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NMPC explicitly addresses constraints and nonlinearities during the feedback control
of batch processes. This NMPC algorithm also explicitly takes parameter uncertainty
into account in the state estimation and state feedback controller designs. An extended
Kalman filter estimates the process noise co®ariance matrix from the parameter uncer-
tainty description and employs a sequential integration and correction strategy to reduce
biases in the state estimates due to parameter uncertainty. The shrinking horizon NMPC
algorithm minimizes a weighted sum of the nominal performance objecti®e, an estimate
of the ®ariance of the performance objecti®e, and an integral of the de®iation of the
control trajectory from the nominal optimal control trajectory. The robust performance
is quantified by estimates of the distribution of the performance index along the batch
run obtained by a series expansion about the control trajectory. The control and analysis
approaches are applied to a simulated batch crystallization process with a realistic un-
certainty description. The proposed robust NMPC algorithm impro®es the robust perfor-
mance by a factor of six compared to open loop optimal control, and a factor of two
compared to nominal NMPC. Monte Carlo simulations support the results obtained by
the distributional robustness analysis technique.

Introduction

Batch processes are widely applied in many sectors of the
chemical industries including pharmaceuticals, polymers, food
products, biotechnology, and electronic chemicals. Increased
competition has motivated the interest in mathematical mod-
eling, optimization, and advanced process control techniques
that enable the operation of flexible high-performance pro-

Ž .duction lines Le Lann et al., 1999; Rippin, 1983 . Advanced
control techniques have the potential to improve perfor-

Žmance. Since the advent of dynamic matrix control Cutler
. Ž .and Ramaker, 1980 , model predictive control MPC has

been the most popular advanced control strategy. Linear MPC
Ž .Garcia et al., 1989 has been heralded as a major advance in
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industrial control. However, for highly nonlinear systems,
which is the case for most batch processes, linear MPC is
often subject to severe performance limitations due to the
limited validity of the linear model. For these systems, non-

Ž .linear MPC NMPC is the more appropriate approach. Al-
Žthough most of the reported NMPC applications Qin and

.Badgwell, 2000; Mayne, 2000 are based on scheduling multi-
ple models, successive linearization, or empirical nonlinear

Ž .models such as artificial neural networks , NMPC based on
a first-principles nonlinear model is becoming increasingly
feasible in the chemical industries due to improvements in

Žcomputational power and optimization algorithms Biegler,
.2000; Biegler and Rawlings, 1991; Wright, 1996 .

NMPC is an optimization-based multivariable constrained
control technique using a nonlinear dynamic process model

Žfor the prediction of the process outputs Allgower et al.,¨
.1999; Bequette, 1991 . At each sampling time, the model is
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updated on the basis of new measurements and state variable
estimates. Then, the open-loop optimal manipulated variable
moves are calculated over a finite prediction horizon with re-
spect to some cost function, and the manipulated variables
for the subsequent prediction horizon are implemented.
Then, the prediction horizon is usually shifted by one sam-
pling time into the future and the previous steps are re-
peated. For batch processes, the objective to be optimized
usually is a representative property of the product at the end
of the batch. Hence, the control problem usually leads to a

Žshrinking horizon NMPC formulation Eaton and Rawlings,
.1990; Thomas et al., 1994 .

NMPC provides a systematic methodology to handle non-
linearity and constraints on manipulated and controlled vari-
ables that is not limited to a certain model structure. How-
ever, control performance can be strongly dependent on how
accurately the specific model describes the real process. Most
process models, which are developed from experimental ob-
servations of limited quality and quantity, are far from being
highly accurate and involve significant uncertainties. The im-
portance of taking model uncertainty into account in the
analysis and design of MPC controllers is widely accepted in
the control community. While, for linear MPC, both robust

Žstability Rawlings and Muske, 1993; Badgwell, 1997a,b;
. ŽMayne et al., 2000 and robust performance Lee and Yu,

.1994 have been studied, in the case of NMPC, research has
been focused on the study of robust stability rather than per-
formance. Although robust performance analysis can identify
issues in implementation that need to be addressed for a the-
oretically-derived algorithm to be readily applied in practice,
rigorous robust performance analysis techniques and studies
are lacking. Several approaches have been proposed to incor-
porate uncertainties into NMPC formulations. One of the
most straightforward approaches is to repeatedly solve on-line
an open-loop optimization whose objective is to minimize the
expected value of the performance over the set of perturba-

Ž .tions, using updates of the measured estimated variables at
Ž .each sampling time Terwiesc et al., 1994 . Alternative ap-

proaches have been presented based on a cascade optimiza-
Ž .tion framework Visser et al., 2000 or on a receding horizon

implementation of an open-loop minimax optimization prob-
Ž .lem Scokaert and Mayne, 1998; Alamir and Balloul, 1999 .

Although the aforementioned approaches address parameter
uncertainties to some extent, none of these articles provide a
comprehensive robustness analysis of the described tech-

Ž .niques. Valapil and Georgakis 2001 proposed an extended
Ž .Kalman filter EKF -based NMPC approach to control the

end-use properties in batch reactors. Their approach handles
model uncertainty by determining the uncertainty in the pre-
dicted final values of the properties, in the form of elliptical
confidence regions, and ensures that the complete confi-
dence region is within the target region by adding some hard
constraints to the NMPC problem. The performance of their
approach was assessed via Monte Carlo simulation. The only
systematic robust performance analysis for NMPC is pre-

Žsented by Eaton and Rawlings Eaton et al., 1989; Eaton and
.Rawlings, 1990 . Their technique provides information on the

effect of parameter uncertainty on the performance index by
computing the sensitivity coefficients with respect to model
parameters, however, parameter uncertainty is not implicitly
considered in the controller design.

This article presents an NMPC algorithm that also explic-
itly takes parameter uncertainty into account to improve the
robust performance of the state estimation and state feed-
back controller designs. An extended Kalman filter estimates
a time-varying process noise covariance matrix from the pa-
rameter uncertainty description and employs a sequential in-
tegration and correction strategy to reduce biases in the state
estimates due to parameter uncertainty. The shrinking hori-
zon NMPC algorithm minimizes a weighted sum of the nomi-
nal performance objective, an estimate of the variance of the
performance objective, and an integral of the deviation of the
control trajectory from the nominal optimal control trajec-
tory. Robust performance is quantified by estimates of the
distribution of the performance index along the batch run
obtained by a series expansion about the control trajectory.
The performance of the proposed robust NMPC approach is
assessed via an application to a simulated batch crystalliza-
tion process with a realistic uncertainty description, where
comparisons are made with nominal NMPC and open-loop
optimal control. The robust performance analysis results are
compared with Monte Carlo simulations.

Problem Formulation and Solution Strategy
EKF-based NMPC approach

The optimal control problem to be solved on-line in every
sampling time in the NMPC algorithm can be formulated as

w xmin HH x t ,u t , p 1Ž . Ž . Ž .
Ž .u t gUU

subject to

w xx t s f x t ,u t , p 2Ž . Ž . Ž . Ž .˙
w xy t s g x t ,u t , p 3Ž . Ž . Ž . Ž .

x t s x t , x t s x 4Ž .Ž . Ž . Ž .ˆ ˆk k 0 0

w xw xh x t ,u t , p F0, tg t ,t 5Ž . Ž . Ž .k F

where HH is the performance objective, t is the time, t is thek
time at sampling instance k, t is the final time at the end ofF

Ž . nx Ž .the prediction, x t g� is the n vector of states, u t gUUx
is the n set of input vectors with UUsUU �UU � . . . �UUu 1 2 nu

representing the set of all possible trajectories of each con-
Ž . n ytrol input, y t g� is the n vector of measured variablesy

Ž . npused to compute the estimated states x t , and pg PP;�ˆ k
is the n vector of uncertain parameters, where the set PPp
can be either defined by hard bounds or probabilistic, charac-
terized by a multivariate probability density function. The
function f :� nx �UU � PP™� nx is the vector function of the
dynamic equations of the system, g :� nx �UU � PP™� n y is
the measurement equations function, and h:� nx �UU � PP™

� c is the vector of functions that describe all linear and non-
linear, time-varying or end-time algebraic constraints for the
system, where c denotes the number of these constraints. The
objective function can have the following general form

tFw x w xHH x t ,u t , p s MM x t , p q LL x t ,u t , p dtw xŽ . Ž . Ž . Ž .Ž . HF
tk

6Ž .
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The form of Eq. 6 is general enough to express a wide
Žrange of objectives encountered in NMPC applications mov-

ing or shrinking horizon approach on regulation andror set
point tracking, direct minimization of the operation time, op-
timal initial conditions, multiple simultaneous objectives,

.treatment of soft constraints, and so on . For batch processes
with end-point optimization the objective usually reduces to

Ž Ž . .the Mayer form LL � s0 , however, the Lagrange term
Ž Ž ..LL � still may be used, such as to implement soft con-

Ž .straints on control rate Sage and White III, 1977 .
In order to incorporate uncertainties in the NMPC ap-

proach, several approaches have been proposed mainly based
Žon minmax formulation of the performance objective usually

.a representative property of the product , that is, minimiza-
tion of the worst-case deviation of some performance index
Ž . Ž� caused by parameter uncertainty Alamir and Balloul,

.1999 . Although this formulation usually does improve robust
performance in the worst-case scenario, it may lead to poor
results in the nominal case. To overcome this problem, an-
other approach is based on a multiobjective optimization. Ac-
cording to this approach, the weighted sum of the expected
or nominal value of the end-point performance index and the
variance of the performance index around the nominal or ex-
pected value, caused by parameter uncertainty, is minimized

MM x t , p sE � x t , p qwVar � x t , pw x w x w x� 4 � 4Ž . Ž . Ž .F F F

7Ž .

where E represents either the expected or nominal value and
w is the weighting factor that can be used to control the
trade-off between robustness and nominal performance. The
expected or nominal value and the variance of the end-point
performance index can be computed using the distributional
robustness analysis technique presented in the next section.
A third term that improves the trade-off between nominal
performance and robustness is described in the case study
section.

The aforementioned NMPC approach assumes knowledge
of the states. In practice not all states can be measured and
the rest of the states need to be estimated from available
measurements. There are many state estimators described in
the literature. In this article a continuous-discrete extended

Ž . Ž .Kalman filter EKF Jazwinsky, 1970 is implemented in con-
junction with the NMPC strategy. Although EKF-based

ŽNMPC techniques have been described in the literature Lee
.and Ricker, 1993, 1994; Lakshmanan and Arkun, 1999 with

Žseveral industrial applications Ahn et al., 1999; Seki et al.,
.2001; Qin and Badgwell, 2000 , we will briefly present the

approach used in this article to emphasize the differences
compared to other techniques.

The EKF gain is designed using the following stochastic
representation of the process

w xx t s f x t ,u t , p qq t 8Ž . Ž . Ž . Ž . Ž .˙

w xy t s g x t ,u t , p q r t 9Ž . Ž . Ž . Ž . Ž .

Ž . Ž .where q t and r t are the process noise vector and mea-
Ž . Ž .surement noise vector, respectively. Both q t and r t are

assumed to be white noises with zero mean and covariance

Ž . Ž .Q t and R t , respectively. The appropriate choice of these
parameters is important for the performance of the estima-
tor. While the measurement covariance matrix R can be di-
rectly derived from the accuracy of the measurement device
and can be easily obtained experimentally, the appropriate
choice of Q is much less straightforward. Ali and Zafiriou
Ž .1993 proposed a nonlinear optimization based technique to
obtain the process covariance matrix Q. For large systems,
this technique is computationally very expensive and only
produces a constant covariance matrix. However, it has been
shown for batch processes that the use of a time-varying full
covariance matrix Q leads to a better performance than the

Ž .constant diagonal matrix Valapil and Georgakis, 1999, 2000 .
An estimate of the time-varying Q can be obtained by assum-

Ž .ing that the process noise vector q t mostly represents the
Žeffects of parametric uncertainty, in which case Valapil and

.Georgakis, 1999, 2000

w xq t s f x t ,u t , p y f x t ,u t , P 10w xŽ . Ž . Ž . Ž . Ž . Ž .nom nom

Performing a first-order series expansion of the righthand side
Ž .of Eq. 10 around the nominal state x and nominal pa-nom

Ž .rameter p vectors, and computing the covariance of thenom
Ž .resulting q t , give the following expression for the process

Ž .noise covariance matrix Valapil and Georgakis, 1999, 2000

Q t sS t V ST t 11Ž . Ž . Ž . Ž .p p p

where V g� np�n p is the parameter covariance matrix, andp
Ž .S t is the Jacobian computed using the nominal parametersp

and estimated states

� f
S t s 12Ž . Ž .p ž /� p Ž . Ž .x t ,u t , pˆ nom

Equation 11 provides an easily implementable way to esti-
mate the process noise covariance matrix, since the parame-
ter covariance matrix V is usually available from parameterp

Ž .estimation Beck and Arnold, 1977 , and the sensitivity coef-
ficients in S can be computed by finite differences or viap

Žsensitivity equations Caracotsios and Stewart, 1985; Feehery
.et al., 1997 .

In the time update phase of the estimation, the states and
state covariance are propagated by integrating the model
equations augmented with the covariance propagation equa-

Ž w x.tion for one sampling time tg t ,tky1 k

w xx t s f x t ,u t , p 13Ž . Ž . Ž . Ž .˙

˙ ˜ T̃P t s A t P t qP t A t qQ t 14Ž . Ž . Ž . Ž . Ž . Ž . Ž .

Ž . Ž .with initial conditions x t and p t obtained from theˆ ky1 ky1
Ž̃ .last estimation, and the jacobian A t defined by

� f
Ã t s 15Ž . Ž .ž /� x Ž . Ž .x t ,u t , pˆ nom

yŽ . yŽ .Define the solutions of Eqs. 13�14 as x t and P t ,ˆ k k
respectively. With these values the Kalman gain K is com-
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puted, and then the measurement update stage is performed
according to

y1y T y T˜ ˜ ˜K t sP t C t C t P t C t qR 16Ž .Ž . Ž . Ž . Ž . Ž . Ž .k k k k k k

y˜P t s IyK t C t P t 17Ž .Ž . Ž . Ž . Ž .k k k k

yF t sK t y t y g x t ,u t , p 18Ž Ž .Ž . Ž . Ž . Ž . Ž .Ž .ˆK k k m k k k nom

x t s xy t qF t 19Ž .Ž . Ž . Ž .ˆ ˆk k K k

Ž .where y t corresponds to the measurements obtained fromm k
Ž .the real process at time t , F t is the Kalman filter correc-k K k

˜tion factor, and C is the jacobian of the measurement equa-
tions with respect to the states

� g
C̃ t s 20Ž . Ž .ž /� x Ž . Ž .x t ,u t , pˆ nom

The estimated states in Eq. 19 are used as the initial value
for the model prediction stage in the optimization algorithm.
Note, however, that in the presence of constant parameter
uncertainty the prediction results in biased state andror out-
put values. To diminish this problem, a sequential integration
and correction approach is used instead of performing the
prediction by integrating the model equations over the whole

w xprediction horizon tg t ,t . According to this technique, thek F
state equations are integrated over one sampling time with

Ž .the initial values x t obtained from the estimator, and thenˆ k
the initial values for the next sampling period are computed

w Ž .xby adding the Kalman filter correction factor F t to theK k
values obtained from the integration. This procedure is re-
peated until the end of the prediction t . This sequential in-F
tegration and correction strategy represents the main differ-
ence of our technique compared to the aforementioned ap-
proaches.

Distributional robustness performance analysis
The robust NMPC algorithm incorporates the distribu-

Ž .tional approach of Nagy and Braatz 2002 , which is an exten-
sion of earlier worst-case analysis techniques developed for

Žfinite-time nonlinear systems Ma et al., 1999; Ma and Braatz,
.2000, 2001 .

With � p defined as the perturbation about the nominal
Ž . Ž .parameter vector p with dimension n �1 , the real pa-nom p

rameter vector is

ps p q� p 21Ž .nom

with mean and covariance given by

w xE p s p 22Ž .nom

w xCo® py p sV 23Ž .nom p

A popular way to describe the uncertainty of parameters is
by defining the hyperellipsoidal confidence region that quan-
tifies the accuracy of the parameters. Assuming zero mean,
normal measurement errors, and known covariance matrix,
the hyperellipsoidal confidence region is given by

T y1 2PP � J p: py p V py p F� � 24Ž . Ž . Ž . Ž . Ž .½ 5nom p nom n p

2 Ž .where � is the confidence level, and � � is the chi-squarednp

distribution function with n degrees of freedom. Using thep
Ž .Holder 2-norm, the ellipsoidal set Eq. 24 can be written as¨

� � npPP � J p: W � p F1, pg� 25Ž . Ž .� 42p

where W g� np�n p is a positive-definite weighting matrix ofp
the form

y1r22 y1r2W s � � V 26Ž . Ž .p n pp

The variation of the performance index caused by parameter
uncertainty is

�� s� y� 27Ž .nom

where � is the nominal performance for the nominalnom
model parameters p , and � as its value for the uncertainnom
parameters p.

The robust performance analysis is based on the series ex-
pansion of ��

�� sL� pq� pTM� pq . . . 28Ž .

where the jacobian Lg� np, and hessian Mg� np�n p are

�� tŽ .
L t s 29Ž . Ž .ž /� p pnom

� 2� tŽ .
M t s 30Ž . Ž .2ž /� p pnom

Ž .The elements of the time-varying sensitivity vector L t and
Ž .matrix M t can be computed using finite differences or by

integrating the model’s differential-algebraic equations aug-
mented with an additional set of differential equations known

Ž .as sensitivity equations Caracotsios and Stewart, 1985 . The
extra computational expense in simulating the sensitivity
equations can be reduced substantially by exploiting their

Ž .structure Feehery et al., 1997 .
When a first-order series expansion is used, analytical ex-

pressions of the worst-case deviation in the performance in-
Ž .dex �� can be computed and the analysis can be per-w.c.

Ž .formed with low computational cost Matthews, 1997 . In the
case of an ellipsoidal uncertainty description the worst-case
deviation is defined by

�� t s max L t � p 31Ž . Ž . Ž .w.c .
� �W � p F1p 2

The analytical solution of this optimization problem can be
determined using Lagrange multipliers

1r22 T�� t s � � L t V L t 32Ž . Ž . Ž . Ž . Ž .w.c . n pp

1r22� �Ž .np T� p t s V L t 33Ž . Ž . Ž .w.c . p1r2TL t V L tŽ . Ž .p
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The worst-case uncertainty vector in Eq. 33 is not unique.
For example, another solution vector is obtained by multiply-
ing by minus one. While both vectors achieve the same maxi-
mum deviation �� , one of the vectors is associated with aw.c.
worst-case increase in � and another with a worst-case de-
crease. The first-order series expansion has provided accept-

Žable accuracy for several batch processes Ma et al., 1999;
.Ma and Braatz, 2001; Mathews, 1997 . Improved accuracy can

be obtained using a higher-order series expansion, but with
the cost of a higher computational burden. This approach
uses the structured singular value to compute the worst-case
deviation in � and the associated worst-case parameter vec-

Žtor for second- or higher-order series expansions Ma and
.Braatz, 2001 . A less computationally expensive estimate of

�� is the magnitude of the difference between the nomi-w.c.
nal value and the performance index obtained by applying a
nonlinear dynamic simulation using the estimated worst-case

Žparameter vector computed from the first-order analysis Eq.
.33 .

Ž .The parameter uncertainty description Eq. 25 is charac-
terized by a multivariate normal distribution with the follow-

Ž .ing probability density function pdf

1
f p sŽ .p.d . 1r2n r2p2� det VŽ . Ž .p

1 T y1�exp y py p V py p 34Ž . Ž . Ž .nom p nomž /2

This will be used to estimate the distribution of the perfor-
mance variable � of interest. When a first-order series ex-
pansion is used, the pdf, of � can be estimated as

1 2f � s exp y � y� r 2V 35Ž . Ž .Ž . Ž .Žp.d . nom �2� V' �

with the mean and covariance of � given by

w xE � s� 36Ž .nom

w x TVar � sV sLV L 37Ž .� p

This distribution is a function of time since the nominal value
for � and the vector of sensitivities L are functions of time.

A more accurate estimate of the pdf of � can be com-
puted numerically. One way to do this is to use the higher-

Ž .order series expansion Eq. 28 to map the contours of the
Ž .uncertainty sets PP � obtained for different �-levels to the

bounds on � , and construct the pdf, of � from the contours
on � . The contour mappings can be performed by structured
singular value analysis applied to the terms in the series ex-

Ž .pansion Nagy and Braatz, 2002 . Another way to obtain the
distribution of � is to perform Monte Carlo nonlinear simu-
lations with random samples from the multivariate distribu-

Ž .tion Eq. 34 . This technique is straightforward to implement
and does not have the truncation error caused by the series
expansion, however, it is computationally very expensive, as is
illustrated in the case study. In the next section Monte Carlo
simulations is used to assess the accuracy of the first-order

distributional robustness analysis of the NMPC of a batch
crystallization process.

Although the above equations were in terms of a particular
performance index, note that the robust performance analy-
sis techniques can be applied to any state variable or function
of the state variables.

Case Study: Batch Crystallization
The dynamic model of a batch crystallizer with the KNO -3

H O system is only briefly described here, as a detailed de-2
Žscription of the system is available elsewhere Miller and

.Rawlings, 1994 . The KNO product crystals can be charac-3
terized by one characteristic length z for which the popula-
tion balance equation is given by

� G S, p , z f z ,t� f z ,t Ž .Ž . � 4Ž .c g dd q sB S, p 38Ž .Ž .c b� t dz

Ž . Ž .where f z,t is the crystal size distribution CSD , t is time,d
Ž . Ž .G S, p , z is the rate of crystal growth, B S, p is the nu-c g c b

Ž .cleation rate, Ss C-C rC is the relative supersatura-sat sat
Ž .tion, C is the solute concentration, C sC T is the satu-sat sat

ration concentration, which is a function of the crystallizer
temperature T , and p and p are the growth and nucleationg b
kinetic parameters, respectively.

A popular method of simplifying the simulation and opti-
mization is based on the moments, which replaces the partial
differential Eq. 38 with a set of ordinary differential equa-

Ž .tions Hulbert and Katz, 1964

d�0 sB 39Ž .cdt

d� j js jG � qB z , js1,2, . . . 40Ž .c jy1 c 0dt

where z is the crystal size at nucleation, which is assumed to0
be constant, and � is the jth moment defined byj

	
j� s z f z ,t dz 41Ž . Ž .Hj d

0

A similar material balance tracks only the crystals grown from
seed. These moment equations can be derived similarly as
Eqs. 39�40.

d�seed, j s jG � , js0,1, . . . 42Ž .c seed , jy1dt

Assuming constant volume, the solute concentration C satis-
fies

dC
3sy3
 k G � y 
 k B z 43Ž .c ® c 2 c ® c 0dt

where 
 is the density of the crystal, and k is the volumet-c ®
ric shape factor, defined as the volume of a crystal divided by
z3.

For a jacketed batch cooling crystallizer, the energy bal-
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ance is written

yUA TyT y3� H C 
 k G � mdT Ž .Ž .j c c ® c 2 ss 44Ž .
dt 
 k � qCq1 m c CŽ .Ž .c ® 3 s p

where U is the heat-transfer coefficient, A is the heat-trans-
fer area, T is the jacket temperature, m is the mass of thej s

Ž .solvent, � H C is the heat of crystallization which is an em-c
Ž .pirical function of the solute concentration, and c C is thep

heat capacity of the slurry.
Several models for growth and nucleation kinetics have

Žbeen developed and are available in the literature Garside,
.1984; Nyvlt et al., 1985; Rawlings et al., 1993 . The most com-

mon kinetic models when nuclei form from existing crystals
are given by the equations

G sk S g 45Ž .c g

	
b 3B sk S z f z ,t dz 46Ž . Ž .Hc b d

0

w Ž . Ž .xTwhere ps g, ln k , b, ln k are the kinetic parametersg b
for growth and nucleation.

In Eqs. 39�46 the moments and concentration are defined
on a per mass of solvent basis. In the dynamic simulation, the
solute concentration, temperature, and moments � , . . . , �0 4
and � , . . . , � are computed, resulting in ten ordi-seed,0 seed,3
nary differential equations.

From practical considerations, the following measurements
are considered

Tw xys � ,� ,� ,C ,T 47Ž .1 2 3

Ž .The first three variables moments � , � , and � can be1 2 3
measured using video microscopy or laser backscattering
ŽBraatz, 2002; Fujiwara et al., 2002; Patience and Rawlings,

.2001 . Several on-line techniques are available for the solu-
tion concentration measurements such as conductivity or at-
tenuated total reflection Fourier transform infrared spec-

Ž .troscopy Rawlings et al., 1993; Braatz and Hasebe, 2002 .
Temperature measurements are readily available using com-
mon thermocouples.

The nominal model parameters p are reported in Table 1.
These values were determined by maximum likelihood, with

Ž .the details reported by Miller and Rawlings 1994 . The in-
verse of the parameter covariance matrix was estimated as
Ž .Ma et al., 1999

102,873 y21,960 y7,509 1,445
y21,960 4,714 1,809 y354y1V s 48Ž .p y7,509 1,809 24,225 y5,198

1,445 y354 y5,198 1,116

Table 1. Nominal Kinetic Parameters of the KNO System3
( )Miller and Rawlings, 1994

3Ž . Ž .g k �mrmin b k particlesrcmrming b

Ž . Ž .1.31 exp 8.79 1.84 exp 17.38

Figure 1. Hierarchical NMPC structure coupled with the
EKF.

This matrix was estimated from dynamic data collected for
four batch simulation experiments as described by Chung et

Ž .al. 2000 . In brief, Eq. 48 was computed from the measure-
ment noise covariance matrix, whose diagonal elements were
specified by experimental data reported by Miller and Rawl-

Ž .ings 1994 , and the jacobian of the model predictions with
respect to the parameters using expressions for computing

Žapproximate covariance matrices for nonlinear systems Beck
.and Arnold, 1977 .

The hierarchical implementation of the NMPC algorithm
for the batch cooling crystallizer is shown in Figure 1. The
EKF estimates the entire state vector from the current mea-
surements taken from the process. The estimated states are
used to initialize the optimal control problem in the NMPC
algorithm, which is used to compute the set point on the crys-
tallizer temperature that is sent to a lower level PI controller
that manipulates the jacket temperature to achieve the de-
sired temperature. Not shown or modeled is the local flow
controller that manipulates a valve position to achieve the
jacket temperature, since the dynamics of this loop are so
fast that a high gain controller ensures that the local flow
control loop has a neglible effect on the higher level control
loops.

The CSD property considered as the performance index in
the NMPC is the nucleated crystal mass to seed crystal mass
ratio at the end of the batch

� y�3 seed,3
� x t s 49Ž .Ž .f �seed,3

The main objective of the robust NMPC algorithm is to
minimize this CSD property, while being robust to parameter
uncertainty. The optimization problem solved in the NMPC
approach at every sampling time is

min � x t , p qwVar � x t , pŽ . Ž .Ž . Ž .F nom F½Ž .T t

t fq� T t yT t dt 50Ž . Ž . Ž .H nom 2 5tk

subject to the model equations and the following inequality
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constraints

T t FT t FT t 51Ž . Ž . Ž . Ž .min max

dT tŽ .
R t F FR t 52Ž . Ž . Ž .T ,min T ,maxdt

C t FC t 53Ž .Ž . Ž .f max f

where T , T , R , and R are the minimum andmin max T ,min T ,max
maximum temperatures and temperature ramp rates, respec-
tively, during the batch and t is the end time of the batch. Inf

Ž . Ž .the last term of the objective function Eq. 50 , T t is thenom
nominal optimal temperature profile obtained with the nomi-
nal parameters. The inclusion of this term in the objective
function improves the nominal performance of the robust
NMPC scheme. By setting the appropriate weight �, similar
nominal performance can be achieved for larger values of the

Ž .weighting coefficient on the variance w as in the case of
NMPC without uncertainty. When �s0 is used, the same
nominal performance can be achieved by only significantly
reducing w, which leads to significant degradation of the ro-
bust performance of the NMPC algorithm. Constraints 51 and
52 ensure that the temperature profile stays within the oper-
ating range of the crystallizer. The final constraint 53 ensures
that the minimum yield required by economic considerations
will be met. The temperature profile is described as linear
piecewise trajectories by discretizing the batch time in N
equal intervals and considering the temperatures at every time
as the optimization variables. The NMPC with the EKF is
implemented in Matlab using the sequential solution ap-
proach, in which a stiff ODE integrator is used in combina-

Ž .tion with an optimization subroutine fmincon . The optimal
Ž .temperature profile T t is used as the set point for the lowers

level PI controller, which tracks the desired optimal set point
using the jacket temperature. To reduce on-line computa-

˜ ˜tions, the jacobian matrices A, C, and S used in the EKFp
are computed symbolically off-line using the Matlab symbolic
toolbox. Since the estimation is faster than the optimization,

Ž .a smaller estimation sampling time 1 min is used in the EKF
Ž .than for control discretization 10 min , achieving a faster

convergence of the estimator.
The overall performance of the control approach directly

depends on the performance of the EKF, which is deter-
mined by the tuning parameters Q and R, the initial values
of the state estimates x , and the initial value of the state0̂

Ž .covariance matrix P t . In the simulations it was assumed0
that the state-of-the-art sensors and associated chemometric

Ž .analysis tools are used Braatz and Hasebe, 2002 so that the
measurements are relatively accurate, which corresponds to

Ž .diagonal elements of R that are small Rs0.001 I . The
Ž .time-varying state covariance matrix Q t given by Eq. 11 is

designed to take into account the effect of parameter uncer-
tainties on the state equation Eq. 8. Like any estimator, the
performance of the EKF can be sensitive to poor estimates of

Ž .x . The initial value of P t is the measure of the accuracy0̂ 0
of the initial state estimates. In the case of large errors in x ,0̂

Ž .choosing too small values for P t can cause poor perfor-0
mance or even divergence of the estimator. If large errors in
the initial states are expected, then the diagonal elements of
Ž .P t should be selected to be larger. To account for this, the0

Table 2. Performance of Robust NMPC with EKF for 0, 5,
and 10% Errors in the Initial Values of the State Estimates

Ž . Ž . Ž . Ž . Ž .x x t 0.95 x t 1.05 x t 0.90 x t 1.10 x t0̂ 0 0 0 0 0
� �Ž .� t 7.8 8.6 9.1f

�Indicates that the EKF diverged.

Ž . w Ž .elements of the diagonal P t are computed as x t y0 i 0
x2 Ž .x . Using this approach to estimate P t , the robust0̂,i 0

NMPC algorithm was run for �5% and �10% errors in the
Ž .initial values of the unmeasured state estimates see Table 2 .

An error of q5% or y5% in x leads to an offset in the0̂
end-point performance of 10.2% or 16.6%, respectively, com-
pared to the ideal case when all states are perfectly known.
In the case of �10% errors in x , the EKF does not con-0̂
verge. Convergence for larger errors in the initial states could
be achieved by increasing the magnitude of the diagonal ele-

Ž .ments of P t . This example also illustrates the improved0
estimation provided by the implemented EKF compared to
the conventional EKF. When the conventional EKF was used

Žwith diagonal and constant Q using the diagonal elements of
Ž . .Q t given by Eq. 11 and without using the sequential inte-0

gration and correction strategy, its state estimates diverged
even for the �5% errors in x .0̂

Figure 2 shows the nominal profiles obtained by nominal
NMPC and robust NMPC, respectively. In the latter case �s
0.01 is used to achieve a similar nominal performance as in
the former case. To focus attention on the effects of parame-
ter uncertainty, the initial states are considered known; hence,
Ž . Ž .P t is set small 0.01 I . The open-loop optimal trajectory0

is also shown, and seen to have nearly the same temperature
profile as NMPC. The trajectories presented in Figure 2 are
used as the set point for the PI controller. The PI controller

Ž .tracks the profiles accurately within �0.05
C , and a varia-
tion less than 0.5% in the final performance index is achieved

Žcompared to the ideal controller case when the set point
.profile is implemented perfectly . When the controller was

detuned to provide a set point tracking error of �0.1
C a

Figure 2. Optimal temperature profiles for nominal
( ) ( )NMPC w s 0 , robust MPC ws0.2 , and

for open-loop optimal control.
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( ) (Table 3. Worst-Case Performance for Parameter Uncertainty with Confidence Level � s0.95 for the Performance Index the
) ( ) ( )Nucleation to Seed Mass Ratio Obtained by Open Loop Optimal Control, Nominal NMPC ws0 , Robust NMPC ws0.2

( ) �with EKF, and robust NMPC ws0.2 with Perfect Knowledge of the States
Ž .� tw .c . f

Est. with Improved Value
Nominal First-Order from Dynamic

Ž .Control Approach � t Expansion Simulationf

Open-loop optimal control 7.7 9.3 9.6
Ž .NMPC nominal, with EKF 7.7 9.0 8.3

Ž .Robust NMPC with EKF 7.8 8.8 8.1
Ž .Robust NMPC with known states 7.8 8.5 8.0

�The worst-case deviation was estimated using first-order robustness analysis, with the improved value computed by performing dynamic simulation for
the worst-case parameter computed from first-order analysis.

Ž .significantly larger variation 2.7% in the performance index
was observed.

Table 3 shows the effects of parameter uncertainty on the
performance index for open-loop optimal control, nominal
NMPC with EKF, robust NMPC with EKF, and robust NMPC
when the states are perfectly known. Nominal NMPC with
EKF considerably reduces the worst-case deviation in the
performance index by a factor of three compared to open-loop
optimal control. Robust NMPC with EKF provides an addi-
tional factor of two reduction in the worst-case performance
deviation, while providing nearly the same nominal perfor-
mance as open-loop optimal control. The state estimates ob-
tained by the EKF were sufficiently accurate to provide the
same nominal performance and a small degradation in robust
performance compared to having perfect state information.
The first-order series expansion gave more accurate results
for open-loop optimal control than for the NMPC ap-
proaches. The larger differences for the NMPC algorithms
indicate the usefulness of improving the accuracy of the
worst-case performance estimates via nonlinear simulation.

Distributional analysis provides a more comprehensive as-
sessment of the robust performance. Figures 3�5 show the

Figure 3. Variation of the p.d.f. of the performance in-
( )dex the nucleation to seed mass ratio during

the batch when open-loop optimal control is
implemented.
The p.d.f was determined using first-order distributional
analysis.

Figure 4. Variation of the p.d.f. of the performance in-
( )dex the nucleation to seed mass ratio during

the batch when nominal NMPC with EKF is
implemented.
The p.d.f was determined using first-order distributional
analysis.

Figure 5. Variation of the p.d.f. of the performance in-
( )dex the nucleation to seed mass ratio during

the batch when robust NMPC with EKF is im-
plemented.
The p.d.f was determined using first-order distributional
analysis.
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( )Table 4. Worst-Case Performance for Parameter Uncertainty with Confidence Level � s0.95 for the Weight Mean Size
( ) ( ) ( )WMS Obtained by Open-Loop Optimal Control, Nominal NMPC ws0 , Robust NMPC ws0.2 with EKF, and Robust

( ) �NMPC ws0.2 with Perfect Knowledge of the States
Ž .WMS tw .c. f

Est. with Improved Value
Nominal First-Order from Dynamic

Ž .Control Approach WMS t Expansion Simulationf

Open-Loop Optimal Control 590 535 538
Ž .NMPC Nominal, with EKF 591 558 543

Ž .Robust NMPC with EKF 594 563 545
Ž .Robust NMPC with Known States 591 570 551

�The worst-case deviation was estimated using first-order robustness analysis, with the improved value computed by performing dynamic simulation for
the worst-case parameter computed from first-order analysis.

variation of the probability density function of the perfor-
mance index along the batch run for open-loop optimal con-
trol, nominal NMPC, and robust NMPC. The distributions of
� increase monotonically during the batch run for all three
cases. The NMPC approaches provide a considerably nar-
rower distribution for the entire batch compared to the
open-loop optimal control. Compared to nominal NMPC, ro-
bust NMPC has a narrower endpoint distribution, which is
expected since the endpoint variance is included in its opti-
mization objective, while providing a slightly wider distribu-
tion in the third quarter of the batch run.

Although not included explicitly in the NMPC optimiza-
tion objective, the variation of the weight mean size

�4
WMSs 54Ž .

�3

was also computed. Table 4 shows the effect of parameter
uncertainty on the WMS at the end of the batch. The WMS at
the end of the batch is not significantly more robust for the
NMPC algorithms than for open-loop implementation.
Hence, a batch control strategy can be highly robust for some
product quality variables, while being less robust for others.
This illustrates the importance of considering in the objective

Figure 6. Weight mean size and nucleated to seed mass
ratio at the end of the batch for 100 Monte
Carlo simulations, when open-loop optimal
control is implemented.

Ž .function Eq. 50 all product quality variables for which in-
creased robustness is desired. As in Table 3, the small differ-
ences of the results obtained with robust NMPC with EKF
compared to the case where the states are perfectly known
indicate the good performance of the EKF.

To assess the accuracy of the above robustness analysis,
Monte Carlo simulations were performed by dynamic simula-
tion with 100 random parameter vectors generated from the
multivariate normal distribution function 34. Figures 6�8
show the effects of parameter uncertainty on the two CSD

Ž .properties � and WMS at the end of the batch run for
open-loop optimal control, nominal NMPC, and robust
NMPC. These results are quantitatively consistent with the
analysis results reported in Figures 3�5 and the last columns
of Tables 3�4, with the agreement for open-loop optimal
control being somewhat better than for the NMPC algo-
rithms. The computational burden for the Monte Carlo ap-
proach, however, is much greater than for series expansion-
based robustness analysis. Even with the fairly limited set of
data, the Monte Carlo simulations for the NMPC approaches
took approximately one week on a 800 MHz Pentium III
computer, which is about 25 times longer than the computa-
tional time required for the series expansion-based robust-
ness analysis. The series expansion-based robustness analysis

Figure 7. Weight mean size and nucleated to seed mass
ratio at the end of the batch for 100 Monte
Carlo simulations, when nominal NMPC with
EKF is implemented.
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Figure 8. Weight mean size and nucleated to seed mass
ratio at the end of the batch for 100 Monte
Carlo simulations, when robust NMPC with
EKF is implemented.

technique is a computationally efficient approach that can
provide valuable information concerning robust performance
even for advanced control architectures, such as the com-
bined EKF and NMPC approach used in this article.

Conclusions
A robust EKF-based NMPC algorithm for batch processes

is presented which incorporates parameter uncertainty into
both the EKF and NMPC algorithms. A series expansion of
the performance index is used to estimate the distribution of
the process output for the whole batch run. For a simulated
batch crystallization process, NMPC considerably improved
robust performance compared to open-loop optimal control.
Robust performance is significantly enhanced when parame-
ter uncertainty is taken into account in the objective function
of the NMPC. The conclusions obtained from the series-based
analysis approach are verified through Monte Carlo simula-
tion.
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