 
finding (19). 

SIXULATIONS OF PEARSON-PETRIE MODEL 
Table 3 contains the operating conditions for the 

simulation and also gives the values for the physical 
parameters. The values of parameters associated with 
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Table 3. Values of Constants Used in Simulations. 

4.68 s 
0.68 

85,000 K2 
0.095 cm 
2670 s-’ 
0.746 crn 
331 K 
118 K 
414 K 
463 K 
50.27 W/rnz-K 
6284 kJ/krnol 
0.366 cmls 
0.96 Pa-s 
13.5 
4480 K 
0.4 
0.44 
293.2 kJ/kg 
919 kg/rn3 
1 .o 

2.43 kJ/kg-K 

the constitutive relation were obtained from the exper- 
imental work of Liu et d (5, 6, 20, 21). They corre- 
spond to a low density polyethylene (LDPE) provided 
by Dow Chemical Company. The inflation pressure AP 
ranged from 0 to 270 Pa. The take-up ratio vL. which 
is the film velocity at 2 = L divided by the film velocity 
at 2 = 0, varied from 2.988 to 5.200, and the temper- 
ature To exiting the die varied from 443 to 467 K. 

As most of the previous simulations for blown-film 
extrusion were at steady state, the steady-state re- 
sults of our model are first compared with the results 
of other investigators. Here the dynamic computations 
are carried out for a long enough period of time that 
the steady state was reached (in our case T = 5000 
was used, which was more than sufficient). The “mini- 
mally reduced” outflow boundary condition 8c was 
used as extensive computations showed that it yielded 

the most physically meaningful results. As discussed 
below, the results for the other boundary conditions, 8a 
and 8b, contain non-physical kinks in the solution near 
the entrance and exit boundaries, respectively, even 
when many grid points were assigned to those regions. 

After discussing the steady-state results, dynamic 
calculations corresponding to boundary condition 8c 
are presented. 

Steady-State Results of Pearson-Petrie Model 

Effect of Inttion Pressure 

Flgure 2 shows the bubble-tube radius correspond- 
ing to various values of inflation pressure AP when 
the outflow boundary condition ( E q  8c) is used. The 
radius increases with 2 for inflation pressure AP = 
250 and 270 Pa and decreases with 2 for AP = 0 and 
150 Pa. The radius profiles flatten out for 2 > 10 cm 
because of the large increase in viscosity associated 
with decreasing temperature and increasing crystal- 
linity. The blowup ratio ( h a l  radius/initial radius) in- 
creases with inflation pressure AP as expected. For an 
inflation pressure AP slightly above 270 Pa, the bub- 
ble becomes unstable and the bubble-tube radius ap- 
proaches infinity, simulating a burst bubble. 

Figure 3 gives the film thickness for the conditions 
corresponding to Flg. 2. The stretching force caused 
by increasing inflation pressure AP causes decreased 
film thickness H. At steady state, film velocity at each 
axial position 2 is given by mass continuity as V = 
VoHo&/HR, assuming constant density. During tran- 
sition to steady state, the relationship among V, R, 
and H is more complicated. 

Flgure 4 reports the blowup ratio (r at s = L / Q  and 
thickness reduction (l/h) for the stable steady-state 
solutions computed for set values of B and F. For a 
fured inflation pressure B, there is only one steady- 
state solution that intersects with the takeup ratio 
line (v = 2.988 at s = L/R,). This implies that the 

I I I I 
I I I 

Om2 0.0 - 
0 5 10 15 20 25 30 

Axial Position 2, cm 

FYg. 2. Bubbletube radius p r o m s  us. inJlation pressure AP: steady-state, To = 463 K, uL = 2.988. 
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Fig. 3 .  Film thickness pro@s us. infition pressure AP: steady-state, To = 463 K, v, = 2.988. 
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d 
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0.0 

p F=O. 148 - 0 Pa 

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2  

Thickness Reduction 

Hg. 4. Blowup ratio us. thickness reduction for constant values of injhtwn pressure: steadg-state, To = 463 K. 

blowup ratio increases monotonically with the inflation 
pressure. In generating the curves in FUJ. 4, the modi- 
fied tension F was progressively reduced from the value 
indicated on the lower right of each curve to the value 
indicated on the upper part of each curve. The modi- 
fied tension F was a good continuation parameter for 
getting around the turning points in the curves corre- 
sponding to AP = 250 and 270 Pa. 

The results shown in Figs. 2 and 4 do not exhibit 
the nonintuitive qualitative behavior reported by Liu 
and coworkers (5, 20, 21) when attempting to simu- 
late the steady-state Pearson-Petrie model. As the in- 
flation pressure is increased, our results show an in- 
crease in blowup ratio rather than the decrease 
reported by Liu and coworkers in their simulation 

paper (5). Unlike their simulation results, our results 
are in agreement with their experimental findings (6). 
Liu and others (5, 22) used a boundary condition at 
the die exit (y = 0 at s = 0), a special case of Eq 8a 
(with yo = 0). which differs from the one we used, Eq 
8c. This difference in boundary condition may be re- 
sponsible for their contradictory simulation results. 

For a given value of the inflation pressure AP, 
adding a small amount of viscoelasticity to the consti- 
tutive relation has the effect of shifting the blowup 
ratio versus thickness reduction curves upward and 
to the right. This favors higher blowup ratios and 
thinner films. From the work of previous investigators 
(8, 22, 23), viscoelasticity is expected to increase sta- 
bility by the strain-hardening effect. 
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Figures 5 and 6 show the temperature and crystal- 
linity profiles for the various values of the inflation 
pressure AP. For inflation pressures of 250 Pa and 
270 Pa, the flattening of the temperature for interme- 
diate axial position Z is due to crystallization, which 
releases heat. As indicated in Eq 9, the rate of temper- 
ature decrease with respect to axial position Z is 
smaller dimensionless film thickness h. As shown in 
Rg. 6, the lower temperatures result in more crystal- 
lization for higher values of inflation pressure AP. This 
is expected, as E q  14 indicates that the rate of crystal- 
lization becomes nonzero when the temperature drops 
below the melt temperature Om and increases as tem- 
perature continues to drop. 

The effect of crystallization on bubble-tube stabiliza- 
tion is profound. At X = 0.44, film viscosity, repre- 
sented by Eq 23 and the parametric values in Table 3, 
is increased by seven orders of magnitude from that of 
the melt emerging from the die. 

The axial gradient, y = aR/dZ, of the bubble-tube 
radius R is plotted in Fig. 7 for various values of infla- 
tion pressure AP. For inflation pressure AP = 250 and 
270 Pa, the axial gradient y increases after the film 
leaves the die, and then declines rapidly to zero when 
reaching the frost zone at 2 > 8 cm. At inflation pres- 
sure AP = 189.8 Pa, the radius profile remains per- 
fectly flat for all values of 2 i.e., the axial gradient y = 
0 uniformly. For inflation pressure AP = 0 and 150 
Pa, the axial gradient y is negative as the film leaves 
the die, that is, the bubble-tube contracts. As the 
axial position 2 increases, the axial gradient y ap- 
proaches zero. Some investigators have solved the 
steady-state equations for blown film extrusion by 

guessing the axial gradient y at the die exit (2 = 0) 
and using a shooting method to achieve some type of 
boundary condition at 2 = L (5, 22). Others have 
started by assuming that the axial gradient y = 0 at 2 
= L, and using a shooting method to get the correct 
boundary conditions on the variables at Z = 0 (24,25, 
26). In our case, and that of Cain and Denn (8). dis- 
cretizing the axial position Z from 2 = 0 to 2 = L and 
using finite difference approximations to spatial deriv- 
atives allows the direct satisfaction of any down- 
stream boundary condition. As mentioned, the results 
reported here are for the downstream boundary con- 
dition on the axial gradient y represented by E q  8c. 

Effect of Machine Tension 
To examine the effect of machine tension on steady- 

state results, we found that the use of the modified 
tension F = F, - Brf2 was more revealing than using 
F,. For a die exit temperature of 463 K and conditions 
given in Table 3, the modified tension F was varied 
from 0 to a finite value to determine the range of infla- 
tion pressures that yielded stable solutions. Corre- 
sponding to each value of F, there is a lower and upper 
inflation pressure that allows physical solutions. Above 
the maximum inflation pressure, the radius grows un- 
controllably, indicating a burst bubble. As shown in 
%. 8, the minimum inflation pressure is zero from F 
= 0 to F = 0.3450, but rises rapidly to equal the max- 
imum inflation pressure at F = 0.4377. In the range 
between F = 0.3450 and F = 0.4377, as AP ap- 
proaches the minimum inflation pressure from above, 
the bubble radius collapses to an infinitesimal quan- 
tity, mimicking a vanishingly thin filament traveling 

480 
% 
Fm 460 

!! 440 

3 420 
2i 

400 

380 
- 360 
ii 

340 

3 

0 5 10 15 20 25 30 

Axial Position Z, cm 
F'ig. 5. Film temperature projiles us. hfitionpressure AP: steady-state, To = 463 K, v, = 2.988. 
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0.00 
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Axial Position Z, cm 
Flg. 6. Crystallinity proms us. i n t n  pressure AP: steady-state, To = 463 K, v, = 2.988. 

at ever increasing speed. For F = 0 to 0.4377, there is 
no stable solution for inflation pressures either above 
the maximum or below the minimum. Above F = 
0.4377, there is no stable solution for any inflation 
pressure. 

In the negative range of the modified tension, F = 0 
to -0.13. the maximum inflation pressure continues 

to decline, while the minimum inflation pressure rises 
above zero. Actually, a solution does exist below the 
minimum inflation pressure, but it corresponds to 
negative values of F,, a non-operable condition. For F 
< -0.13, F, is always negative. 

Use of the modified tension F in Fig. 8 instead of the 
tension F, gave more revealing plots of the allowable 

0.20 

0.1 5 * * 
f 0.10 

0.05 
(3 - 
=% x 0.00 
4 

-0.05 

-0.1 0 
0 5 10 15 20 25 30 

Axial Position Z, cm 
Flg. 7. Awial gradient proms us. inJlatbn pressure AP: steady-state, To = 463 K, u, = 2.988. 
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ranges of inflation pressure AP (or B) as F varied mo- 
notonically while F, sometimes exhibited nonmonoto- 
nic behavior. 

Effect of Die Ekit Temperature 

To examine the effect of die exit temperature To 
upon the process variables, the inflation pressure was 
set to AP = 250 Pa and the take-up ratio to vL = 2.988. 
All other conditions being equal, the bubble radius is 
expected to grow larger as the die exit temperature To 
is increased due to the reduction in viscosity. The ra- 
dial profiles corresponding to die exit temperature To 
= 443, 463, and 468 K are given in Q. 9. The radius 
profiles increase with the die exit temperature To, 
which, unlike the computed results of Liu (20, 21), is 
physically reasonable. 

Other Eflects: Spatiall9 Variable lnfrcltion Pressure 
and Heat lrtansfer Cmmients 

In order to make a one-on-one comparison with the 
calculations of Liu et al. (20, 21), the calculations just 
presented corresponded to spatially uniform inflation 
pressure and heat transfer coefficients. For complete- 
ness, however, we examined some other effects on the 
calculated steady-state results. 

Fit-st, the heat transfer coefficient and the inflation 
pressure were varied spatially according to the calcu- 
lated aerodynamic profiles of the external cooling air 
by Akaike et al. (9). These investigators used the k-E 
method discussed by Abe et al. (27). Their calcula- 
tions showed that the exterior surface pressure on the 
bubble-tube was negative near the die, followed by a 
rise to a positive value and then a decline to nearly 
zero. As a consequence, the inflation pressure AP cor- 
responding to an inside bubble-tube pressure of 270 

Pa gauge, had the profile shown in Q. 10. In con- 
trast, the heat transfer coefficient uh calculated by 
Akaike et al. increased from a low value of approxi- 
mately 10 W/(m2K) at the die to a higher value of ap- 
proximately 190 W/(m2K) in the frost zone (about 
7- 10 cm) and then declined to a small value down- 
stream of the frost zone (see Fig. 1 I ) .  Sidiripoulos and 
Vlachapoulos (28) calculated similar behavior and at- 
tributed it to a combination of Coanda and Venturi ef- 
fects. 

Thus, the emerging melt near s = 0 would be sub- 
jected to a lower cooling rate and a higher inflation 
pressure than occurs in the case of constant uh and 
AP. This combination of occurrences should threaten 
the stability of the bubble-tube at the entrance zone 
(near o = 0) as it is subjected to greater stress while 
the viscosity of the melt is at its lowest value. In the 
case of the deformation thinning model in Eq 23. the 
bubble-tube burst at an extrusion temperature at To 
= 463 K. A lower extrusion temperature, To = 457.46 
K, was required to keep the bubble-tube stable while 
achieving a similar blowup ratio. For a non-deforma- 
tion-thinning model, e.g., one corresponding to A = 0, 
the bubble-tube is less vulnerable to instability in the 
entrance zone near h. = 0, but the extrusion tempera- 
ture To must be higher, about 488 K. 

Another spatial profile for U,, based on the work of 
Kanai and White (29). was mentioned by Liu (20, 21). 
In this expression, uh was held constant at uh,o from 
Z = 0 to Z = Z,,, and then allowed to drop off as 
U,,0/Z2.5. Our calculations showed that this drop-off 
had very little effect on the results as long as 2 was a 
few centimeters past the beginning of the frost zone. At 
this point, the film viscosity was several orders of mag- 
nitude higher than at Z = 0, and the geometric vari- 
ables R and H were stabilized. As mentioned earlier. 

POLYMER ENGINEERING AND SCIENCE, FEBRUARY 2003, Vol. 43, No. 2 407 



J. Carl Pirkle, Jr., and Richard D. Braatz 

0.20 

1.80 

i 
i 
I 

1.60 

1.40 

E 0 1.20 

a 1.00 

.I 2 0.80 
m 

0.60 

0.40 I I 

0.00 ' I I I I I 1 

0 5 10 15 20 25 30 
Axial Position Z, cm 

Fig. 9. Effect of die exit temperature To upon bubble radius profles. 

, 

0 5 10 15 20 25 30 

Z, cm 
Fig. 10. Qpical prom of in@aibn pressure resdtingfrom aerodynamics of external cooling air: reference (91. 

crystallization played a large role in the increase in 
viscosity. and a lack of cIystallization would result in 
less film stability for the Kanai and White model. 

Comparison of Boundary Conditions 
for the Axial Gradient y 

There is some debate over the proper boundary con- 
dition for the axial gradient y of the bubble radius r. 

Here is a demonstration of why the oufflow boundary 
condition 8c, which is called the "minimum order re- 
duction" condition by Schiesser (30), was used. For 
the case of inflation pressure AP = 270 Pa and take- 
up  ratio vL = 2.988, Fig. 12 compares steady-state 
profiles of the axial gradient y for boundary conditions 
8a and 8c. The value of the axial gradient at the die, 
yo, corresponding to boundary condition 8a is taken 
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to be zero. The boundary condition 8a yields a non- 
physical kink in the value of the axial gradient at the 
die exit, as it suddenly rises to attain nearly the same 
values as the plot for Eq 8c. If the correct value of the 
axial gradient y = yo at the die exit was known, then 
the boundary condition 8a could be used without a 
kink occurring in the entrance zone of the solution. 
But, of course, the value for yo is not known in ad- 
vance. 

In Flg. 13, profiles for the bubble-tube radius R ob- 
tained using the different boundary conditions 8b and 
8c are compared. There is a severe nonphysical wiggle 
at 2 = L when boundary condition 8 b  is used. Such 
nonphysical wiggles due to this form of exit boundary 
condition are described in some detail by Schiesser 
(30). Refining the grid points did not eliminate this 
wiggle. For this reason, the outflow boundary condi- 
tion 8c was used. 
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Fig. 12. Comparison of awial gradient p r o m s  obtainedfrom boundary conditions 8a and 8c. 

POLYMER ENGINEERING AND SCIENCE, FEBRUARY 2003, Vol. 43, No. 2 409 



J. Carl Pirkle, Jr., and Richard D. Braatz 

E 
K 

5 

0 

v) 
3 

a 
K 

1.2 

1 .o 

0.8 

0.6 

I i 
i 

I I I I I 

10 15 25 

Axial Position Z, cm 
Ffg. 13. Comparison of bubble-tube radius profis obtainedfrom boundary conditions 8b and 8c. 

Dynamic Behavior of Pearson-Petrie Modal 

Several investigators have studied the dynamics of 
the Pearson-Petrie model by linearizing the nonlinear 
equations and computing the eigenvalues (8, 10, 14, 
31). Here the transient nonlinear equations are solved 
to observe the evolution of process variables from 
startup to steady state. Specifically, we examine the 
effect that the shifting time has on the transition of 
process variables from one steady state to another. 
Also, the sensitivity of process variables to oscillations 
in the operating conditions is observed. In particular, 
the effects of variations of heat transfer coefficients, 
the inflation pressure AP, and the machine tension F 
upon the process operations are investigated. 

’kansient ShiJ Between Steady States 

Of practical interest is how smoothly the blown film 
extrusion process can be shifted from one steady state 
to another. For the simulations here, the die exit tem- 
perature To = 463 K, the take-up ratio vL = 2.988, and 
the rest of the conditions are given in Table 3. The ini- 
tial dimensionless inflation pressure B = 0.0654080 
(this corresponds to AP = 125 Pa) and the modified 
tension F = 0.28376298. After the initial steady state 
is reached, the inflation pressure and machine ten- 
sion are shifted to new values of B = 0.1308200 (this 
corresponds to AP = 250 Pa) and F = 0.31031428, re- 
spectively. In the simulation, the mathematical func- 
tion used for the shift was 

F,, = Fold + (Fne, - Fold)[ 1 - expf- 72/7:h13)1 (28) 
Because disturbances are rapidly propagated by the 
momentum balance (Eq 2) in the axial direction, the 
take-up ratio does not remain at 2.988 during this 
transition. Rather, the take-up ratio will experience a 
transitory departure in its steady-state value. The na- 
ture of this departure depends on the value of T ~ ,  

the shifting time, as indicated in Flg. 14. The longer 
the shifting time, the less the excursion of the take-up 
ratio v,, and the smoother the transition. At a shifting 
time of 30. which is roughly the travel time of the film 
from 2 = 0 to 2 = L, the spike in vL is greatly reduced. 
For below 20, the velocity profile overshoots and then 
sometimes undershoots its steady-state value. The 
major concern from the perspective of process opera- 
tion is that this gyration in film velocity will cause 
wrinkling of the sheet unless the transition between 
steady states is made sufficiently gradual. 

Flgwes 15-20 show how the dimensions and prop- 
erties of the polymer bubble develop with respect to 
time using a shifting time T~~ = 30. All of the profiles 
in Fgs. 15-20 develop smoothly with time, nearly 
reaching steady state in about 300 seconds (about 10 
times L/V& Figure 15 shows that bubble-tube radius 
at low axial positions responds more quickly than at 
the highest axial position (2 = L). This is to be ex- 
pected, since changes in the polymer film take time to 
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propagate to the higher axial positions. A similar ef- 
fect is seen in the film thickness (see Fig. 16) and 
temperature profiles (see Rg. 18). Also, the crystdin- 
ity profile climbs to its new steady-state value, reach- 
ing the maximum allowed value ( X  = 0.44) at 2 = L 
(see Fig. 19). This dynamic effect is related to the con- 
stant value of crystallinity for 2 = L achieved for a 
range of inflation pressure (see Rg. 6). Likewise, the 
axial gradient y of the bubble-tube radius progres- 
sively increases to its new steady-state profile (see Fig. 
20). Similar behavior was observed for other values of 
the inflation pressure, die exit temperature, and take- 
up ratio. 

Oscillations in Operating Conditions 

Heat transfer from film to cooling air. In many ex- 
perimental and smaller commercial blown film ex- 
truders, externally and internally flowing air streams 

2.9 * 

Q. 15. Bubble-tube radius pro- 
files after shift to new inJlatwn 
pressure AP and modw tension 
F (rSmfi = 30). 

10 20 30 40 
Time z, dimensionless 

cool the polymer film as it leaves the die. Roper cool- 
ing is important to get an acceptable viscosity profie 
and to obtain proper crystallization. The rate of cool- 
ing affects the dimensions (bubble-tube radius and 
film thickness) and strength of the bubble tube. The 
coefficient for film to air heat transfer U, depends on 
the physical properties of the air as well as the pat- 
tern of flow in the boundary layer next to the film. In 
the calculations that follow, the inflation pressure AP 
= 265 Pa, the time-averaged take-up ratio v, = 2.988, 
and the die a i t  temperature To = 463 K. The other 
conditions and physical properties are given in Table 3. 

The heat transfer coefficient was assumed to be a 
sinusoid with frequency v and amplitude of either 2% 
or 4% of the steady value (the bubble was unstable for 
constant values of the heat transfer coefficient above 
4% of the nominal value). The maximum positive and 
negative deviations of the final bubble-tube radius 
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(that is, the radius r, at the top of the freeze zone) as a 
function of frequency of oscillation are shown in Q. 
21. The frequency of variation of r, follows the fre- 
quency in the oscillation of the heat transfer coeffi- 
cient Uh extremely closely and is practically equal to Y. 
The positive and negative deviations, r, - rL,ss, are not 
symmetric about zero. This lack of symmetry can be 
attributed to the nonlinearity of the system with re- 
spect to the temperature effect on the viscosity. As ex- 
pected for a physical system, the maximum deviation 
declines rapidly at higher frequencies. 

The mean variation rL,m (upper value minus lower 
value of r, - rL,ss divided by two) is plotted versus fre- 
quency u in FQ. 22 for amplitudes of oscillation in 
heat transfer coefficient uh of 2% and 4%. The maxi- 
mum mean variation in rLSm (for low values of uh) is 
sensitive to variation in the heat transfer coefficient 
uh. At low frequencies, changes of 2% and 4% in the 
heat transfer coefficient uh correspond to changes in 
the bubble-tube radius r, of 6.4% and 17.4%. respec- 
tively. The maximum mean variation is more than two 
orders-of-magnitude smaller for frequencies higher 
than 0.32. 

There is a kink in the plots around the frequency 
0.2. The kink persisted when the calculations were re- 
peated for increasing number of grid points, suggest- 
ing that the kink is a real characteristic of the dy- 
namic relationship between heat transfer coefficient 
variations and the bubble-tube radius. This kink sug- 
gests a partial separation of time scales in the dy- 
namic behavior of the process. These time scales are 
not easily attributed to single groups of governing 
equations because of their coupling. 

Inflation air Dressure. Here is a determination of the 
effect of oscillations of the inflation pressure on the 
operation of blown film extrusion. The base inflation 
pressure is 265 Pa, the machine tension F is held at 
0.3 1 1, and the amplitude of oscillation is taken be ei- 
ther 1.2% or 2.4%. For constant values of machine 
tension above 2.4%, the bubble was unstable and 
burst. For a 2.4% variation of inflation pressure about 
the inflation pressure AP = 265 Pa, Flg. 23 shows the 
maximum positive and negative deviations in the final 
bubble-tube radius rL as a function of frequency Y. 
The deviations are not symmetrical about zero (and 
hence the dynamic behavior is significantly nonlin- 
ear), and the deviations do not decrease monotonically 
with frequency. At the frequency u = 0.12. the devia- 
tions reach a local minimum in magnitude, then climb 
to a local maximum at u = 0.15 before resuming a de- 
crease toward zero. At low frequencies, small changes 
in the inflation pressure AP cause large changes in 
the bubble-tube radius r,, with 1.2% and 2.4% varia- 
tions in AP resulting in 7.8% and 25.2?40 maximum 
variation, respectively, in rv 

The mean deviation in the bubble-tube radius r, 
(upper value minus lower value of r, - rL,ss divided by 
two) is plotted as a function of frequency u in Q. 24 
for 1% and 2% amplitude in variations of inflation 
pressure AP about 265 Pa. Here the local minimum 
and maximum are more evident in the region Y = 0.12 
to 0.15. The maximum mean variation is more than 
two orders-of-magnitude smaller for frequencies 
higher than 0.1 than for low frequencies. 

Machine tension. Here is an investigation of the ef- 
fect of oscillating machine tension on the behavior of 
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the blown film extrusion process. The base value of 
the modified tension F is taken as 0.3 1 1, and the am- 
plitude of oscillation is taken as 11.5% around this 
value. The maximum deviations of the bubble-tube 
radius r, as a function of the frequency of oscillation 
are shown in Fig. 25. Unlike the cases involving heat 

transfer or inflation pressure, the upper and lower 
values of the maximum deviation are relatively sym- 
metrical with respect to zero, which occurs for linear 
relationships between variables. The maximum devia- 
tions in the bubble-tube radius are similar in magni- 
tude for oscillations in inflation pressure and machine 
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tension (compare Figs. 23 and 25), although the rela- 
tive maximum change in machine tension was much 
greater than the maximum change in inflation pres- 
sure (2%). This indicates that the bubble-tube radius 
is much more sensitive to oscillations in the inflation 
pressure than oscillations in machine tension. 

In Fig. 26, the mean maximum deviation in r, is 
plotted as a function of frequency u for the 11.5% am- 
plitude in oscillation of the modified tension F. The 
roll-off of the amplitude is much more gradual as a 
function of frequency than for the heat transfer co- 
efficient and inflation pressure, indicating that high 
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frequency oscillations in the machine tension have a 
stronger relative effect. This result agrees with physi- 
cal intuition, since high frequency oscillations in ma- 
chine tension rather directly affect the bubble geome- 
try, whereas the effect of high frequency oscillations in 
heat transfer coefficient and inflation pressure receive 
more damping by the thermal and physical inertia of 
the polymer film. The maximum mean variation is one 
order-of-magnitude smaller for a frequency of 0.27 
than for low frequencies. 

CONCLUSIONS 
When the NMOL approach is used to solve the two- 

point boundary value problem that comprises the 
Pearson-Petrie thin film blown film extrusion model, 
the results are in good qualitative agreement with ex- 
periment. The bubble-tube radius is seen to increase 
with inflation pressure under a wide range of condi- 
tions. This suggests that the "counterintuitive" simu- 
lation results of Liu and coworkers (5, 20, 21) and 
Ashok and Campbell (22) resulted from application of 
an incorrect boundary condition (Eq 8a) or numerical 
inaccuracies exacerbated by not knowing the true val- 
ue of the axial gradient y at the die exit. The boundary 
conditions and numerical method used here avoid 
such problems. 

When the blown film process is started up, under- 
goes a deliberate change, or suffers an upset, the dy- 
namic model can be easily solved to predict the out- 
come. The dynamic model readily reveals the effect of 
oscillations in operating conditions such as heat trans- 
fer, inflation pressure, or machine tension on film bub- 
ble-tube dynamics. The dynamic model can be used to 
quantify the extent of nonlinearity between relevant 
process variables, or to design process control systems. 
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