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In any process plant design, a central question is whether it is possible to achieve acceptable
control with the available manipulated variables, while taking into account the disturbances
that can be expected. Some little known controllability measures have been proposed to address
such issues.1,2 The main reason these controllability measures have received little attention is
probably that, while their mathematical formulation was defined, no algorithms were provided
to solve the mathematical problems. This paper shows how to calculate these controllability
measures and applies the algorithms to some process examples.

1. Introduction

The importance of designing processes that can be
acceptably controlled is widely recognized and has been
studied by many researchers.3-12 A significant consid-
eration is whether it is possible to reduce the effect of
disturbances to an acceptable level using the available
manipulated variables. Three relevant questions in this
context are as follows:

1. What is the minimum output error that is obtain-
able for the worst possible combination of disturbances
with the optimal use of the manipulated variables?

2. What is the minimum required magnitude for the
manipulated variables to obtain an acceptable output
error for the worst possible combination of disturbances?

3. What is the largest possible disturbance for which
an acceptable output error is obtainable with the
available manipulated variables?

These questions do not require zero output error, as
is done in most other disturbance rejection mea-
sures.7,10-12 Zero output error is not achievable in
practical systems because of sensor time delays, nonzero
sampling times, and other nonminimum phase behavior.

While the mathematical formulation of each of these
questions in terms of optimization problems has been
provided,1,2 no explanation was given on how to solve
the resulting optimization problems. This paper pro-
vides algorithms for computing the solution to these
optimization problems.

Obtaining answers to the three questions above is
useful when designing processes to be controllable and
is also of use in the early stages of control structure
design. Answers to these questions can be used to
perform the following:

1. Check that acceptable (i.e., not necessarily perfect)
control is possible with the available manipulated
variables.

2. Check that acceptable control is possible with a
specific subset of manipulated variables used for active
control.

3. Assess that the sizing of the manipulated variables
is appropriate, i.e., whether the range of manipulation
is adequate.

4. Identify needs for changing the process design to
reduce the effect of disturbances.

1.1. Plant Model. Consider a plant described by a
transfer function P and a disturbance transfer function
Pd:

where y is the plant output, u is the vector of manipu-
lated variables, and d is the vector of disturbances. This
paper considers the steady-state case, where y, u, d, P,
and Pd have elements that are real. For the steady state
to be well-defined, it is assumed that P and Pd are
asymptotically stable. The results of the paper also
apply to open-loop unstable plants that are stabilized
by some lower-level control loops, as long as the lower
level loops are in operation and do not saturate. In such
cases, P and Pd should include the effects of the lower
level loops.

1.2. Scaling. To permit consistent evaluation of the
results, it is essential that the variables are appropri-
ately scaled. As described in the undergraduate text-
book,13 here it is assumed that the matrices P and Pd
are scaled such that (1) the largest possible move in the
manipulated variables is of magnitude 1, (2) the largest
expected disturbance is of magnitude 1, and (3) the
largest tolerable offset from the reference value for the
outputs is of magnitude 1.

1.3. Organization. This paper deals with the calcu-
lation of each of the three problems given above. These
problems all take the form of a linear max-min
problem. The algorithms are first formulated for the
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minimum output error problem, which consists of an
outer maximization problem to find the worst possible
combination of disturbances, and an inner minimization
problem optimizing the use of the manipulated distur-
bances for known disturbances. It is shown how to
convert the inner minimization problem to a linear
program (LP) of standard form. Then duality is used to
convert the minimization problem to an equivalent
maximization problem and then convert the overall
problem to a bilinear programming problem. Because
the inner minimization problem can be converted to the
standard form of an LP for the other two problems, the
conversion to a bilinear program follows similarly.
Throughout this paper, the norms of all vectors are
measured by the ∞-norm because this is the most useful
for most control applications. For example, the ∞-norm
is used in nearly all model predictive control formula-
tions for quantifying the allowed magnitude of the
manipulated variables.14-16

2. Minimum Output Error

In the design of a process, it is of interest to know
whether it is possible with the available manipulated
variables to achieve acceptably small offset in the
outputs y for the worst possible combination of distur-
bances d, provided the manipulated variables u are
used optimally. The answer to this question is obtained
by solving the mathematical problem

When this problem was proposed,1,2 no indication was
provided on how to solve the problem. Solving this max-
min problem is nontrivial because the objective function
is convex in d, which is the free variable in the
maximization. Maximizing a convex function is in
essence the same as minimizing a concave function,
which in general is difficult. Solving the inner minimi-
zation problem is easy though because it is a convex
minimization problem. Below we show how to reformu-
late the max-min problem as a bilinear program. The
resulting bilinear program is nonconvex but is compu-
tationally tractable for problems of moderate dimension.

We start by rewriting the inner problem in eq 2 as a
standard LP for a known disturbance d:

where 1 denotes a column vector with all elements equal
to 1. With v ) u + 1 and w ) [vT, γ]T, the optimization
problem is equal to

The solution to the max-min problem need not be
unique. One cause of nonuniqueness is that the input
vectors (combinations of manipulated variables and
disturbances) [uT, dT]T and [-uT, -dT]T yield output

vectors of the same magnitude. This source of non-
uniqueness can be removed by fixing one element of the
disturbance vector to +1 because all disturbances can
generally be assumed to have a maximum magnitude
at the optimal point. Fixing the first element of the
disturbance vector to +1 and partitioning Pd accordingly
give

where Pd1 denotes the first column of Pd. Introducing
eq 6 into eq 5 gives

where

Thus, the inner program has been written as a standard
LP. Now consider the overall problem, with the new
variable x defined by x ) d′ + 1:

where b ) b̂ + A1. There exists a branch-and-bound
algorithm for solving this max-min LP that converges
in a finite number of steps.17 Here the max-min LP is
converted to a bilinear program that can be solved using
several publically available optimization codes. The
inner (minimization) problem is replaced by an equiva-
lent maximization problem using duality:17

where

This optimization problem is bilinear in the objective
and linear in the constraints. Although the optimization
problem is nonconvex, available optimization codes can
solve this type of problem provided the problem size is
moderate.18 The solution to the optimization problem
will give the values for x and λ. The worst combination
of disturbances can be found directly through the
relationship d′ ) x - 1 (keeping in mind that d1 ) 1),
whereas the vector λ gives the solution to the duality of
the original inner minimization problem. The solution
to the dual problem can be used to compute the solution
to the primal problem in order to obtain the optimal
values for the manipulated variables. Such a conversion
is described in standard optimization textbooks, e.g., in
work by Luenberger.19 Because the worst-case distur-
bance now has been calculated, another approach would
be to solve the inner minimization problem in eq 5 for
a fixed worst-case disturbance to obtain the optimal
inputs. Because LPs can be solved very efficiently, the
solution of eq 5 can be computed with little effort.

max
||d||∞e1

min
||u||∞e1

||Pu + Pdd||∞ (2)

min
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0 BT ] (11)
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2.1. Solution via a Series of LPs. Because the
objective function in eq 2 is convex in d, the maximiza-
tion over d can be replaced by a maximization over the
vertexes of this set; that is, eq 2 is equivalent to (e.g.,
see theorem 2 of ref 20)

Because this maximization is over a discrete set, in
principle it can be solved by solving the inner (LP)
problem for each vertex and taking the maximum. The
computational requirements of this approach are rea-
sonable when the number of disturbances is relatively
low. The number of vertexes grows exponentially with
the dimension of d, resulting in an excessive computa-
tional load when the dimension of d is larger than ∼12.
This motivated our investigation into the alternative
formulation as a bilinear program, which can in prin-
ciple solve the max-min problem without checking all
of the vertexes.

2.2. Connections to Flexibility Analysis. While
flexibility as commonly defined in the process design
literature (e.g., see eq 5 of ref 21) treats different
variables and constraints, it has a mathematical struc-
ture similar to that of eq 2. Several algorithms have
been proposed for computing the solution of the flex-
ibility optimization problems, including heuristic vertex
search, implicit enumeration schemes, and active set
strategies.20-22 In the latter strategy and for the case
of linear constraints, the Kuhn-Tucker conditions are
used to reformulate the max-min flexibility problem
as a mixed-integer LP. While the original mathematical
problems are somewhat different, this approach for
solving the max-min flexibility program is related to
our approach to solving eq 2 because both approaches
use λ variables to reformulate the original optimization
problem.

3. Required Input Magnitude

The minimization of the magnitude of the manipu-
lated variables while achieving an acceptable offset for
the worst possible combination of disturbances was
formulated as1,2

Similarly as before, the inner minimization problem
can be converted into a standard LP (for a fixed
disturbance d):

Substituting v ) u + γ1 and w ) [vT, γ]T and fixing
the first element of the disturbance vector to +1 give

For a known fixed d′, eq 15 is of the form of a standard
LP and may be written on the same form as eq 7.

Provided that the LP is feasible, one may then proceed
exactly as in the previous section and replace the inner
minimization problem with its dual maximization prob-
lem. However, whereas the LP in eq 7 is always feasible
for a bounded disturbance (the maximum output is
always finite because the plant is assumed to be stable),
the LP in eq 15 need not be feasible if P does not have
full row rank because it need not be possible to achieve
acceptably small output errors even with very large
control outputs. A trivial sufficient condition for the
feasibility of the LP in eq 15 is that ||Pd||i∞ e 1, where
||‚||i∞ is the induced ∞-norm, in which case the solution
to eq 13 has u ) 0. A more useful sufficient condition
in most applications is ||(I - PP†)Pd||i∞ e 1, where P†

is the generalized matrix inverse of P. If these condi-
tions are violated, then there may exist a disturbance
such that ||y||∞ > 1 irrespective of how the available
manipulated variables are used. A practical approach
to checking the feasibility is to run a rescaled version
of the minimum output error problem. If the norm of
the minimum output error is greater than 1 even for
very large u, then the required manipulated variable
magnitude problem is infeasible for all practical pur-
poses.

4. Acceptable Disturbance Magnitude

The problem of determining the maximum magnitude
of the disturbances for which an acceptable output error
can be obtained with the available manipulated vari-
ables can be formulated as

This can be written in terms of the solution of a set of
LPs using mathematical manipulations similar to, but
more complex than, those in section 2. First, do not fix
the first element of d. Then eq 16 is equal to

The last equality follows because any d and u that
solves the middle optimization also has that optimiza-
tion solved by -d and -u. The rightmost optimization
for each j can be written as an LP and solved using
mathematical manipulations similar to those in section
2. Then the maximum over j is taken to compute the
solution to eq 16.

A problem which is probably of more interest is the
smallest disturbance d that would cause the manipu-
lated variables (when used optimally) to saturate and
give the largest acceptable output error. All distur-
bances smaller than this can be controlled with accept-
able output error using optimal manipulated variables.
One way to solve this problem is by iteratively rescaling
the minimum output error problem in eq 2 with respect
to the disturbances.2 The disturbance magnitude for
which the optimal objective function value is equal to 1
is the minimum disturbance magnitude for which
acceptable output offset cannot be obtained with the
available manipulated variables.
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To illustrate the difference between these problems,
consider

The largest disturbance in which the output error is
acceptable can be selected as d ) [101, 0]T. This
indicates that some very large disturbances can be
controlled using bounded manipulated variable actions
while providing acceptable output error. When the
output error problem is rescaled, a minimum magnitude
disturbance which provides unacceptable output error
even when using optimal bounded manipulated variable
actions is d ) [0, 0.02]T. This indicates that some very
small disturbances cannot be tolerated. As this example
illustrates, there can be a large “gray zone” in which
the norm of the disturbance is not sufficient to tell
whether a disturbance can be adequately rejected.
Although the example is purely mathematical, real
processes such as high-purity distillation columns,13

polymer film extruders (see a blown film extrusion
example), and paper machines23,24 can have such a gray
zone.

5. Computational Example

In this section the use of the controllability measures
is illustrated on an example adapted from the literature.
The example deals with a blown film extrusion process.
The fact that each element of the disturbance vector can
be set to its maximum or minimum value allows the
disturbances to be treated as discrete variables, which
speeds up the calculations. The computational time was
further reduced by scaling the A matrix such that the
scaled x variables can only take the values 0 or 1.
Together with fixing one element of the disturbance
vector to +1 (as described above), this typically reduces
the computation time by a factor of 40. Computational
time and numerical robustness can also be improved by
adding artificial maximum value constraints on the λ
variables. However, such artificial constraints may lead
to a solution which is not globally optimal. If such
maximum value constraints on λ are active at the
optimal solution, those constraints should be relaxed
and the optimization problem resolved.

5.1. Blown Film Extrusion Process. Here we
consider a blown film extrusion process with 15 actua-
tors and sensors.25,26 Because of the process design and
the spatial distribution of manipulated and controlled
variables, it is natural to model both the process and
disturbance transfer function matrices as circulant
symmetric matrices. A matrix is circulant if row i + 1
can be obtained from row i by simply shifting all
elements in row i one position to the right and placing
the last element of row i as the first element of row i +
1. In order for a circulant matrix also to be symmetric,
it must be possible to parametrize the first row as
follows:

For this example, the process matrix P is defined by
the parameters

The plant matrix P is not full rank, which is common
in polymer film extrusion and coating processes, in part
because of an overall flow constraint.27

The plant disturbance model is an extension of earlier
disturbance models28-30 to blown film extrusion, and the
first row of this disturbance model can be found from

where the index i is defined in the same way as that in
eq 19, with k ) 1 and r ) 0.7.

This corresponds to disturbances that have a signifi-
cant spatial correlation across the polymer film. The
minimum output error is ||y||∞ e 0.783, which indicates
that the manipulated variables are able to achieve an
acceptable closed-loop performance for the entire range
of norm-bounded disturbances. A worst-case distur-
bance, the optimal manipulated variables for this
disturbance, and the corresponding output vector are
shown in Figure 1. It is interesting that the effect of
the worst-case disturbance on the output is flat (see
Figure 1a).

Now consider the case where the disturbances have
a weaker spatial correlation across the polymer film
(k ) 1 and r ) 0.3). The minimum output error is ||y||∞
e 0.8935, which indicates that the manipulated vari-
ables are able to achieve an acceptable closed-loop
performance for all potential disturbances. The set of
disturbances with lower spatial correlation (r ) 0.3) is
harder to suppress than the set of disturbances with
high spatial correlation (r ) 0.7). It makes physical
sense that the effect of the worst-case disturbance on
the output has a higher spatial frequency variation for
the set of disturbances with a weaker spatial correlation
(see Figure 1a). Also, this comparison makes clear the
importance of correctly modeling the spatial correlation
among the disturbances when evaluating the achievable
performance of a closed-loop system.

Based on our experience with experimental data
collected from an industrial polymer film extruder,
disturbances with low spatial correlation tend to have
lower magnitude than disturbances with high spatial
correlation. In this case, a more realistic model of the
disturbances with low spatial correlation (r ) 0.3) would
be to have a plant disturbance matrix with k ) 0.5. In
this case the minimum output error is ||y||∞ e 0.382,
indicating that the manipulated variables are able to
achieve acceptable closed-loop performance for all po-
tential disturbances. The disturbance, manipulated, and
output variables are qualitatively similar in shape
(though not necessarily in magnitude) for k ) 0.5 and
1.

It is interesting that the worst-case disturbance
effects on the output in Figure 1a are not exactly
sinusoidal, as is predicted by other results.25,26 The
reason for this difference is that the results of refs 25
and 26 are based on closed-loop stability issues (which
are independent of the signal norm), whereas the results
here are based on steady-state performance consider-
ations (with signal norms measured in terms of the
∞-norm). However, the disturbance effects, manipulated
variables, and controller variables are nearly sinusoidal
for the r ) 0.3 results.

Using the manipulated variables optimally, distur-
bances d up to a magnitude of 1.1 can be controlled
while giving an acceptable output error. The maximum
magnitude of the disturbances for which an acceptable

[Pd]1,i ) kri-1 (21)

P ) [100 0
0 1 ], Pd ) [1 0

0 100 ] (18)

[p1 p2 ‚‚‚ pm-1 pm ‚‚‚ pm pm-1 ‚‚‚ p2 ] (19)

p1 ) 1.0; p2 ) 0.9; p3 ) 0.6; p4 ) 0.2; p5 ) 0.1;
p6 ) -0.1; p7 ) 0.05; pm ) p8 ) 0 (20)
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output error can be obtained with the available ma-
nipulated variables is 5.0 (it is straightforward to use
the properties of symmetric circulant matrices31,32 to
show that, for symmetric circulant P and Pd, only one
of the rightmost optimizations in eq 17 needs to be
solved to compute the solution to eq 16). Hence, some
rather large disturbances can be controlled with accept-
able output error, whereas there are much smaller
disturbances (less than 25% of the size) that cannot be
controlled with acceptable output error, with the allowed
manipulated variables.

6. Discussion and Conclusions

In this paper we have shown how to solve the
optimization problems associated with the minimum
output error and required input magnitude controllabil-
ity measures.1,2 The acceptable disturbance magnitude
controllability measure was reformulated, and the
reformulated measure can be evaluated using the same
mathematical techniques as those for the two other
controllability measures.

Solving these controllability measures is computa-
tionally demanding but typically less demanding than
the alternative method of solving the inner (LP) problem
for all vertexes in the disturbance set.

At present, the controllability measures are evaluated
at steady state; the evaluation of these measures at
nonzero frequencies will be a topic for further research.
However, steady-state models are often available rela-
tively early in the process design stage, and evaluating
the measures at steady state will therefore make it
possible to take important control considerations into
account early in the process design.

Skogestad and Wolff2 advise caution when applying
these controllability measures. In particular, they men-
tion that if the process model includes lower level control
loops, the manipulated variables in these loops may
saturate and the controllability measures may therefore
be invalid. This problem can be resolved at the cost of
having to solve a larger optimization problem, simply
by including the manipulated variables in the lower
level control loops as outputs from the model and solving
the optimization problems with the appropriate con-
straints on these additional outputs.

These measures complement the insight that can be
gained from other measures for evaluating the effect of
disturbances on controllability. Notably, the measures
proposed by Cao et al.33 for selecting subsets of ma-
nipulated variables for active control are significantly
less computationally intensive. However, these mea-
sures are based on the vector 2-norm, which make them
poorly suited for assessing hard constraints in manipu-
lated or controlled variables. To illustrate, consider an
n-dimensional vector (of manipulated or controlled
variables), scaled such that the individual elements
should be in the range -1 to 1. Then, for values of the
vector 2-norm in the range 1 to xn, one cannot deter-
mine from the 2-norm whether individual vector ele-
ments are at or outside their constraints.

Most controllability measures apply to linear systems
only. It is conceptually simple to extend these control-
lability measures to account for nonlinearities in the
process model. However, the method developed here for
evaluating the measures would then break down, and
solving the corresponding optimization problems for
nonlinear processes of modest dimensions would be
prohibitively computationally expensive. In practice,
these controllability measures are therefore, at present,
restricted to linear systems. However, the optimization
problems solved when evaluating these controllability
measures will identify potentially “difficult” combina-
tions of disturbances. With these difficult combinations
of disturbances, the practicing engineer may choose to
check using a nonlinear model that acceptable control
is indeed achievable. This is computationally a lot less
demanding than using the nonlinear model directly to
identify the more difficult combinations of disturbances.

Figure 1. Results for the blown film extrusion process: (a) a
worst-case disturbance d multiplied by the plant disturbance
model Pd; (b) the optimal manipulated variables for this worst-
case disturbance; (c) the corresponding output vector for the blown
film extrusion process.
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